首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文在滑坡灾害预测分区的信息模型基础上,重点讨论了灾害预测的计算机制图化的主要过程:因素的数值化,单元边界的确定和彩色图件的绘制。运用中国地质大学计算机系开发的Mapcad系统,在Mv/10000计算机上较好地处理了不规则图幅边界的自然裁剪,不规则单元的输入,以及彩色图件的绘制等问题。  相似文献   

2.
Rainfall-induced landslide susceptibility zonation of Puerto Rico   总被引:5,自引:4,他引:5  
Landslides are a major geologic hazard with estimated tens of deaths and $1–2 billion in economic losses per year in the US alone. The island of Puerto Rico experiences one or two large events per year, often triggered in steeply sloped areas by prolonged and heavy rainfall. Identifying areas susceptible to landslides thus has great potential value for Puerto Rico and would allow better management of its territory. Landslide susceptibility zonation (LSZ) procedures identify areas prone to failure based on the characteristics of past events. LSZs are here developed based on two widely applied methodologies: bivariate frequency ratio (FR method) and logistic regression (LR method). With these methodologies, the correlations among eight possible landslide-inducing factors over the island have been investigated in detail. Both methodologies indicate aspect, slope, elevation, geological discontinuities, and geology as highly significant landslide-inducing factors, together with land-cover for the FR method and distance from road for the LR method. The LR method is grounded in rigorous statistical testing and model building but did not improve results over the simpler FR method. Accordingly, the FR method has been selected to generate a landslide susceptibility map for Puerto Rico. The landslide susceptibility predictions were tested against previous landslide analyses and other landslide inventories. This independent evaluation demonstrated that the two methods are consistent with landslide susceptibility zonation from those earlier studies and showed this analysis to have resulted in a robust and verifiable landslide susceptibility zonation map for the whole island of Puerto Rico.  相似文献   

3.
本文发展了一种基于分形统计的滑坡易发程度评价方法,该方法仅使用已有的滑坡数据,首先通过分形统计获得滑坡分布的分形丛集关系,再通过GIS的空间操作与分析生成滑坡易发程度区划图。提出一种对滑坡易发程度区划图的可信度和预测效果进行评价的方法。本文介绍了这些方法及其在浙江地区应用的结果。  相似文献   

4.
Landslide susceptibility zonation mapping is a fundamental procedure for geo-disaster management in tropical and sub-tropical regions. Recently, various landslide susceptibility zonation models have been introduced in Nepal with diverse approaches of assessment. However, validation is still a problem. Additionally, the role of various predisposing causative parameters for landslide activity is still not well understood in the Nepal Himalaya. To address these issues of susceptibility zonation and landslide activity, about 4,000 km2 area of central Nepal was selected for regional-scale assessment of landslide activity and susceptibility zonation mapping. In total, 655 new landslides and 9,229 old landslides were identified with the study area with the help of satellite images, aerial photographs, field data and available reports. The old landslide inventory was “blind landslide database” and could not explain the particular rainfall event responsible for the particular landslide. But considering size of the landslide, blind landslide inventory was reclassified into two databases: short-duration high-intensity rainfall-induced landslide inventory and long-duration low-intensity rainfall-induced landslide inventory. These landslide inventory maps were considered as proxy maps of multiple rainfall event-based landslide inventories. Similarly, all 9,884 landslides were considered for the activity assessment of predisposing causative parameters. For the Nepal Himalaya, slope, slope aspect, geology and road construction activity (anthropogenic cause) were identified as most affective predisposing causative parameters for landslide activity. For susceptibility zonation, multivariate approach was considered and two proxy rainfall event-based landslide databases were used for the logistic regression modelling, while a relatively recent landslide database was used in validation. Two event-based susceptibility zonation maps were merged and rectified to prepare the final susceptibility zonation map and its prediction rate was found to be more than 82 %. From this work, it is concluded that rectification of susceptibility zonation map is very appropriate and reliable. The results of this research contribute to a significant improvement in landslide inventory preparation procedure, susceptibility zonation mapping approaches as well as role of various predisposing causative parameters for the landslide activity.  相似文献   

5.
The October 2005 earthquake triggered several thousand landslides in the Lesser Himalaya of Kashmir in northern Pakistan and India. Analyses of ASTER satellite imagery from 2001 were compared with a study undertaken in 2005; the results show the extent and nature of pre- and co-/post-seismic landsliding. Within a designated study area of ~2,250 km2, the number of landslides increased from 369 in 2001 to 2,252 in October 2005. Assuming a balanced baseline landsliding frequency over the 4 years, most of the new landslides were likely triggered by the 2005 earthquake and its aftershocks. These landslides mainly happened in specific geologic formations, along faults, rivers and roads, and in shrubland/grassland and agricultural land. Preliminary results from repeat photographs from 2005 and 2006 after the snowmelt season reveal that much of the ongoing landsliding occurred along rivers and roads, and the extensive earthquake-induced fissuring. Although the susceptibility zoning success rate for 2001 was low, many of the co-/post-seismic landsliding in 2005 occurred in areas that had been defined as being potentially dangerous on the 2001 map. While most of the area in 2001 was (very) highly susceptible to future landsliding, most of the area in 2005 was only moderate to low susceptible, that is, most of the landsliding in 2005 actually occurred in the potentially dangerous areas on the 2001 map. This study supports the view that although susceptibility zoning maps represent a powerful tool in natural hazard management, caution is needed when developing and using such maps.  相似文献   

6.
7.
A heuristic approach to global landslide susceptibility mapping   总被引:1,自引:0,他引:1  
Landslides can have significant and pervasive impacts to life and property around the world. Several attempts have been made to predict the geographic distribution of landslide activity at continental and global scales. These efforts shared common traits such as resolution, modeling approach, and explanatory variables. The lessons learned from prior research have been applied to build a new global susceptibility map from existing and previously unavailable data. Data on slope, faults, geology, forest loss, and road networks were combined using a heuristic fuzzy approach. The map was evaluated with a Global Landslide Catalog developed at the National Aeronautics and Space Administration, as well as several local landslide inventories. Comparisons to similar susceptibility maps suggest that the subjective methods commonly used at this scale are, for the most part, reproducible. However, comparisons of landslide susceptibility across spatial scales must take into account the susceptibility of the local subset relative to the larger study area. The new global landslide susceptibility map is intended for use in disaster planning, situational awareness, and for incorporation into global decision support systems.  相似文献   

8.
While dealing with slope stability issues, determining the state of stress and the relation between driving force and resisting force are the fundamental deterministic steps. Gravitational stresses affect geologic processes and engineering operations in slopes. Considering this fact, a concept of topo-stress evaluation is developed in this research and used to produce a shallow landslide susceptibility map in a model area. The topo-stress introduced in this research refers to the shear stress induced by the gravitational forces on the planes parallel to the ground surface. Weight of the material on a slope and friction angle of the jointed rock mass are the two fundamental parameters that are considered to govern topo-stress in this study. Considering topo-stress as a main factor for initiating shallow landslides, a GIS-based probabilistic model is developed for shallow landslide susceptibility zonation. An ideal terrain in central Nepal is selected as the study area for this purpose. Two event-based shallow landslide inventories are used to predict accuracy of the model, which is found to be more than 78 % for the first event-landslides and more than 76 % for the second event-landslides. It is evident from these prediction rates that the probabilistic topo-stress model proposed in this work is quite acceptable when regional scale shallow landslide susceptibility mapping is practiced, such as in the Himalayan rocky slopes.  相似文献   

9.
Quantitative landslide susceptibility mapping at Pemalang area,Indonesia   总被引:3,自引:0,他引:3  
For quantitative landslide susceptibility mapping, this study applied and verified a frequency ratio, logistic regression, and artificial neural network models to Pemalang area, Indonesia, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of aerial photographs, satellite imagery, and field surveys; a spatial database was constructed from topographic and geological maps. The factors that influence landslide occurrence, such as slope gradient, slope aspect, curvature of topography, and distance from stream, were calculated from the topographic database. Lithology was extracted and calculated from geologic database. Using these factors, landslide susceptibility indexes were calculated by frequency ratio, logistic regression, and artificial neural network models. Then the landslide susceptibility maps were verified and compared with known landslide locations. The logistic regression model (accuracy 87.36%) had higher prediction accuracy than the frequency ratio (85.60%) and artificial neural network (81.70%) models. The models can be used to reduce hazards associated with landslides and to land-use planning.  相似文献   

10.
Roadside slope failure is a common problem in the Himalayan region as road construction activities disturb natural slopes. Therefore, landslide susceptibility zonation is necessary for roadside slope disaster management and planning development activities. In this study, we consider a 53-kin section of a major highway in Nepal where road services are suspended for several days in the monsoon season every year. A number of methods have been used for landslide susceptibility zonation. We employed a bivariate statistical approach for this study. Relevant thematic layer maps represent- ing various factors (e.g., slope, aspect, land use, lithology, drainage density, proximity to stream and proximity to road) that are related to landslide activity, have been prepared using Geographic Information System (GIS) techniques. A total of 277 landslides (covering a total of 29.90 km2) of various dimensions have been identified in the area. A landslide susceptibility map was prepared by overlaying a landslide inventory map with various parameter maps segmented into various relevant classes. The landslide susceptibility index was seg- mented into five zones, viz. very low, low, moderate, high and very high susceptibility. Landslide susceptibility zonation maps are useful tools for the efficient planning and management of roadside slope repair and maintenance tasks in the Himalayan region.  相似文献   

11.
Spatial prediction of landslides is termed landslide susceptibility zonation (LSZ). In this study, an objective weighting approach based on fuzzy concepts is used for LSZ in a part of the Darjeeling Himalayas. Relevant thematic layers pertaining to landslide causative factors have been generated using remote sensing and geographic information system (GIS) techniques. The membership values for each category of thematic layers have been determined using the cosine amplitude fuzzy similarity method and are used as ratings. The integration of these ratings led to the generation of LSZ map. The integration of different ratings to generate an LSZ map has been performed using a fuzzy gamma operator apart from the arithmetic overlay approach. The process is based on determination of combined rating known as the landslide susceptibility index (LSI) for all the pixels using the fuzzy gamma operator and classification using the success rate curve method to prepare the LSZ map. The results indicate that as the gamma value increases, the accuracy of the LSZ map also increases. It is observed that the LSZ map produced by the fuzzy algebraic sum has reflected a more real situation in terms of landslides in the study area.  相似文献   

12.
空间三维滑坡敏感性分区工具及其应用   总被引:1,自引:0,他引:1  
对于滑坡敏感性分区目前有三种方法:定性法、统计法和基于岩土定量模型的确定性方法。定性法基于对滑坡敏感性或灾害评估的人为判断;统计法用一个来源于结合了权重因子的预测函数或指标;而确定性法,或者说是物理定量模型法以质量、能量和动量守恒定律为基础。二维确定性模型广泛用于土木工程设计,而无限边坡模型(一维)也用于滑坡灾害分区的确定性模型。文中提出了一个新的基于GIS(地理信息系统)的滑坡敏感性分区系统,这个系统可用于从复杂地形中确认可能的危险三维(3-D)滑坡体。所有与滑坡相关的空间数据(矢量或栅格数据)都被集成到这个系统中。通过把研究区域划分为边坡单元并假定初始滑动面是椭球的下半部分,并使用Monte Carlo随机搜索法,三维滑坡稳定性分析中的三维最危险滑面是三维安全系数最小的地方。使用近似方法假定有效凝聚力、有效摩擦角和三维安全系数服从正态分布,可以计算出滑坡失稳概率。3DSlopeGIS是一个计算机程序,它内嵌了GIS Developer kit(ArcObjects of ESRI)来实现GIS空间分析功能和有效的数据管理。应用此工具可以解决所有的三维边坡空间数据解问题。通过使用空间分析、数据管理和GIS的可视化功能来处理复杂的边坡数据,三维边坡稳定性问题很容易用一个友好的可视化图形界面来解决。将3DSlopeGIS系统应用到3个滑坡敏感性分区的实例中:第一个是一个城市规划项目,第二个是预测以往滑坡灾害对临近区域可能的影响,第三个则是沿着国家主干道的滑坡分区。基于足够次数的Monte Carlo模拟法,可以确认可能的最危险滑坡体。这在以往的传统边坡稳定性分析中是不可能的。  相似文献   

13.
滑坡灾害区划系统研究   总被引:13,自引:1,他引:13  
本文系统地介绍了滑坡灾害区划研究的国内外研究现状,提出减灾的关键在于从区域上做好预防研究的观点,并阐述了滑坡灾害与风险术语统一化的重要性,由此提出滑坡灾害区划的核心是灾害、易损性和风险三要素的综合分析。文章进一步提出了灾害区划研究的两种基本途径,破坏概率法和信息分析法,把传统的滑坡单体稳定性分析延伸到以Monte-  相似文献   

14.
China is one of the countries where landslides caused the most fatalities in the last decades.The threat that landslide disasters pose to people might even be greater in the future,due to climate change and the increasing urbanization of mountainous areas.A reliable national-scale rainfall induced landslide suscep-tibility model is therefore of great relevance in order to identify regions more and less prone to landslid-ing as well as to develop suitable risk mitigating strategies.However,relying on imperfect landslide data is inevitable when modelling landslide susceptibility for such a large research area.The purpose of this study is to investigate the influence of incomplete landslide data on national scale statistical landslide susceptibility modeling for China.In this context,it is aimed to explore the benefit of mixed effects mod-elling to counterbalance associated bias propagations.Six influencing factors including lithology,slope,soil moisture index,mean annual precipitation,land use and geological environment regions were selected based on an initial exploratory data analysis.Three sets of influencing variables were designed to represent different solutions to deal with spatially incomplete landslide information:Set 1(disregards the presence of incomplete landslide information),Set 2(excludes factors related to the incompleteness of landslide data),Set 3(accounts for factors related to the incompleteness via random effects).The vari-able sets were then introduced in a generalized additive model(GAM:Set 1 and Set 2)and a generalized additive mixed effect model(GAMM:Set 3)to establish three national-scale statistical landslide suscep-tibility models:models 1,2 and 3.The models were evaluated using the area under the receiver operating characteristics curve(AUROC)given by spatially explicit and non-spatial cross-validation.The spatial pre-diction pattern produced by the models were also investigated.The results show that the landslide inven-tory incompleteness had a substantial impact on the outcomes of the statistical landslide susceptibility models.The cross-validation results provided evidence that the three established models performed well to predict model-independent landslide information with median AUROCs ranging from 0.8 to 0.9.However,although Model 1 reached the highest AUROCs within non-spatial cross-validation(median of 0.9),it was not associated with the most plausible representation of landslide susceptibility.The Model 1 modelling results were inconsistent with geomorphological process knowledge and reflected a large extent the underlying data bias.The Model 2 susceptibility maps provided a less biased picture of landslide susceptibility.However,a lower predicted likelihood of landslide occurrence still existed in areas known to be underrepresented in terms of landslide data(e.g.,the Kuenlun Mountains in the northern Tibetan Plateau).The non-linear mixed-effects model(Model 3)reduced the impact of these biases best by introducing bias-describing variables as random effects.Among the three models,Model 3 was selected as the best national-scale susceptibility model for China as it produced the most plausible portray of rainfall induced landslide susceptibility and the highest spatially explicit predictive perfor-mance(median AUROC of spatial cross validation 0.84)compared to the other two models(median AUROCs of 0.81 and 0.79,respectively).We conclude that ignoring landslide inventory-based incomplete-ness can entail misleading modelling results and that the application of non-linear mixed-effect models can reduce the propagation of such biases into the final results for very large areas.  相似文献   

15.
Paryani  Sina  Neshat  Aminreza  Javadi  Saman  Pradhan  Biswajeet 《Natural Hazards》2020,103(2):1961-1988
Natural Hazards - Many landslides occur in the Karun watershed in the Zagros Mountains. In the present study, we employed a novel comparative approach for spatial modeling of landslides given the...  相似文献   

16.
This study compares the predictive performance of GIS-based landslide susceptibility mapping (LSM) using four different kernel functions in support vector machines (SVMs). Nine possible causal criteria were considered based on earlier similar studies for an area in the eastern part of the Khuzestan province of southern Iran. Different models and the resulting landslide susceptibility maps were created using information on known landslide events from a landslide inventory dataset. The models were trained using landslide inventory dataset. A two-step accuracy assessment was implemented to validate the results and to compare the capability of each function. The radial basis function was identified as the most efficient kernel function for LSM with the resulting landslide susceptibility map showing the highest predictive accuracy, followed by the polynomial kernel function. According to the obtained results, it concluded that using SVMs can generally be considered to be an effective method for LSM while it demands careful consideration of kernel function. The results of the present research will also assist other researchers to select the best SVM kernel function to use for LSM.  相似文献   

17.
Landslides are among the most common and dangerous natural hazards in mountainous regions that can cause damage to properties and loss of lives. Landslide susceptibility mapping (LSM) is a critical tool for preventing or mitigating the negative impacts of landslides. Although many previous studies have employed various statistical methods to produce quantitative maps of the landslide susceptibility index (LSI) based on inventories of past landslides and contributing factors, they are mostly ad hoc to a specific area and their success has been hindered by the lack of a methodology that could produce the right mapping units at proper scale and by the lack of a general framework for objectively accounting for the differing contribution of various preparatory factors. This paper addresses these issues by integrating the geomorphon and geographical detector methods into LSM to improve its performance. The geomorphon method, an innovative pattern recognition approach for identifying landform elements based on the line of sight concept, is adapted to delineate ridge lines and valley lines to form slope units at self-adjusted spatial scale suitable for LSM. The geographical detector method, a spatial variance analysis method, is integrated to objectively assign the weights of contributing factors for LSM. Applying the new integrated approach to I-Lan, Taiwan produced very significant improvement in LSI mapping performance than a previous model, especially in highly susceptible areas. The new method offers a general framework for better mapping landslide susceptibility and mitigating its negative impacts.  相似文献   

18.
Generation of landslide susceptibility maps is important for engineering geologists and geomorphologists. The goal of this study is to generate a reliable susceptibility map based on digital elevation modeling and remote sensing data through clustering technique. This study focused on the landslide problems on a vast area located at Shei Pa National Park, Miao Li, Taiwan. Two stages of analysis were used to extract the dominant attributes and thresholds: (1) calculate the entropy with regard to the measure of influenced variables to the occurrence of landslide and (2) use the clustering analysis K-means with particle swarm optimization (KPSO) to resolve the difficulties in creating landslide susceptibility maps. The knowledge scope with regard to core factors and thresholds are solved. The self-organization map (SOM) is used as a parallel study for comparison. The overall accuracy of the susceptibility map is 86 and 77 % for KPSO and SOM, respectively. Then, the susceptibility maps are drawn and verifications made. The generation of a susceptibility map is useful for decision makers and managers to handle the landslide risk area.  相似文献   

19.
The aim of this study was to validate an artificial neural network model at Youngin, Janghung, and Boeun, Korea, using the geographic information system (GIS). The factors that influence landslide occurrence, such as the slope, aspect, curvature, and geomorphology of topography, the type, material, drainage, and effective thickness of soil, the type, diameter, age, and density of forest, distance from lineament, and land cover were either calculated or extracted from the spatial database and Landsat TM satellite images. Landslide susceptibility was analyzed using the landslide occurrence factors provided by the artificial neural network model. The landslide susceptibility analysis results were validated and cross-validated using the landslide locations as study areas. For this purpose, weights for each study area were calculated by the artificial neural network model. Among the nine cases, the best accuracy (81.36%) was obtained in the case of the Boeun-based Janghung weight, whereas the Janghung-based Youngin weight showed the worst accuracy (71.72%).  相似文献   

20.
Landslide susceptibility mapping is essential for land-use activities and management decision making in hilly or mountainous regions. The existing approaches to landslide susceptibility zoning and mapping require many different types of data. In this study, we propose a fractal method to map landslide susceptibility using historical landslide inventories only. The spatial distribution of landslides is generally not uniform, but instead clustered at many different scales. In the method, we measure the degree of spatial clustering of existing landslides in a region using a box-counting method and apply the derived fractal clustering relation to produce a landslide susceptibility map by means of GIS-supported spatial analysis. The method is illustrated by two examples at different regional scales using the landslides inventory data from Zhejiang Province, China, where the landslides are mainly triggered by rainfall. In the illustrative examples, the landslides from the inventory are divided into two time periods: The landslides in the first period are used to produce a landslide susceptibility map, and those in the late period are taken as validation samples for examining the predictive capability of the landslide susceptibility maps. These examples demonstrate that the landslide susceptibility map created by the proposed technique is reliable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号