首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhang Hongqi 《Solar physics》1993,144(2):323-340
In this paper, the formation and the measurement of the H line in chromospheric magnetic fields are discussed. The evolution of the chromospheric magnetic structures and the relation with the photospheric vector magnetic fields and chromospheric velocity fields in the flare producing active region AR 5747 are also demonstrated.The chromospheric magnetic gulfs and islands of opposite polarity relative to the photospheric field are found in the flare-producing region. This probably reflects the complication of the magnetic force lines above the photosphere in the active region. The evolution of the chromospheric magnetic structures in the active region is caused by the emergence of magnetic flux from the sub-atmosphere or the shear motion of photospheric magnetic fields. The filaments separate the opposite polarities of the chromospheric magnetic field, but only roughly those of the photospheric field. The filaments also mark the inversion lines of the chromospheric Doppler velocity field which are caused by the relative motion of the main magnetic poles of opposite polarities in the active region under discussion.  相似文献   

2.
    
Using the boundary element method (BEM) for constant-, force-free fields, the vector magnetic field distributions in the chromosphere of a flare-productive active region. AR 6659 in June 1991, are obtained by extrapolating from the observed vector magnetograms at the photosphere. The calculated transverse magnetic fields skew highly from the photosphere to the chromosphere in the following positive polarity sunspot whereas they skew only slightly in the main preceding sunspot. This suggests that more abundant energy was stored in the former area causing flares. Those results demostrate the validity of the BEM solution and the associations between the force-free magnetic field and the structure of the AR 6659 region. It shows that the features of the active region can be revealed by the constant- force-free magnetic field approximation.  相似文献   

3.
A study of surges and flares within an active region   总被引:1,自引:0,他引:1  
Active region 2684 was observed by the Solar Maximum Mission and ground-based observatories simultaneously for over 12 hours on September 23, 1980. During these observations, recurrent surges were detected above an area with complex parasitic magnetic polarity located at the periphery of the active region. The time evolution of the H surges, Civ brightenings and X-ray spikes leads to the conclusion that the energy source is in the corona, from magnetic reconnection. The energy is transported by energetic charged particles along the loops, thereby heating the chromosphere as the particles lose their energy. The divergent motion of the spots corresponding to small dipoles at the base of the surge indicates that there is important magnetic reorganisation. According to the magnetic field-line configuration (large loop or open structures), X-rays can (or cannot) be associated with surges.  相似文献   

4.
Observations of the polar magnetic fields were made during the period July 3–August 23, 1968, with the Mt. Wilson magnetograph. The scanning aperture was 5 × 5. The magnetic field was found to be ofS polarity near the heliographic north pole and ofN polarity near the south pole. At lower latitudes the polarity was the opposite. The polarity reversal occurred at a latitude of about +70° in the north and -55° in the south hemisphere. This coincides with the position of the polar prominence zones at that time. The observations indicate that the average field strength at the south pole was well above 5 G.Synoptic charts of the magnetic fields have been plotted in a polar coordinate system for two consecutive solar rotations.  相似文献   

5.
The present paper is devoted to the interpretation of linear polarization data obtained in 14 quiescent prominences with the Pic-du-Midi coronagraph-polarimeter by J. L. Leroy, in the two lines Hei D3 andH quasi-simultaneously. The linear polarization of the lines is due to scattering of the anisotropic photospheric radiation, modified by the Hanle effect due to the local magnetic field. The interpretation of the polarization data in the two lines is able to provide the 3 components of the magnetic field vector, and one extra parameter, namely the electron density, because the linear polarization of H is also sensitive to the depolarizing effect of collisions with the electrons and protons of the medium. Moreover, by using two lines with different optical thicknesses, namely Hei D3, which is optically thin, and H, which is optically thick ( = 1), it is possible to solve the fundamental ambiguity, each line providing two field vector solutions that are symmetrical in direction with respect to the line of sight in the case of the optically thin line, and which have a different symmetry in the case of the optically thick line.It is then possible to determine without ambiguity the polarity of the prominence magnetic field with respect to that of the photospheric field: 12 prominences are found to be Inverse polarity prominences, whereas 2 prominences are found to be Normal polarity prominences. It must be noticed that in 12 of the 14 cases, the line-of-sight component of the magnetic field vector has a Normal polarity (to the extent that the notion of polarity of a vector component is meaningful; no polarity can be derived in the 2 remaining cases); this may explain the controversy between the results obtained with methods based on the Hanle effect with results obtained through the Zeeman effect. A dip of the magnetic field lines across the prominence has been assumed, to which the optically thick H line is sensitive, and the optically thin Hei D3 line is insensitive.For the Inverse prominences, the average field strength is 7.5±1.2 G, the average angle,, between the field vector and the prominence long axis is 36° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 29° ± 20°, and the average electron density is 2.1 × 1010 ± 0.7 × 1010 cm–3. For the Normal prominences, the average field strength is 13.2±2.0 G, the average angle,, between the field vector and the prominence long axis is 53° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 0° ± 20° (horizontal field), and the average electron density is 8.7 × 109 ± 3.0 × 109 cm–3.  相似文献   

6.
Moon  Y.-J.  Wang  Haimin  Spirock  Thomas J.  Goode  P.R.  Park  Y.D. 《Solar physics》2003,217(1):79-94
We present a new method to resolve the 180° ambiguity for solar vector magnetogram measurements. The basic assumption is that the magnetic shear angle (), which is defined as the difference between the azimuth components of observed and potential fields, approximately follows a normal distribution. The new method is composed of three steps. First, we apply the potential field method to determine the azimuthal components of the observed magnetic fields. Second, we resolve the ambiguity with a new criterion: –90°+mp lele90°+mp, where mp is the most probable value of magnetic shear angle from its number distribution. Finally, to remove some localized field discontinuities, we use the criterion B tB mt ge0, where B t and B mt are an observed transverse field and its mean value for a small surrounding region, respectively. For an illustration, we have applied the new ambiguity removal method (Uniform Shear Method) to a vector magnetogram which covers a highly sheared region near the polarity inversion line of NOAA AR 0039. As a result, we have found that the new ambiguity solution was successful and removed spatial discontinuities in the transverse vector fields produced in the magnetogram by the potential field method. It is also found that our solution to the ambiguity gives nearly the same results, for highly sheared vector magnetograms and vertical current density distributions, of NOAA AR 5747 and AR 6233 as those of other methods. The validity of the basic assumption for an approximate normal distribution is demonstrated by the number distributions of magnetic shear angle for the three active regions under consideration.  相似文献   

7.
In this paper an excitation of waves is considered during the time interval in which the undisturbed magnetic field changes its direction. If this interval is taken to be 2 years, which is shorter than the 11-year cycle, then the undisturbed components of the magnetic field may be linearly dependent on time and independent of the coordinates. The excitation of waves is due to the undisturbed stationaryV 0 flow with divV 0 = 0 and with (V 0 rot0) = constant.We use the local Cartesian coordinate system, which is immovable towards the solar centre, and consider the case when the toroidal component of the undisturbed magnetic field changes its sign simultaneously with one of the axial components. The third component does not change its direction.The efficiency of the enhancement of the magnetic field and velocity disturbances depends on the Alfvén wave frequency, A. When A = 0, the component of the disturbed velocity, which is directed along the constant component of the undisturbed magnetic field, increases. In this case the shear waves excite the carrier (high) frequency (KV 0), whereK is the wave vector. Due to the shear instability the amplitude of the velocity increases during 1 year before the moment of reversal of the global magnetic field polarity (RGMFP) for an arbitrary latitude. It reaches a maximum at RGMFP and decreases in the next year. When A > 0, then the amplitudes of the disturbed values reach maxima before the moment of RGMFP, and when A < 0, they reach maxima after it.We argue that the shear waves propagate from middle latitudes to the pole and equator. Using the results of the analytical solutions and leaning on the evidence of the observational data (Gigolashvili and Japaridze, 1992), we derive the result that the component of the undisturbed magnetic field, which is perpendicular to the solar surface, changes its sign simultaneously with the toroidal component.  相似文献   

8.
We present the results of a detailed analysis of multi-wavelength observations of a very impulsive solar flare 1B/M6.7, which occurred on 10 March, 2001 in NOAA AR 9368 (N27 W42). The observations show that the flare is very impulsive with a very hard spectrum in HXR that reveal that non-thermal emission was most dominant. On the other hand, this flare also produced a type II radio burst and coronal mass ejections (CME), which are not general characteristics for impulsive flares. In H we observed bright mass ejecta (BME) followed by dark mass ejecta (DME). Based on the consistency of the onset times and directions of BME and CME, we conclude that these two phenomena are closely associated. It is inferred that the energy build-up took place due to photospheric reconnection between emerging positive parasitic polarity and predominant negative polarity, which resulted as a consequence of flux cancellation. The shear increased to >80 due to further emergence of positive parasitic polarity causing strongly enhanced cancellation of flux. It appears that such enhanced magnetic flux cancellation in a strongly sheared region triggered the impulsive flare.  相似文献   

9.
Haimin Wang 《Solar physics》1992,140(1):85-98
This paper studies the evolution of vector magnetic fields in the active region Boulder No. 6233 during an 11-hour observing period and its relationship to an X-3 flare on August 27, 1990.We observed the evolution of magnetic fields, which includes magnetic shear build-up, directly in high-resolution vector magnetograph movies. The magnetic shear is observed to be built up in two ways: (1) shear motion between two poles of opposite magnetic polarities and (2) direct collision of two poles of opposite polarities. When two magnetic elements of opposite polarities are canceling, the field lines are observed to turn from direct connection (potential) to a sheared configuration during the process.An X-3 flare occurred at 2100 UT. The vector magnetic structure showed an unexpected pattern of changes during and after the flare. The shear (defined as the angle between the measured transverse field and the calculated potential field) in the area covering two major footpoints increased rapidly coinciding with the burst of GOES X-ray flux. While the flare faded away in about one hour, the high shear status dropped slowly for the remainder of the observing period. Immediately after the flare, new flux emerged more rapidly and the flow speed of several magnetic elements increased near the flare footpoints.In this active region and a few other flare-productive regions we have studied recently, we always find rapid and complicated flow motions near the sites where flares occur. Photospheric flows appear to be another important factor for the production of flares.  相似文献   

10.
A recurrent H surge was observed on 7 October, 1991 on the western solar limb with the Meudon MSDP spectrograph. The GOES satellite recorded X-ray subflares coincident with all three events. During two of the surges high-resolutionYohkoh Soft X-ray Telescope (SXT) images have been taken. Low X-ray loops overlying the active region where the surges occurred were continuously restructuring. A flare loop appeared at the onset of each surge event and somewhat separated from the footpoint of the surge. The loops are interpreted as causally related to the surges. It is suggested that surges are due to magnetic reconnection between a twisted cool loop and open field lines. Cold plasma bubbles or jets squeezed among untwisting magnetic field lines could correspond to the surge material. No detection was made of either X-ray emission along the path of the surges or X-ray jets, possibly because of the finite detection threshold of theYohkoh SXT.  相似文献   

11.
In this paper we introduce a new parameter, the shear angle of vector magnetic fields, , to describe the non-potentiality of magnetic fields in active regions, which is defined as the angle between the observed vector magnetic field and its corresponding current-free field. In the case of highly inclined field configurations, this angle is approximately equal to the angular shear, , defined by Hagyardet al. (1984). The angular shear, , can be considered as the projection of the shear angle, , on the photosphere. For the active region studied, the shear angle, , seems to have a better and neater correspondence with flare activity than does . The shear angle, , gives a clearer explanation of the non-potentiality of magnetic fields. It is a better measure of the deviation of the observed magnetic field from a potential field, and is directly related to the magnetic free energy stored in non-potential fields.  相似文献   

12.
M. J. Hagyard 《Solar physics》1988,115(1):107-124
We have analyzed the vector magnetic field of an active region at a location of repeated flaring to determine the nature of the currents flowing in the areas where the flares initiated. The component of electric current density crossing the photosphere along the line-of-sight was derived from the observed transverse component of the magnetic field. The maximum concentrations of these currents occurred exactly at the sites of flare initiation and where the photospheric field was sheared the most. The calculated distribution of current density at the flare sites suggested that currents were flowing out of an area of positive magnetic polarity and across the magnetic inversion line into two areas of negative polarity. This interpretation was reinforced by a calculation of the source field, the magnetic field produced in the photosphere by the electric currents above the photosphere. In the vicinity of the flare sites, the calculated source field exhibited three particular characteristics: (1) maximum magnitudes at the sites of flare initiation, (2) a rotational direction where the vertical current density was concentrated, and (3) a fairly constant angular orientation with the magnetic inversion line. The source field was thus very similar to the field produced by two arcades of currents crossing the inversion line at the locations of greatest magnetic shear with orientations of about 60° to the inversion line. With this orientation, the inferred arcades would be aligned with the observed chromospheric fibrils seen in the H data so that the currents were field-aligned above the photosphere. The field thus exhibited a vertical gradient of magnetic shear with the shear decreasing upward from the photosphere. We estimated the currents in the two arcades by matching the source field derived from observations with that produced by a model of parallel loops of currents. We found that the loops of the model would each have a radius of 4500 km, a separation of 1830 km, and carry a current of 0.15 × 1012 A. Values of vertical current densities and source fields appearing in the umbrae of the two large sunspots away from the flare sites were shown to lie at or below the level of uncertainty in the data. The main source of this uncertainty lay in the method by which the 180° ambiguity in the azimuth of the transverse field is resolved in umbral areas. We thus concluded that these quantities in large umbrae should be treated with a healthy skepticism. Finally, we found that the source field at the flare sites was produced almost entirely by the angular difference between the observed and potential field and not by the difference in field intensity.  相似文献   

13.
Keizo Kai 《Solar physics》1978,56(2):417-427
Two-dimensional, high-resolution observations of about 30 moving type IV bursts allow us to compare the polarization structure of the radio sources high in the corona with the distribution of magnetic fields measured at the photospheric level. Left- and right-handed circularly polarized moving type IV bursts are associated with active regions dominated by magnetic fields of plus and minus polarity respectively. The result suggests that the polarity of magnetic fields within the type IV source which moves high in the corona ( 1R above the photosphere) is closely related to the polarity of local magnetic fields at the photosphere. The above relation between the sense of polarization and the polarity of magnetic field is contrary to what would be expected from the generally accepted synchroton hypothesis. One way of resolving this conflict is to postulate that the magnetic field within the radio source has the opposite polarity to that of the ambient magnetic fields.  相似文献   

14.
Development of magnetic shear   总被引:1,自引:0,他引:1  
Wang Jingxiu 《Solar physics》1994,155(2):285-300
From an analysis of substantial sets of vector magnetograms, we have found that the development of magnetic shear is intrinsically related to the emergence of new magnetic flux. In view of the magnetic environment of the new emerging flux, we further divided the scenario of shear development into four modes: (1) satellite dipole intrusion; (2) collision of two dipoles; (3) unusual flux emergence in great-sunspots; (4) flux emergence in the active center of an active region. From a physical point of view, magnetic shear is either generated by local dynamo effect, or by the upward transport of magnetic shear from a subphotospheric layer.  相似文献   

15.
Berger  T.E.  Lites  B.W. 《Solar physics》2002,208(2):181-210
Cotemporal Fei 630.2 nm magnetograms from the Solar Optical Universal Polarimeter (SOUP) filter and the Advanced Stokes Polarimeter (ASP) are quantitatively compared using observations of active region AR 8218, a large negative polarity sunspot group observed at S20 W22 on 13 May 1998. The SOUP instrument produces Stokes V/I `filter magnetograms' with wide field of view and spatial resolution below 0.5 arc sec in good seeing, but low spectral resolution. In contrast, the ASP uses high spectral resolution to produce very high-precision vector magnetic field maps at spatial resolution values on the order of 1 arc sec in good seeing. We use ASP inversion results to create an ASP `longitudinal magnetic flux-density map' with which to calibrate the less precise SOUP magnetograms. The magnetograms from each instrument are co-aligned with an accuracy of about 1 arc sec. Regions of invalid data, poor field-of-view overlap, and sunspots are masked out in order to calibrate SOUP predominately on the relatively vertical `weak-field' plage magnetic elements. Pixel-to-pixel statistical comparisons are used to determine the SOUP magnetogram linear calibration constant relative to ASP flux-density values. We compare three distinct methods of scaling the ASP and SOUP data to a common reference frame in order to explore filling factor effects. The recommended SOUP calibration constant is 17000 ± 550 Mx cm–2 per polarization percent in plage regions. We find a distinct polarity asymmetry in SOUP response relative to the ASP, apparently due to a spatial resolution effect in the ASP data: the smaller, less numerous, minority polarity structures in the plage region are preferentially blended with the majority polarity structures. The blending occurs to a lesser degree in the high-resolution SOUP magnetogram thus leading to an apparent increase in SOUP sensitivity to the minority polarity structures relative to the ASP. One implication of this effect is that in mixed polarity regions on the Sun, lower spatial resolution magnetograms may significantly underestimate minority polarity flux levels, thus leading to apparent flux imbalances in the data. *Visiting Astronomer, National Solar Observatory, operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation. The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
The magnetohydrodynamic frequency-wavelength relation, derived by McLellan and Winterberg (1968), has been evaluated for an isothermal atmosphere. In particular, the effect which an inclined magnetic field and a finite horizontal wavelength have on the critical sonic and internal-gravity cut-off frequencies has been examined, in which it has been assumed that the magnetic field vector, wave vector, and gravity vector are coplanar. It is shown that the frequency band in which vertical wave propagation is impossible in the non-magnetic photosphere, becomes smaller when an inclined uniform magnetic field is introduced, and that low frequency magnetically coupled internal-gravity waves do not propagate vertically if the horizontal wavelengths associated with this mode are greater than a critical wavelength which decreases with field strength.It is also demonstrated that an inclined magnetic field will inhibit the resonance that occurs at the critical frequency g in the non-magnetic atmosphere which is a result consistent with recent observations of the wiggly line structure in active regions.This work is supported by the European Space Research Organization.Presently with the Solar Astronomy Group, California Institute of Technology.  相似文献   

17.
Based on photospheric vector magnetograms obtained at Huairou Solar Observing Station (HSOS), non-potential characteristics of the magnetic field beneath the filament in active region NOAA 9077 are investigated. We focus on the structure and evolution of the magnetic field from 00:08 UT to 10:25 UT of 14 July before the Bastille event. Particular attention is paid to transverse field strength, shear degree and horizontal gradient of the line-of-sight magnetic field around the filament and filament channel. The following characteristics are found. (1) The magnetic non-potentiality has an obviously non-uniform distribution. The shear degree of the transverse field (Hagyard et al., 1984) is very large, up to 75° in some sites beneath the filament, such as the initial brightening site in TRACE 1600 Å images and the breaking site of the filament. The transverse field and the horizontal gradient of the line-of-sight field are very large in some parts corresponding to the hottest and continuously brightening portions. (2) The mean strength and mean shear angle of the transverse field and mean horizontal gradient of the line-of-sight field have obviously dropped in most parts beneath the filament for two hours before the filament eruption and onset of the X5.7/3B flare. After comparing simultaneous UV and EUV images, H filtergrams and Dopplergrams at solar atmosphere, we suggest that magnetic cancellation is likely to quickly transport the magnetic energy and complexity into the higher atmosphere in these two hours. This leads to magnetic instability in the filament and eventually causes the eruption of filament and onset of the flare.  相似文献   

18.
A simple method is proposed to infer the vector magnetic field at the surface of the Sun from Stokes profiles. This is based on the assumption that the variations of thermodynamical and magnetic field parameters with depth near the surface are so small that the displacements of the wavelengths at which the Stokes profiles reach their extrema can be ignored. And hence the polarized radiative transfer equations are greatly reduced to a set of non-linear equations with vector magnetic field parameters (, , ) which can be solved by a numerical iteration method. By fitting the synthetic profiles, it is shown that this proposed method can produce information on the vector field at the surface. It is also used to revise the observed profiles and it is found that the observed sunspot has the magnetic field structure of the fan model with the lines of magnetic field twisted.  相似文献   

19.
    
We compare large-scale filtergrams of a hitherto neglected class 1B flare with previously published vector magnetograms and maps of photospheric longitudinal electric current density (Hagyard et al., 1985). The vector magnetic fields were mapped simultaneously with the eruption of this flare. We find a coincidence, to within the ±2 registration accuracy of the data, between the flare kernels and the locations of maximum shear and of peak values in the longitudinal electric current density. The kernels brighten in a way which implies that the preflare heating and the main release of flare energy are spatially coincident within the limits of resolution (2). A pronounced magnetic shear exists in the vertical direction at the location of the strongest flare kernels. We provide evidence that the electric currents could be maintained by the energy stored in the sheared transverse magnetic field and that the amount of energy released is proportional to the amount stored. These circumstances are consistent with theories in which flares are triggered by plasma instabilities due to surplus electric currents.  相似文献   

20.
A. W. Hood  U. Anzer 《Solar physics》1990,126(1):117-133
A class of 2-D models of solar quiescent prominences, with normal polarity, is presented. These represent an extension to the Kippenhahn-Schlüter model for which the prominence configuration matches smoothly onto an external non-potential coronal solution of a constant field. Using typical prominence values a model is constructed which also matches the coronal conditions. It is found that the magnetic field component along the prominence influences the internal structure of the prominence. A simple extension to the basic models is indicated as a means of taking a lower boundary of the prominence and eliminating parasitic polarities in the photosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号