首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
青藏高原拉萨地体北部的前寒武纪变质作用及构造意义   总被引:12,自引:0,他引:12  
张泽明  董昕  耿官升  王伟  于飞  刘峰 《地质学报》2010,84(4):449-456
青藏高原南部拉萨地体中分布的角闪岩相至麻粒岩相变质岩一直被认为是前寒武纪变质基底,但并没有获得可靠的年代学证据。本文运用原位锆石U-Pb定年方法,在拉萨地体北部那果地区的变质岩中获得了约720Ma的变质年龄,从而证明拉萨地体北部在新古元代经历了角闪岩相变质作用和近同期的岩浆作用。基于这一成果和在拉萨地体中、南部高级变质岩中陆续获得的中、新生代变质年龄,对拉萨地体变质作用的时、空变化及其成因进行了初步探讨。  相似文献   

3.
柴胡栏子金矿位于华北板块北缘,属中温热液蚀变岩型金矿。金成矿与矿区北部的早中生代辉石闪长岩体有密切关系。在辉石闪长岩体内发育大量包体,可以分为基性麻粒岩和角闪岩两类包体。包体的地球化学、形成温压条件表明基性岩包体为来源于大陆下地壳的基性麻粒岩包体,来源深度大约相当于下地壳中部-中上部位置,为早中生代时期底侵作用的产物。角闪岩包体来源于下地壳上部-中地壳下部位置,被上升岩浆带至地壳浅部。包体和寄主岩石具有相似的地球化学和氧、铅、锶、钕同位素特征,说明二者具有相同的岩浆来源。基性麻粒岩包体为底侵作用早期形成的堆晶岩受到后续岩浆的烘烤发生麻粒岩化形成。基性麻粒岩和寄主岩石辉石闪长岩与金矿床形成的密切时空关系显示底侵作用对柴胡栏子金矿含矿流体形成、运移和矿质富集有重要控制作用,其中 H2O和CO2等挥发性组分对控制流体形成和演化有至关重要作用。基性麻粒岩包体发育为成柴胡栏子金矿成矿物质来源于深部提供了有力的证据。  相似文献   

4.
北山造山带南部古堡泉地区出露榴辉岩, 对榴辉岩变质作用P-T-t轨迹的研究, 有助于了解北山地区的构造演化历史。本文对古堡泉地区的榴辉岩开展了岩石学、矿物化学和锆石U-Pb年代学的研究。研究表明, 榴辉岩原岩形成时代为860 Ma, 进变质或近峰期变质时代为~465 Ma, 岩石具有顺时针P-T-t轨迹, 经历了较陡的升温升压过程后到达峰期高压榴辉岩相, 峰期变质条件分别为P>22 kbar、T=660~700 ℃, 之后经历了近等温降压过程。榴辉岩是大陆地壳快速俯冲形成, 俯冲深度达80 km, 之后又经历了快速的折返。  相似文献   

5.
李敏  韩宗珠  许红  赵广涛  张贺  来志庆 《地球科学》2014,39(9):1289-1300
南黄海千里岩岛榴辉岩对进一步深入完善大别-苏鲁造山带的研究具有重要意义.岩相学和矿物学研究显示榴辉岩主要经历了俯冲进变质(Ⅰ)、峰期榴辉岩相变质(Ⅱ)、角闪岩相退变质(Ⅲ)和绿片岩相退变质(Ⅳ)阶段.各阶段的温压条件分别为: Ⅱ阶段T=806.3 ℃, P=3.32 GPa; Ⅲ阶段T=658.68 ℃, P=0.78 GPa; Ⅳ阶段T<550 ℃, P<0.3 GPa.锆石SHRIMP U-Pb测年指示千里岩榴辉岩的原岩形成于新元古代(约747±19 Ma), 超高压变质作用发生在早三叠世(约241.1±1.5 Ma), 角闪岩相退变质发生在三叠纪末(约205.8 Ma).在此基础上, 建立了千里岩岛榴辉岩的P-T-t演化轨迹, 反映出榴辉岩经历了2个折返阶段.这一P-T-t轨迹整体上与苏鲁地区榴辉岩类似, 指示该区所在的千里岩隆起区是苏鲁造山带在海区的延伸.   相似文献   

6.
藏南基性岩墙群的地球化学特征   总被引:7,自引:1,他引:7       下载免费PDF全文
藏南江孜—哲古一带广泛分布有北西向和近东西向产出的基性—中基性岩墙群,它们是新特提斯洋晚期发生大规模扩张的产物。本文对这些基性岩脉进行了较为系统的元素地球化学和Pb-Sr-Nd同位素研究。元素地球化学研究表明,该岩体略为富集LREE,Eu的亏损不明显,表明岩浆结晶分异作用较弱;LILE的富集和HFSE的亏损均不明显,所有样品均以相对富集Ta、Ce和亏损La、Y和Yb为特点。铅同位素206Pb/204Pb比值和207Pb/204Pb比值变化范围较小,分别为18.330~18.717和15.504~15.674;而208Pb/204Pb值和μ值相对变化较大,分别为37.664~39.156和9.296~9.931;初始87Sr/86Sr值变化范围较大,为0.7044~0.7105;岩石的εNd(t)值变化范围为-4.49~ 6.77,绝大多数为正值。微量元素地球化学和Nd-Sr-Pb同位素研究结果表明,藏南地区基性岩墙群可能是由来自亏损地幔源的岩浆与来自富集地幔源(EM)的岩浆混合的产物,其快速侵位造成岩浆分异作用较差,而岩浆的不均匀混合导致LILE富集与HFSE亏损均不明显,并产生较大的初始87Sr/86Sr比...  相似文献   

7.
The ages and paleogeographic affinities of basement rocks of Tibetan terranes are poorly known. New U-Pb zircon geochronologic data from orthogneisses of the Amdo basement better resolve Neoproterozoic and Cambro-Ordovician magmatism in central Tibet. The Amdo basement is exposed within the Bangong suture zone between the Lhasa and Qiangtang terranes and is composed of granitic orthogneisses with subordinate paragneisses and metasedimentary rocks. The intermediate-felsic orthogneisses show a bimodal distribution of Neoproterozoic (920-820 Ma) and Cambro-Ordovician (540-460 Ma) crystallization ages. These and other sparse basement ages from Tibetan terranes suggest the plateau is underlain by juvenile crust that is Neoproterozoic or younger; its young age and weaker rheology relative to cratonic blocks bounding the plateau margins likely facilitated the propagation of Indo-Asian deformation far into Asia. The Neoproterozoic ages post-date Rodinia assembly and magmatism of similar ages is documented in the Qaidaim-Kunlun terrane, South China block, the Aravalli-Delhi craton in NW India, the Eastern Ghats of India, and the Prince Charles mountains in Antarctica. The Amdo Neoproterozoic plutons cannot be unambiguously related to one of these regions, but we propose that the Yangtze block of the South China block is the most likely association, with the Amdo basement representing a terrane that possibly rifted from the active Yangtze margin in the middle Neoproterozoic. Cambro-Ordovician granitoids are ubiquitous throughout Gondwana as a product of active margin tectonics following Gondwana assembly and indicate that the Lhasa-Qiangtang terranes were involved in these tectono-magmatic events. U-Pb detrital zircon analysis of two quartzites from the Amdo basement suggest that the protoliths were Carboniferous-Permian continental margin strata widely deposited across the Lhasa and Qiangtang terranes. The detrital zircon age spectra of the upper Paleozoic Tibetan sandstones and other rocks deposited in East Gondwana during the late Neoproterozoic and Paleozoic are all quite similar, making it difficult to use the age spectra for paleogeographic determinations. There is a suggestion in the data that the Qiangtang terrane may have been located further west along Gondwana’s northern boundary than the Lhasa terrane, but more refined spatial and temporal data are needed to verify this configuration.  相似文献   

8.
基性麻粒岩产于大陆地壳深部,它的研究可以为大陆岩石圈的性质、组成、演化和深部动力学过程提供重要信息。南天山库米什榆树沟地区发育总厚达1000多米的基性麻粒岩构造岩片,走向南东,朝北东推覆。剖面上和石炭纪蛇绿混杂岩共存,并发生了石榴子石的旋转变形和强烈的石英-长石矿物相韧性变形。然而它们的变形条件至今尚未被研究。本文运用透射电镜(TEM)超微组构技术对榆树沟基性麻粒岩中石英和石榴子石进行了详细研究,结果表明,石英中存在着丰富的超显微变形构造,自由位错、亚颗粒和位错网非常发育,这表明研究区基性麻粒岩在折返抬升过程中曾遭受过较强的石英-长石相韧性变形作用;石榴子石中的超微变形构造则极为少见,只在其中发现几根自由位错,并在其颗粒边缘发现少量亚颗粒构造,说明该矿物主体属于脆性变形。这两种矿物变形性质的差异,反映了石榴子石的晶体结构在该条件下比石英更稳定,而且说明石榴子石的变质温度没有超过900℃,也就是说,本区麻粒岩的变质作用并非发生在极高温度的条件下。  相似文献   

9.
Tibet consists of several terranes that progressively collided with the southern margin of Asia during the Mesozoic following the closure of intervening ocean basins. This Mesozoic amalgamation history, as well as the extent to which it may have contributed to crustal thickening prior to the Cenozoic Indo‐Asia collision, remains poorly constrained and strongly debated. Here, we present a metamorphic petrological and U‐Pb zircon geochronological study of the Amdo metamorphic complex, one of the few exposures of high‐grade metamorphic rocks in central Tibet, located along the Bangong suture between the Qiangtang terrane to the north and the Lhasa terrane to the south. U‐Pb ages of metamorphic zircon in gneiss constrain the timing of peak metamorphism at c. 178 Ma, prior to the Early Cretaceous collision between the two terranes. Peak P–T conditions of gneiss within the metamorphic complex are constrained by conventional as well as multi‐equilibrium (THERMOCALC v.3.21 and v.3.33) geothermobarometry of two samples of garnet‐amphibolite. Whereas THERMOCALC v.3.21 yields similar results as conventional geothermobarometry, THERMOCALC v. 3.33 yields dramatically lower pressures, mostly due to the change in the amphibole activity model used. Using THERMOCALC v.3.21, the two garnet‐amphibolite samples yield similar P–T conditions of 0.83 ± 0.06 GPa at 646 ± 33 °C and 0.97 ± 0.06 GPa at 704 ± 35 °C. Plagioclase coronas on the garnet‐amphibolite sample with lower peak P–T conditions indicate a period of isothermal decompression. Additional geothermometry on two garnet‐free amphibolites yielded similar temperatures of 700–750 °C and suggests similar P–T conditions across most of the complex. However, two exposures of garnet‐kyanite schist located along the southern edge of the metamorphic complex yielded slightly lower peak conditions of 0.75–0.85 GPa and 550–610 °C. Petrographic and field relations suggest the difference in metamorphic grade between the schist and gneiss is due to an intervening thrust fault. The existence of the thrust fault indicates that at least part of the exhumation of the complex was due to contractional deformation, possibly during the Lhasa‐Qiangtang collision. Our P–T–t results indicate the occurrence of a significant Early Jurassic tectonothermal event along the southern, active margin of the Qiangtang terrane that deeply buried the Amdo rocks. We suggest that the metamorphism is a result of arc‐related tectonism that may have been regionally extensive along the southern Qiangtang terrane; geological records of this tectonism may be rarely exposed along strike because of a lack of exhumation or subsequent depositional and structural burial.  相似文献   

10.
向华  张利  钟增球  周汉文  曾雯 《地球科学进展》2007,23(12):1258-1267
榍石在各类岩石中普遍存在,其稳定性受全岩成分、氧逸度和水活度以及温度和压力等因素影响。它在岩浆岩中主要存在于高Ca/Al比值的岩石中,在变质岩中常见于绿片岩相、蓝片岩相和角闪岩相岩石,在钙质变质岩中其稳定范围可达榴辉岩相或高压麻粒岩相。一般榍石结构中U含量较高,且具有高达高角闪岩相上限的U Pb同位素体系封闭温度,是理想的U-Pb定年矿物。由于榍石的组成元素均为岩石中的主要元素,很容易与其它矿物、熔体及流体发生反应,所以榍石的U-Pb年龄记录的更可能是结晶年龄,而不是简单的扩散重置年龄;也因为它容易反应,变质榍石复杂的U Pb体系可能记录了岩石的整个变质历史信息。通过与榍石平衡共生的矿物组合或利用榍石Zr温压计可确定岩石的P T条件,结合相关的榍石年龄信息即可建立变质过程的P T t轨迹。利用SHRIMP、LA MC ICP MS以及LA ICP MS方法可对不均一榍石颗粒内部进行原位微区分析得到有意义的U Pb年龄;利用榍石中Zr含量对温度,尤其是对压力比较敏感,可建立榍石Zr含量温压计。  相似文献   

11.
We report the results of a geochemical study of the Jijal andSarangar complexes, which constitute the lower crust of theMesozoic Kohistan paleo-island arc (Northern Pakistan). TheJijal complex is composed of basal peridotites topped by a gabbroicsection made up of mafic garnet granulite with minor lensesof garnet hornblendite and granite, grading up-section to hornblendegabbronorite. The Sarangar complex is composed of metagabbro.The Sarangar gabbro and Jijal hornblende gabbronorite have melt-like,light rare earth element (LREE)-enriched REE patterns similarto those of island arc basalts. Together with the Jijal garnetgranulite, they define negative covariations of LaN, YbN and(La/Sm)N with Eu* [Eu* = 2 x EuN/(SmN + GdN), where N indicateschondrite normalized], and positive covariations of (Yb/Gd)Nwith Eu*. REE modeling indicates that these covariations cannotbe accounted for by high-pressure crystal fractionation of hydrousprimitive or derivative andesites. They are consistent withformation of the garnet granulites as plagioclase–garnetassemblages with variable trapped melt fractions via eitherhigh-pressure crystallization of primitive island arc basaltsor dehydration-melting of hornblende gabbronorite, providedthat the amount of segregated or restitic garnet was low (<5wt %). Field, petrographic, geochemical and experimental evidenceis more consistent with formation of the Jijal garnet granuliteby dehydration-melting of Jijal hornblende gabbronorite. Similarly,the Jijal garnet-bearing hornblendite lenses were probably generatedby coeval dehydration-melting of hornblendites. Melting modelsand geochronological data point to intrusive leucogranites inthe overlying metaplutonic complex as the melts generated bydehydration-melting of the plutonic protoliths of the Jijalgarnet-bearing restites. Consistent with the metamorphic evolutionof the Kohistan lower arc crust, dehydration-melting occurredat the mature stage of this island arc when shallower hornblende-bearingplutonic rocks were buried to depths exceeding 25–30 kmand heated to temperatures above c. 900°C. Available experimentaldata on dehydration-melting of amphibolitic sources imply thatthickening of oceanic arcs to depths >30 km (equivalent toc. 1·0 GPa), together with the hot geotherms now postulatedfor lower island arc crust, should cause dehydration-meltingof amphibole-bearing plutonic rocks generating dense garnetgranulitic roots in island arcs. Dehydration-melting of hornblende-bearingplutonic rocks may, hence, be a common intracrustal chemicaland physical differentiation process in island arcs and a naturalconsequence of their maturation, leading to the addition ofgranitic partial melts to the middle–upper arc crust andformation of dense, unstable garnet granulite roots in the lowerarc crust. Addition of LREE-enriched granitic melts producedby this process to the middle–upper island arc crust maydrive its basaltic composition toward that of andesite, affordinga plausible solution to the ‘arc paradox’ of formationof andesitic continental-like crust in island arc settings. KEY WORDS: island arc crust; Kohistan complex; Jijal complex; amphibole dehydration-melting; garnet granulite; continental crustal growth  相似文献   

12.
13.
严溶  张泽明  董昕  林彦蒿  刘峰 《岩石学报》2013,29(6):1949-1961
高压基性麻粒岩以石榴石-单斜辉石-斜长石-石英共生为特征,是研究大洋或大陆地壳俯冲-碰撞的最好载体之一.西藏拉萨地体北部高压基性麻粒岩以构造块体的形式出现在早古生代沉积岩中.高压麻粒岩的原岩是辉长岩,它经历了四期变质作用,从早到晚分别是:角闪岩相变质(0.9~1.0GPa和710~720℃)、高压麻粒岩相峰期(1.55~1.65GPa和730~740℃)、麻粒岩相(0.82GPa和821℃)和角闪岩相退变质(0.60~0.68GPa和520~540℃)作用.整个变质作用的P-T轨迹是顺时针型的,包括一个近等压降温的早期角闪岩相变质过程,近等温升压的晚期进变质过程,以及加温降压的早期退变质过程和降温降压的晚期退变质过程.这表明,高压基性麻粒岩形成在较高地热梯度条件下,并且经历了加热变质过程.因此,纳木错高压基性麻粒岩并不是形成在典型的洋壳俯冲带构造环境,洋中脊俯冲和地幔柱作用是其成因的可能构造控制因素.  相似文献   

14.
西藏岗巴古新世地层及构造作用的影响   总被引:13,自引:1,他引:13       下载免费PDF全文
西藏岗巴地区出露有完整的晚白垩世至古近纪地层,地层中化石丰富,根据化石研究准确地进行了地层时代的划分,本文认为该区白垩系-古代系界线位于宗山组和基堵拉组之间,以底栖有大孔虫Orbitoides-Omphalocyclus动物群的消亡和Rotalia-Smoutina-Lockhartia动物群的始现为标志。界线上下岩层为假整合接触,期间有一短暂的暴露面。古新世的砂砾岩直接覆于晚白晋世的陆棚碳酸盐岩沉积之上,沉积的重大转变代表一次构造运动,印度大陆北缘与冈底斯南缘直至白垩纪末均具有明显的浅海生物地理分区现象,期间被深海盆地地所阻隔。古新世开始浅海相动物群在该地显示同一生物地理区系特征,说明两大陆间深水盆地的阻隔已消失,南北生物地理区同归于一残留海盆,沉积类型转变和地层古生物特征为印度-亚洲板块的起始碰撞时间研究提供了基础资料,据此推测大陆早期碰撞发生在白晋系-古近系的界线时期(约65Ma),古新世中一晚期碳酸盐台地遭受不断的挤压与变形,进一步说明大陆的碰撞在古新世之初就已发生。沉积地层的破碎变形和滑塌堆积是持续碰撞与挤压的结果。  相似文献   

15.
白垩纪中期Orbitolinids在全球许多地区均有分布,其生存地区以环特提斯洋的滨浅海地带为主,当时它沿这一滨浅海区广泛扩散。在拉萨地块。该动物群大量分布于冈底斯南缘前盆地,冈底斯-念青唐古拉弧内盆地和藏北弧背盆地。沿拉萨地块这一构造单元东西两侧的延续地段,Orbitolinids发育于缅甸中-东部的Central Cenozoic带和Shan-Tanintharyi地块,以及克什米尔Ladakh一带,该动物群向北穿越班公湖-怒江缝合带羌塘盆地扩散。受东特提斯洋的阻隔,其分布范围向南没有跨越印度河-雅鲁藏布江缝合带,印度板块当时可能已与非洲大陆分离并向北漂移,该动物群也没能从非洲大陆东侧越过海洋进入印度大陆,据Orbitolinids、介形虫和双壳类的分布,识别出以印度河-雅鲁藏布江缝合带为界的两个生物地理分区。  相似文献   

16.
藏北羌塘南部发现早古生代地层及意义   总被引:9,自引:0,他引:9  
藏北羌塘南部地区沿龙木错-双湖缝合带南侧发育大面积的变质岩系, 此前统称为阿木岗群.由于没有发现古生物化石, 时代归属争议很大.有人依缝合带以北查桑地区有未变质的含古生物化石泥盆系出露为据, 将该套变质岩系时代归属前泥盆纪, 多数人是根据所测同位素年龄值, 确定其时代为前震旦系.2003—2004年我们在玛依岗日一带变质岩系上部采获大量鹦鹉螺类和笔石类化石, 经研究确定时代属中、晚奥陶世-志留纪.在羌塘南部地区发现有可靠化石依据的早古生代地层存在尚属首次.为该岩系的时代归属、地层划分及与邻区对比提供了古生物证据, 也为研究该区岩相古地理、大地构造格局提供了可靠资料.   相似文献   

17.
黄陵地区基性岩墙群的地球化学特征及其地质意义   总被引:8,自引:0,他引:8  
黄陵地区的基性岩墙群主要由辉绿岩脉和辉绿玢岩脉组成, 走向主要为NEE向, 少量为NNW向.元素地球化学显示其为形成于板内拉张环境下的亚碱性玄武岩特征, 其很低的Mg# 指示为岩浆高度演化的产物, 同时Nb、Ta的亏损和Pb的富集表明其受到地壳物质的混染, 这说明可能是在拉张环境下由先前被俯冲带流体交代的地幔源重熔的结果.根据前人的年代学研究结果, 它形成于770Ma左右, 可能跟Rodinia超级古陆裂解构造背景相关.   相似文献   

18.
19.
汉诺坝麻粒岩捕虏体锆石U-Pb 分析初步结果及讨论   总被引:2,自引:0,他引:2  
本文报道了汉诺坝玄武岩中麻粒岩捕虏体的锆石 U-Pb 初步分析结果,并讨论了其成因的两种可能性。  相似文献   

20.
西藏高原西北缘钾质火山岩地球化学特征及其地质涵义   总被引:1,自引:0,他引:1  
鲍佩声  肖序常  苏犁 《地质学报》2006,80(10):1578-1588
西藏高原西北缘钾质火山岩属橄榄玄粗岩(shoshonite)系列。其K-Ar同位素年龄变化于0.28~7.79Ma,属中新世末—更新世;其K2O/Na2O几乎均>1,Mg#值有较宽的范围(从0.51~0.64),且具有较低的Cr,Ni含量(均≤326×10-6)。它们代表着经历了不同程度分异演化的岩浆结晶产物。研究区钾质火山岩(shoshon-ites)以高度富集LREE和LILE(K,Rb,Sr,Ba,Th)以及高度亏损HREE和HFSE(Nb,Ta,Zr,Hf,Ti)等元素为特征。(La/Yb)n高达29.82~84.94。钾质火山岩对球粒陨石标准化的REE配分型式均为向右陡倾的LREE富集型。对原始地幔标准化的痕量元素蛛网图均具有明显的Nb,Ta,Ti负异常。钾质火山岩具有较高的87Sr/86Sr(0.707755~0.710426)和较低的143Nd/144Nd(0.51196~0.512439)比值。上述特征表明这些火山岩来源于富集的地幔源区。钾质火山岩较高的Ba/Nb比值(40.84~97.28)、较高的Th/Ta及Ce/Yb比值(131~366)、和较低的Nb/Y比值(0.9~3.3),结合Th/Yb-Ta/Yb及(Th×100)/Zr-(Nb×100)/Zr判别图,提示了它们也形成于活动大陆边缘,但与其伴生的钙碱性火山岩为早期与俯冲作用有关的火山岩,而钾质火山岩则为晚期岩石圈拆沉作用的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号