首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Japan Trench is a plate convergent zone where the Pacific Plate is subducting below the Japanese islands. Many earthquakes occur associated with plate convergence, and the hypocenter distribution is variable along the Japan Trench. In order to investigate the detailed structure in the southern Japan Trench and to understand the variation of seismicity around the Japan Trench, a wide-angle seismic survey was conducted in the southern Japan Trench fore-arc region in 1998. Ocean bottom seismometers (15) were deployed on two seismic lines: one parallel to the trench axis and one perpendicular. Velocity structures along two seismic lines were determined by velocity modeling of travel time ray-tracing method. Results from the experiment show that the island arc Moho is 18–20 km in depth and consists of four layers: Tertiary and Cretaceous sedimentary rocks, island arc upper and lower crust. The uppermost mantle of the island arc (mantle wedge) extends to 110 km landward of the trench axis. The P-wave velocity of the mantle wedge is laterally heterogeneous: 7.4 km/s at the tip of the mantle wedge and 7.9 km/s below the coastline. An interplate layer is constrained in the subducting oceanic crust. The thickness of the interplate layer is about 1 km for a velocity of 4 km/s. Interplate layer at the plate boundary may cause weak interplate coupling and low seismicity near the trench axis. Low P-wave velocity mantle wedge is also consistent with weak interplate coupling. Thick interplate layer and heterogeneous P-wave velocity of mantle wedge may be associated with the variation of seismic activity.  相似文献   

2.
The Woodlark Basin, located south of the Solomon Islands arc region, is a young (5 Ma) oceanic basin that subducts beneath the New Britain Trench. This region is one of only a few subduction zones in the world where it is possible to study a young plate subduction of several Ma. To obtain the image of the subducting slab at the western side of the Woodlark Basin, a 40-day Ocean Bottom Seismometer (OBS) survey was conducted in 1998 to detect the micro-seismic activity. It was the first time such a survey had been performed in this location and over 600 hypocenters were located. The seismic activity is concentrated at the 10–60 km depth range along the plate boundary. The upper limit just about coincides with the leading edge of the accretionary wedge. The upper limit boundary was identified as the up-dip limit of the seismogenic zone, whereas the down-dip limit of the seismogenic zone was difficult to define. The dip angle of the plate at the high seismicity zone was found to average about 30°. Using the Cascadia subduction zone for comparison, which is a typical example of a young plate subduction, suggests that the subduction of the Woodlark Basin was differentiated by a high dip angle and rather landward location of the seismic front from the trench axis (30 km landward from the trench axis). Furthermore, as pointed out by previous researchers, the convergent margin of the Solomon Islands region is imposed with a high stress state, probably due to the collision of the Ontong Java Plateau and a rather rapid convergence rate (10 cm/year). The results of the high angle plate subduction and inner crust earthquakes beneath the Shortland Basin strongly support the high stress state. The collision of the Ontong Java Plateau, the relatively rapid convergence rate, and moderately cold slab as evidenced by low heat flow, rather than the plate age, may be dominantly responsible for the geometry of the seismogenic zone in the western part of the Woodlark Basin subduction zone.  相似文献   

3.
Two subducting seamounts under inner trench slopes have been identified around Japan on the basis of magnetic anomalies, morphology and geological structure. The first one is located under the foot of the inner trench slope at the junction between the Japan Trench and the Kuril Trench. Another one occurs beneath the slope slightly seaward of the Tosabae (the basement high at the trench slope break along the Nankai Trough off Shikoku). The magnetic anomalies of seamount origin are accompanied by the characteristic morphology of a forearc wedge i.e., a swell landward and a depression seaward. The seamounts beneath the inner trench slopes have preserved magnetization showing reasonably consistent directions, which suggests that the subducting seamounts have kept roughly their original shapes. The morphology of the forearc wedge can be explained by a subducting seamount on the oceanic crust pushing the forearc material forward and upward. Deformation of the forearc wedge by the subducting seamount extends to the forearc basin. The seamounts are stronger and less deformable than the inner slope material and are not offscraped onto inner trench slopes.

Two other examples of deformed inner trench slopes around Japan which can be explained by subduction of topographic highs are presented. One example is a depression on the foot of the inner trench slope northeast of the junction between the Kyushu-Palau Ridge and the Nankai Trough. Another one is an area of complex morphology of the inner trench slope along the Japan Trench around the Daiichi-Kashima Seamount.  相似文献   


4.
俯冲带作为板块构造最为重要的标志之一,是地球最大的物质循环系统,被称为“俯冲工厂”.俯冲作用是驱动和维持板块运动的重要动力引擎.一个完整的俯冲带发育海沟、增生楔、弧前盆地、岩浆弧、弧后盆地(或弧背前陆盆地)等基本构造单元.在一些特殊情况下(如洋脊俯冲、年轻洋壳俯冲、海山俯冲),则可形成一些特殊的俯冲带结构(如平板俯冲、俯冲侵蚀),导致岩浆弧、增生楔、弧前盆地等不发育甚至缺失.俯冲大洋板片可滞留于或穿越地幔过渡带进入下地幔甚至到达核幔边界,把地壳物质带入到地球深部,并通过地幔柱活动上升到浅部.俯冲带是构造活动强烈的区域,存在走滑、挤压、伸展等变形及其构造叠加.俯冲带海沟可向大洋或大陆方向迁移,岛弧及增生楔等也随之发生迁移,使俯冲带上盘发生周期性挤压和伸展,形成复杂的古地理格局.微陆块、岛弧、海山/洋底高原等地质体在俯冲带发生增生时,可阻塞先存的俯冲带,造成俯冲带跃迁或俯冲极性反转,在其外侧形成新的俯冲带.俯冲带深部精细结构、俯冲起始如何发生、板块俯冲与地幔柱的深部关联机制等是当前俯冲带研究中值得关注的前沿问题.开展俯冲带地球物理深部探测、古缝合带与现今俯冲带对比研究、俯冲带动力学数值模拟...  相似文献   

5.
《Gondwana Research》2010,17(3-4):401-413
We present new pieces of evidence from seismology and mineral physics for the existence of low-velocity zones in the deep part of the upper mantle wedge and the mantle transition zone that are caused by fluids from the deep subduction and deep dehydration of the Pacific and Philippine Sea slabs under western Pacific and East Asia. The Pacific slab is subducting beneath the Japan Islands and Japan Sea with intermediate-depth and deep earthquakes down to 600 km depth under the East Asia margin, and the slab becomes stagnant in the mantle transition zone under East China. The western edge of the stagnant Pacific slab is roughly coincident with the NE–SW Daxing'Anling-Taihangshan gravity lineament located west of Beijing, approximately 2000 km away from the Japan Trench. The upper mantle above the stagnant slab under East Asia forms a big mantle wedge (BMW). Corner flow in the BMW and deep slab dehydration may have caused asthenospheric upwelling, lithospheric thinning, continental rift systems, and intraplate volcanism in Northeast Asia. The Philippine Sea slab has subducted down to the mantle transition zone depth under Western Japan and Ryukyu back-arc, though the seismicity within the slab occurs only down to 200–300 km depths. Combining with the corner flow in the mantle wedge, deep dehydration of the subducting Pacific slab has affected the morphology of the subducting Philippine Sea slab and its seismicity under Southwest Japan. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent small mantle plumes, or hot upwelling associated with the deep slab subduction. Slab dehydration may also take place after a continental plate subducts into the mantle.  相似文献   

6.
Dapeng Zhao  Eiji Ohtani   《Gondwana Research》2009,16(3-4):401-413
We present new pieces of evidence from seismology and mineral physics for the existence of low-velocity zones in the deep part of the upper mantle wedge and the mantle transition zone that are caused by fluids from the deep subduction and deep dehydration of the Pacific and Philippine Sea slabs under western Pacific and East Asia. The Pacific slab is subducting beneath the Japan Islands and Japan Sea with intermediate-depth and deep earthquakes down to 600 km depth under the East Asia margin, and the slab becomes stagnant in the mantle transition zone under East China. The western edge of the stagnant Pacific slab is roughly coincident with the NE–SW Daxing'Anling-Taihangshan gravity lineament located west of Beijing, approximately 2000 km away from the Japan Trench. The upper mantle above the stagnant slab under East Asia forms a big mantle wedge (BMW). Corner flow in the BMW and deep slab dehydration may have caused asthenospheric upwelling, lithospheric thinning, continental rift systems, and intraplate volcanism in Northeast Asia. The Philippine Sea slab has subducted down to the mantle transition zone depth under Western Japan and Ryukyu back-arc, though the seismicity within the slab occurs only down to 200–300 km depths. Combining with the corner flow in the mantle wedge, deep dehydration of the subducting Pacific slab has affected the morphology of the subducting Philippine Sea slab and its seismicity under Southwest Japan. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent small mantle plumes, or hot upwelling associated with the deep slab subduction. Slab dehydration may also take place after a continental plate subducts into the mantle.  相似文献   

7.
Transition from subduction of normal to thickened oceanic crust occurs in the central portion of the Costa Rican margin, where large interplate earthquakes (M ~ 7) and abundant interseismic seismicity have been associated with subduction of bathymetric highs. We relocated ~1,300 earthquakes recorded for 6 months by a combined on- and offshore seismological network using probabilistic earthquake relocation in a 3D P-wave velocity model. Most of the seismicity originated at the seismogenic zone of the plate boundary, appearing as an 18° dipping, planar cluster from 15 to 25–30 km depth, beneath the continental shelf. Several reverse focal mechanisms were resolved within the cluster. The upper limit of this interseismic interplate seismicity seems to be controlled primarily by the overlying-plate thickness and coherency, which in turn is governed by the erosional processes and fluid release and escape at temperatures lower than ~100 to 120 °C along the plate boundary. The downdip limit of the stick–slip behaviour collocates with relative low temperatures of ~150 to 200 °C, suggesting that it is controlled by serpentinization of the mantle wedge. The distribution of the interseismic interplate seismicity is locally modified by the presence of subducted seamounts at different depths. Unlike in northern Costa Rica, rupture of large earthquakes in the last two decades seems to coincide with the area defined by the interseismic interplate seismicity.  相似文献   

8.
Seismic reflection profiles from three different surveys of the Cascadia forearc are interpreted using P wave velocities and relocated hypocentres, which were both derived from the first arrival travel time inversion of wide-angle seismic data and local earthquakes. The subduction decollement, which is characterized beneath the continental shelf by a reflection of 0.5 s duration, can be traced landward into a large duplex structure in the lower forearc crust near southern Vancouver Island. Beneath Vancouver Island, the roof thrust of the duplex is revealed by a 5–12 km thick zone, identified previously as the E reflectors, and the floor thrust is defined by a short duration reflection from a < 2-km-thick interface at the top of the subducting plate. We show that another zone of reflectors exists east of Vancouver Island that is approximately 8 km thick, and identified as the D reflectors. These overlie the E reflectors; together the two zones define the landward part of the duplex. The combined zones reach depths as great as 50 km. The duplex structure extends for more than 120 km perpendicular to the margin, has an along-strike extent of 80 km, and at depths between 30 km and 50 km the duplex structure correlates with a region of anomalously deep seismicity, where velocities are less than 7000 m s− 1. We suggest that these relatively low velocities indicate the presence of either crustal rocks from the oceanic plate that have been underplated to the continent or crustal rocks from the forearc that have been transported downward by subduction erosion. The absence of seismicity from within the E reflectors implies that they are significantly weaker than the overlying crust, and the reflectors may be a zone of active ductile shear. In contrast, seismicity in parts of the D reflectors can be interpreted to mean that ductile shearing no longer occurs in the landward part of the duplex. Merging of the D and E reflectors at 42–46 km depth creates reflectivity in the uppermost mantle with a vertical thickness of at least 15 km. We suggest that pervasive reflectivity in the upper mantle elsewhere beneath Puget Sound and the Strait of Georgia arises from similar shear zones.  相似文献   

9.
利用日本气象厅(JMA)以及日本国立大学联合地震观测台网(JUNEC)记录到的3218个地震事件的231918条P波到时资料,反演求得西南日本160km深度范围内的三维P波速度结构。研究表明,在九州地区,俯冲的菲律宾海板块以高速为主要特征,该海洋板块在30~60km深度处的脱水使得弧前地幔楔顶端的橄榄石蛇纹岩化,在120km深度处的脱水使得地幔楔中的岩石局部熔融,融体上升引起该区的火山活动。在本州西部地区大山火山之下,低速异常显著,并伴随低频地震活动,说明该火山可能是个潜在的活火山,将来有喷发的可能性。  相似文献   

10.
We construct fine-scale 3D P- and S-wave velocity structures of the crust and upper mantle beneath the whole Japan Islands with a unified resolution, where the Pacific (PAC) and Philippine Sea (PHS) plates subduct beneath the Eurasian (EUR) plate. We can detect the low-velocity (low-V) oceanic crust of the PAC and PHS plates at their uppermost part beneath almost all the Japan Islands. The depth limit of the imaged oceanic crust varies with the regions. High-VP/VS zones are widely distributed in the lower crust especially beneath the volcanic front, and the high strain rate zones are located at the edge of the extremely high-VP/VS zone; however, VP/VS at the top of the mantle wedge is not so high. Beneath northern Japan, we can image the high-V subducting PAC plate using the tomographic method without any assumption of velocity discontinuities. We also imaged the heterogeneous structure in the PAC plate, such as the low-V zone considered as the old seamount or the highly seismic zone within the double seismic zone where the seismic fault ruptured by the earthquake connects the upper and lower layer of the double seismic zone. Beneath central Japan, thrust-type small repeating earthquakes occur at the boundary between the EUR and PHS plates and are located at the upper part of the low-V layer that is considered to be the oceanic crust of the PHS plate. In addition to the low-V oceanic crust, the subducting high-V PAC plate is clearly imaged to depths of approximately 250 km and the subducting high-V PHS zone to depths of approximately 180 km is considered to be the PHS plate. Beneath southwestern Japan, the iso-depth lines of the Moho discontinuity in the PHS plate derived by the receiver function method divide the upper low-V layer and lower high-V layer of our model at depths of 30–50 km. Beneath Kyushu, the steeply subducting PHS plate is clearly imaged to depths of approximately 250 km with high velocities. The high-VP/VS zone is considered as the lower crust of the EUR plate or the oceanic crust of the PHS plate at depths of 25–35 km and the partially serpentinized mantle wedge of the EUR plate at depths of 30–45 km beneath southwestern Japan. The deep low-frequency nonvolcanic tremors occur at all parts of the high-VP/VS zone—within the zone, the seaward side, and the landward side where the PHS plate encounters the mantle wedge of the EUR plate. We prove that we can objectively obtain the fine-scale 3D structure with simple constraints such as only 1D initial velocity model with no velocity discontinuity.  相似文献   

11.
We determined high-resolution three-dimensional P- and S-wave velocity (Vp, Vs) structures beneath Kyushu in Southwest Japan using 177,500 P and 174,025 S wave arrival times from 8515 local earthquakes. A Poisson's ratio structure was derived from the obtained Vp and Vs values. Our results show that significant low-Vp, low-Vs and high Poisson's ratio zones are extensively distributed along the volcanic front in the uppermost mantle, which extend and dip toward the back-arc side in the mantle wedge. In the crust, low-Vp, low-Vs and high Poisson's ratio anomalies exist beneath the active volcanoes. The subducting Philippine Sea slab is clearly imaged as a high-Vp, high-Vs and low Poisson's ratio zone from the Nankai Trough to the back-arc. A thin low-velocity zone is detected above the subducting Philippine Sea slab in the mantle wedge, and earthquakes in the upper mantle are distributed along the transition zone between this thin low-velocity zone and the high-velocity Philippine Sea slab, which may imply that oceanic crust exists on the top of the slab and the forearc mantle wedge is serpentinized due to the slab dehydration. The seismic velocity of the subducting oceanic crust with basaltic or gabbroic composition is lower than that of the mantle according to the previous studies. The serpentinization process could also dramatically reduce the seismic velocity in the forearc mantle wedge.  相似文献   

12.
Three dimensional P-wave velocity structure beneath the Tohoku district, northeastern Japan arc, is investigated by an inversion of arrival times from local earthquakes using the method originally due to Aki and Lee (1976).In the crust (0–32 km depth) a low-velocity region is found along the volcanic front and its vicinity. Velocities at depths of 32–65 km are low beneath the regions where many Quaternary volcanoes and geothermal areas are distributed. In the region deeper than 65 km, the subduction of the Pacific plate is clearly revealed, and the mantle structure above the descending plate is rather uniform. These features suggest that volcanic activities have relation to the upper mantle structure. The results obtained in this study will be helpful in investigating the mechanism of magma generation in a subduction zone.  相似文献   

13.
M.G. Audley-Charles   《Tectonophysics》2004,389(1-2):65-79
The bathymetry and abrupt changes in earthquake seismicity around the eastern end of the Java Trench suggest it is now blocked south–east of Sumba by the Australian, Jurassic-rifted, continental margin forming the largely submarine Roti–Savu Ridge. Plate reconstructions have demonstrated that from at least 45 Ma the Java Trench continued far to the east of Sumba. From about 12 Ma the eastern part of the Java Trench (called Banda Trench) continued as the active plate boundary, located between what was to become Timor Island, then part of the Australian proximal continental slope, and the Banda Volcanic Arc. This Banda Trench began to be obliterated by continental margin-arc collision between about 3.5 and 2 Ma.The present position of the defunct Banda Trench can be located by use of plate reconstructions, earthquake seismology, deep reflection seismology, DSDP 262 results and geological mapping as being buried under the para-autochthon below the foothills of southern Timor. Locating the former trench guides the location of the apparently missing large southern part of the Banda forearc that was carried over the Australian continental margin during the final stage of the period of subduction of that continental margin that lasted from about 12 Ma to about 3.5 Ma.Tectonic collision is defined and distinguished from subduction and rollback. Collision in the southern part of the Banda Arc was initiated when the overriding forearc basement of the upper plate reached the proximal part of the Australian continental slope of the lower plate, and subduction stopped. Collision is characterised by fold and thrust deformation associated with the development of structurally high decollements. This collision deformed the basement and cover of the forearc accretionary prism of the upper plate with part of the unsubducted Australian cover rock sequences from the lower plate. Together with parts of the forearc basement they now form the exposed Banda orogen. The conversion of the northern flank of the Timor Trough from being the distal part of the Banda forearc accretionary prism, carried over the Australian continental margin, into a foreland basin was initiated by the cessation of subduction and simultaneous onset of collisional tectonics.This reinterpretation of the locked eastern end of the Java Trench proposes that, from its termination south of Sumba to at least as far east as Timor, and probably far beyond, the Java-Banda Trench and forearc overrode the subducting Australian proximal continental slope, locally to within 60 km of the shelf break. Part of the proximal forearc's accretionary prism together with part of the proximal continental slope cover sequence were detached and thrust northwards over the Java-Banda Trench and forearc by up to 80 km along the southwards dipping Savu Thrust and Wetar Suture. These reinterpretations explain the present absence of any discernible subduction ocean trench in the southern Banda Arc and the narrowness of the forearc, reduced to 30 km at Atauro, north of East Timor.  相似文献   

14.
An active oceanic spreading ridge is being subducted beneath the South American continent at the Chile Triple Junction. Mass balance estimations to characterize temporal and spatial variations in the frontal accretion, or underplating and subduction of sediments since the Late Miocene, were made using seismic and drill-hole data. At 200 km north of the triple junction, almost 80% of the sediment on the downgoing Nazca plate are subducted. Sediment subduction rate decreases towards the triple junction because of a low in sedimentation rates as the flank of the spreading ridge approaches the trench. At the triple junction, the forearc is almost completely destroyed by spreading ridge collision and subduction erosion. Less than 12% of the available sedimentary input is accreted. South of the triple junction, where the spreading ridge passed 6 Ma ago, a large fraction (>60%) of the sediment on the incoming Antarctic plate has been scraped off and was frontally accreted to the Chile forearc. Spreading ridge subduction leaves a distinctive geological fingerprint, and has a large impact on the mass balance of the subduction zone. However, the high rates of change in the process may make this fingerprint hard to detect in fossil convergent orogens. In the ridge collision zone the sediment supplied to the trench, and the amount of sediment subducted, show strong and distinctive variations on a 1- to 5-million-year time scale. On a 10-million-year time scale, sediment subduction to the Earth's mantle is reduced by spreading ridge collision, caused by the need of the overriding forearc to regain a low angle of taper by frontal accretion.  相似文献   

15.
This paper describes the petrology and geochemistry of rocks from the Yap Trench acquired by three dives of the Jiaolong research submarine. Combining the geophysical data and submersible observations, this paper describes the geomorphology, shallow structures, and sedimentology of the Yap Trench and further discusses the tectonics and activities of this region. Two obvious slope breaks are found on the landward slope, and horsts and grabens with small fault offsets are observed in the ocean-ward slope of the trench. Peridotites sampled from the Yap Trench inner wall are highly depleted subduction-related mantle residues. Volcanic rocks in the northern segment of the trench have subduction-related characteristics that Yap fore-arc rocks underwent metasomatism during Cenozoic subduction. The rocks with remarkable lithologic difference from lithospheric mantle and upper crust sampled in the break slopes suggest that the slope break area may represent a lithologic boundary or transition zone. The landward slope of the Yap Trench was removed by subduction erosion as a result of collision with the Caroline Ridge. The bending of the down-going plate caused normal faults, horsts, and grabens with little or no sediments indicating that the Caroline Ridge is subducting beneath the Yap arc along the trench even though the convergence rate is very slow.  相似文献   

16.
《Gondwana Research》2010,17(3-4):414-430
The East Asian continental margin is underlain by stagnant slabs resulting from subduction of the Pacific plate from the east and the Philippine Sea plate from the south. We classify the upper mantle in this region into three major domains: (a) metasomatic–metamorphic factory (MMF), subduction zone magma factory (SZMF), and the ‘big mantle wedge’ (BMW). Whereas the convection pattern is anticlockwise in the MMF domain, it is predominantly clockwise in the SZMF and BMW, along a cross section from the south. Here we define the MMF as a small wedge corner which is driven by the subducting Pacific plate and dominated by H2O-rich fluids derived by dehydration reactions, and enriched in large ion lithophile elements (LILE) which cause the metasomatism. The SZMF is a zone intermediate between MMF and BMW domains and constitutes the main region of continental crust production by partial melting through wedge counter-corner flow. Large hydrous plume generated at about 200 km depth causes extensive reduction in viscosity and the smaller scale hydrous plumes between 60 km and 200 km also bring about an overall reduction in the viscosity of SZMF. More fertile and high temperature peridotites are supplied from the entrance to this domain. The domain extends obliquely to the volcanic front and then swings back to the deep mantle together with the subducting slab. The BMW occupies the major portion of upper mantle in the western Pacific and convects largely with a clockwise sense removing the eastern trench oceanward. Sporadic formation of hydrous plume at the depth of around 410 km and the curtain flow adjacent to the trench cause back arc spreading. We envisage that the heat source in BMW could be the accumulated TTG (tonalite–trondhjemite–granodiorite) crust on the bottom of the mantle transition zone. The ongoing process of transportation of granitic crust into the mantle transition zone is evident from the deep subduction of five intra-oceanic arcs on the subducting Philippine Sea plate from the south, in addition to the sediment trapped subduction by the Pacific plate and Philippine Sea plate. The dynamics of MMF, SZMF and BMW domains are controlled by the angle of subduction; a wide zone of MMF in SW Japan is caused by shallow angle subduction of the Philippine Sea plate and the markedly small MMF domain in the Mariana trench is due to the high angle subduction of Pacific plate. The domains in NE Japan and Kyushu region are intermediate between these two. During the Tertiary, a series of marginal basins were formed because of the nearly 2000 km northward shift of the subduction zone along the southern margin of Tethyan Asia, which may be related to the collision of India with Asia and the indentation. The volume of upper mantle under Asia was reduced extensively on the southern margin with a resultant oceanward trench retreat along the eastern margin of Asia, leading to the formation of a series of marginal basins. The western Pacific domain in general is characterized by double-sided subduction; from the east by the oldest Pacific plate and from the south by the oldest Indo-Australian plate. The old plates are hence hydrated extensively even in their central domains and therefore of low temperature. The cracks have allowed the transport of water into the deeper portions of the slab and these domains supply hydrous fluids even to the bottom of the upper mantle. Thus, a fluid dominated upper mantle in the western Pacific drives a number of microplates and promote the plate boundary processes.  相似文献   

17.
The East Asian continental margin is underlain by stagnant slabs resulting from subduction of the Pacific plate from the east and the Philippine Sea plate from the south. We classify the upper mantle in this region into three major domains: (a) metasomatic–metamorphic factory (MMF), subduction zone magma factory (SZMF), and the ‘big mantle wedge’ (BMW). Whereas the convection pattern is anticlockwise in the MMF domain, it is predominantly clockwise in the SZMF and BMW, along a cross section from the south. Here we define the MMF as a small wedge corner which is driven by the subducting Pacific plate and dominated by H2O-rich fluids derived by dehydration reactions, and enriched in large ion lithophile elements (LILE) which cause the metasomatism. The SZMF is a zone intermediate between MMF and BMW domains and constitutes the main region of continental crust production by partial melting through wedge counter-corner flow. Large hydrous plume generated at about 200 km depth causes extensive reduction in viscosity and the smaller scale hydrous plumes between 60 km and 200 km also bring about an overall reduction in the viscosity of SZMF. More fertile and high temperature peridotites are supplied from the entrance to this domain. The domain extends obliquely to the volcanic front and then swings back to the deep mantle together with the subducting slab. The BMW occupies the major portion of upper mantle in the western Pacific and convects largely with a clockwise sense removing the eastern trench oceanward. Sporadic formation of hydrous plume at the depth of around 410 km and the curtain flow adjacent to the trench cause back arc spreading. We envisage that the heat source in BMW could be the accumulated TTG (tonalite–trondhjemite–granodiorite) crust on the bottom of the mantle transition zone. The ongoing process of transportation of granitic crust into the mantle transition zone is evident from the deep subduction of five intra-oceanic arcs on the subducting Philippine Sea plate from the south, in addition to the sediment trapped subduction by the Pacific plate and Philippine Sea plate. The dynamics of MMF, SZMF and BMW domains are controlled by the angle of subduction; a wide zone of MMF in SW Japan is caused by shallow angle subduction of the Philippine Sea plate and the markedly small MMF domain in the Mariana trench is due to the high angle subduction of Pacific plate. The domains in NE Japan and Kyushu region are intermediate between these two. During the Tertiary, a series of marginal basins were formed because of the nearly 2000 km northward shift of the subduction zone along the southern margin of Tethyan Asia, which may be related to the collision of India with Asia and the indentation. The volume of upper mantle under Asia was reduced extensively on the southern margin with a resultant oceanward trench retreat along the eastern margin of Asia, leading to the formation of a series of marginal basins. The western Pacific domain in general is characterized by double-sided subduction; from the east by the oldest Pacific plate and from the south by the oldest Indo-Australian plate. The old plates are hence hydrated extensively even in their central domains and therefore of low temperature. The cracks have allowed the transport of water into the deeper portions of the slab and these domains supply hydrous fluids even to the bottom of the upper mantle. Thus, a fluid dominated upper mantle in the western Pacific drives a number of microplates and promote the plate boundary processes.  相似文献   

18.
A seismic refraction–reflection experiment using ocean bottom seismometers and a tuned airgun array was conducted around the Solomon Island Arc to investigate the fate of an oceanic plateau adjacent to a subduction zone. Here, the Ontong Java Plateau is converging from north with the Solomon Island Arc as part of the Pacific Plate. According to our two-dimensional P-wave velocity structure modeling, the thickness of the Ontong Java Plateau is about 33 km including a thick (15 km) high-velocity layer (7.2 km/s). The thick crust of the Ontong Java Plateau still persists below the Malaita Accreted Province. We interpreted that the shallow part of the Ontong Java Plateau is accreted in front of the Solomon Island Arc as the Malaita Accreted Province and the North Solomon Trench are not a subduction zone but a deformation front of accreted materials. The subduction of the India–Australia Plate from the south at the San Cristobal Trench is confirmed to a depth of about 20 km below sea level. Seismicity around our survey area shows shallow (about 50 km) hypocenters from the San Cristobal Trench and deep (about 200 km) hypocenters from the other side of the Solomon Island Arc. No earthquakes occurred around the North Solomon Trench. The deep seismicity and our velocity model suggest that the lower part of the Ontong Java Plateau is subducting. After the oceanic plateau closes in on the arc, the upper part of the oceanic plateau is accreted with the arc and the lower part is subducted below the arc. The estimation of crustal bulk composition from the velocity model indicates that the upper portion and the total of the Solomon Island Arc are SiO2 58% and 53%, respectively, which is almost same as that of the Izu–Bonin Arc. This means that the Solomon Island Arc can be a contributor to growing continental crust. The bulk composition of the Ontong Java Plateau is SiO2 49–50%, which is meaningfully lower than those of continents. The accreted province in front of the arc is growing with the convergence of the two plates, and this accretion of the upper part of the oceanic plateau may be another process of crustal growth, although the proportion of such contribution is not clear.  相似文献   

19.
The evolution of an active continental margin is simulated in two dimensions, using a finite difference thermomechanical code with half-staggered grid and marker-in-cell technique. The effect of mechanical properties, changing as a function of P and T, assigned to different crustal layers and mantle materials in the simple starting structure is discussed for a set of numerical models. For each model, representative PT paths are displayed for selected markers. Both the intensity of subduction erosion and the size of the frontal accretionary wedge are strongly dependent on the rheology chosen for the overriding continental crust. Tectonically eroded upper and lower continental crust is carried down to form a broad orogenic wedge, intermingling with detached oceanic crust and sediments from the subducted plate and hydrated mantle material from the overriding plate. A small portion of the continental crust and trench sediments is carried further down into a narrow subduction channel, intermingling with oceanic crust and hydrated mantle material, and to some extent extruded to the rear of the orogenic wedge underplating the overriding continental crust. The exhumation rates for (ultra)high pressure rocks can exceed subduction and burial rates by a factor of 1.5–3, when forced return flow in the hanging wall portion of the self-organizing subduction channel is focused. The simulations suggest that a minimum rate of subduction is required for the formation of a subduction channel, because buoyancy forces may outweigh drag forces for slow subduction. For a weak upper continental crust, simulated by a high pore pressure coefficient in the brittle regime, the orogenic wedge and megascale melange reach a mid- to upper-crustal position within 10–20 Myr (after 400–600 km of subduction). For a strong upper crust, a continental lid persists over the entire time span covered by the simulation. The structural pattern is similar in all cases, with four zones from trench toward arc: (a) an accretionary complex of low-grade metamorphic sedimentary material; (b) a wedge of mainly continental crust, with medium-grade HP metamorphic overprint, wound up and stretched in a marble cake fashion to appear as nappes with alternating upper and lower crustal provenance, and minor oceanic or hydrated mantle interleaved material; (c) a megascale melange composed of high-pressure and ultrahigh-pressure metamorphic oceanic and continental crust, and hydrated mantle, all extruded from the subduction channel; (d) zone represents the upward tilted frontal part of the remaining upper plate lid in the case of a weak upper crust. The shape of the PT paths and the time scales correspond to those typically recorded in orogenic belts. Comparison of the numerical results with the European Alps reveals some similarities in their gross structural and metamorphic pattern exposed after collision. A similar structure may be developed at depth beneath the forearc of the Andes, where the importance of subduction erosion is well documented, and where a strong upper crust forms a stable lid.  相似文献   

20.
We investigated the detailed three-dimensional (3-D) isotropic and anisotropic structures of the crust and upper mantle under the NE Japan forearc region using a large number of P and S wave arrival-time data from onshore and offshore earthquakes. The suboceanic earthquakes used in this study are well relocated using the sP depth phases. We also determined the 3-D distribution of Poisson’s ratio, crack density and saturation rate using the 3-D P and S wave velocity model obtained by this study. The relatively complex anisotropic structures in the megathrust zone may reflect the complex geological structures, lithological variations and fluids in the accretional prism under the forearc region. The tomographic images reflect strong lateral heterogeneities in the megathrust zone under the Tohoku forearc. Areas with low velocity, high Poisson’s ratio, high crack density and high saturation rate may be due to entrapment of fluid-filled, unsolidated sediments on the plate interface close to the Japan Trench. Most of the large megathrust earthquakes since 1900 (M  6.0) and the large 2011 Tohoku-oki earthquakes (M 6.0–9.0) are located in areas with high velocity, high Poisson’s ratio, low crack density and high saturation rate, which may represent strongly-coupled asperities in the megathrust zone resulting from the subducted oceanic ridges and/or seamounts. In contrast, the areas with high Poisson’s ratio may indicate that the fluids have infiltrated into the strongly coupled patches. We think that the great Tohoku-oki earthquakes were caused by not only the stress concentration but also the in situ structural heterogeneities in the megathrust zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号