首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Groundwater is a very important resource across Ismailia area as it is used in domestic, agricultural, and industrial purposes. This makes it absolutely necessary that the effects of land use change on groundwater resources are considered when making land use decisions. Careful monitoring of groundwater resource helps minimize the contamination of this resource. This study developed a GIS-based model to assess groundwater contamination in the West Ismailia area based on its hydrochemical characteristics. The model incorporated five different factors which are standardized to a common evaluation scale. The produced factor maps include the depth to the water table, the potential recharge, the soil type, the topography, and the thickness of saturation. These maps are combined in ERDAS Imagine, ARC INFO, and ARC GIS software using geostatistics and a weighted overlay process to produce the final groundwater potential risk map. The model output is then used to determine the vulnerability of groundwater to contamination by domestic, agricultural, and industrial sources. The produced risk maps are then combined with the groundwater contamination potentiality map using an arithmetic overlay in order to identify areas which were vulnerable to contamination. The results of this study revealed that the groundwater is highly vulnerable to contamination that may result from the inappropriate application of agrichemicals and domestic and industrial activities. The produced integrated potential contamination maps are very useful tools for a decision maker concerned with groundwater protection and development.  相似文献   

2.
Deltaic aquifers are complex due to the important heterogeneity of their structure and their hydrogeological functioning. Auger drilling provides localized, but very robust geological and hydrogeological information, while geophysical surveys can provide integrated subsurface information. An effective, easy-to-use and low-cost methodology combining geological/hydrogeological information from Auger drillings and the results from three geophysical techniques (Electromagnetic mapping, Electrical Sounding and Electrical Resistivity Tomography) is being developed to characterize the structure of a typical Mediterranean deltaic aquifer. A first hypothesis about hydrodynamic properties of the aquifer is also obtained. The study area is located in the Rhone delta (Middle Camargue/southern France). Integration of geophysical and geological techniques allowed identifying the presence and lateral extension of the Saint-Ferréol paleochannel, the vertical contact between lagoonal–fluvial deposits and the marine clayed silt that separate the superficial aquifer from the deeper aquifer. Likewise, high north–south heterogeneity and east–west homogeneity were highlighted in the study area. Presence of clay in sandy deposits in the low areas implies changes in lateral hydraulic permeability. This fact, jointed to the low hydraulic gradient, suggests a slow groundwater flow in the local system. The Rhone delta presents a typical configuration of a Mediterranean deltaic aquifer, thus this methodological approach can be used for similar deltaic Mediterranean systems.  相似文献   

3.
Natural Hazards - Wildfire susceptibility and hazard models based on drivers that change only on a multiyear timescale are considered of a structural nature. They ignore specific short-term...  相似文献   

4.
A preliminary problem to solve in the set-up of a mathematical model simulating a geophysical process is the choice of a suitable discrete scheme to approximate the governing differential equations. This paper presents a simple technique to test finite difference schemes used in the modeling of geophysical processes occurring in a geological structure. This technique consists in generating analytical solutions similar to the ones characterizing a geophysical process, given general information on some relevant parameters. Useful information for the choice of the discrete scheme to employ in the mathematical model simulating the original geophysical process can be obtained from the comparison between the analytical solution and the approximated numerical solutions generated by means of different discrete schemes. Two classes of numerical examples approximating the differential equation that governs the steady state earth's heat flow have been treated using three different finite differences schemes. The first class of examples deals with media whose phenomenological parameters vary as continuous space functions; the second class, instead, deals with media whose phenomenological parameters vary as discontinuous space functions. The finite difference schemes that have been utilized are: Centered Finite Difference Scheme (CDS), Arithmetic Mean Scheme (AMS), and Harmonic Mean Scheme (HMS).The numerical simulations showed that: the CDS may yield physically inconsistent solutions if the lattice internodal distance is too large, but in case of phenomenological parameters varying as a continuous function, this pitfall can be avoided increasing the lattice node refinement. In case of phenomenological parameters varying as a discontinuous function, instead, the CDS may yield physically inconsistent solutions for any lattice-node refinement. The HMS produced good results for both classes of examples showing to be a scheme suitable to model situations like these.  相似文献   

5.
Mountain-front recharge (MFR) is a process of recharging an aquifer by infiltration of surface flow from streams and adjacent basins in a mountain block and along a mountain front (MF). This is the first attempt in India to estimate MFR along the foothills of Courtallam using hydrogeochemistry and geostatistical tools. The estimation of MFR has been carried out by collecting groundwater samples along the foothills of Courtallam. Collected water samples were analyzed for major cations and anions using standard procedures. Hydrogeochemical facies show the existence of four water types in this region. Calcium-rich water derived from gneissic rock terrain indicates significant recharge from higher elevation. Log pCO2 and ionic strength of the samples were also calculated to identify the geochemical process. Majority of the collected samples have sodium-rich water and weak ionic strength, which indicate foothill recharge and low residence time. Silicate and carbonate weathering have an equal interplay along the foothills with a relatively large fraction of Mg from the MF. The spatial diagrams of three factors show that the southern part of the study area is dominated by both weathering and anthropogenic processes, whereas the northern part is dominated by both leaching and weathering processes. Thus, the dominant weathering process represented by the second factor indicates the large recharge process along the foothills.  相似文献   

6.
Recent studies have shown that mercury (Hg) levels in many fish from remote lakes exceed the recommended guidelines for human consumption. Most of these studies conclude that the source of contamination lies in the atmosphere. Kejimkujik National Park (KNP), Nova Scotia, Canada, is considered to be a pristine ecosystem in which fish and loon Hg levels are anomalously high. Studies in the park have shown that atmospheric Hg concentrations may not be high enough to account for the Hg levels in the biota, indicating that the park may be an unusual system in terms of Hg distribution and migration. In an attempt to summarise and synthesise the numerous Hg data sets which have been produced in the park over the last 5-10 years, a geographic information systems (GIS) approach was used to create a common database using the watersheds in the park as the common parameter. By using a GIS database, new relationships and correlations are established and the spatial distribution of Hg levels is more readily evaluated and quantified. The results indicate that geological sources of Hg, arising from biotite-rich granite rocks, may play a larger role in the contamination of the park than previously thought.  相似文献   

7.
Mapped geological units can be regarded as proxies standing for a complex series of subsoil geochemical and physical properties including the assigned radon activity concentration in soil gas, which is taken as best estimator of the regional geogenic radon potential. Areal distribution of measuring sites for soil gas in Germany is adapted to spatial variation of geology. A grid-based and distance-weighted interpolation procedure is applied, following geologically defined neighbourhood relations of measuring sites and accounting for isolated outcrops of known geology but without measurements. To investigate the statistical relationship between indoor radon, house type and building ground specifications, measurements of the indoor radon concentration have been carried out in more than 10,000 dwellings in different regions of Germany. Multiple regression analyses of variance reveal that besides region-specific geological properties and building characteristics, various house type and living style variables significantly contribute to the explained variance for ground floor radon concentrations. These parameters are also dominant in controlling the radon transfer relation from soil gas to indoor air. Risk prediction maps for radon in houses indicating the probability to exceed certain indoor threshold values can be useful especially for regions with no or only a few measurements of indoor radon.  相似文献   

8.
为研究小秦岭南部小河岩体周边的含矿性,选择1∶50000水系沉积物8-乙3 Ag、W、Bi异常、中元古界小河岩体与中元古界官道口群接触带F1断裂开展了地质、物探及化探综合勘查.土壤测量发现了张吉口1-甲3 Ag、Au、Sb、Zn、Pb、As、Co、Cu、Mo、Bi综合异常,各元素套合较好,异常面积大、强度高;其中Ag异常最高值大于20 ppm,具有清晰的三级浓度分带和较强的浓集中心.激电测深预测F1断裂向深部延伸,地表槽探工程在F1构造蚀变带1-甲3异常区发现银矿体,钻孔资料证实深部存在厚大的银铅锌矿体.该矿床的发现实现了小河岩体南缘的找矿突破,也是化探、物探、地质等综合勘查方法应用的典型实例.  相似文献   

9.
Fresh water availability has recently become a serious concern in the Italian Apennines, as various activities rely on a predictable supply. Along the ridge between Scansano and Magliano in Toscana, in southern Tuscany, the situation is further complicated by contamination of the nearby alluvial aquifers. Aquifers locally consist of thin fractured reservoirs, generally within low-permeability formations, and it can be difficult to plan the exploitation of resources based on conventional techniques. An integrated study based on geological data investigated the link between tectonics and groundwater circulation, to better define the hydrological model. After the regional identification of fault and fracture patterns, a major structure was investigated in detail to accurately map its spatial position and to understand the geometry and properties of the associated aquifer and assess its exploitation potential. The subsurface around the fault zone was clearly imaged using ground probing radar, two-dimensional and three-dimensional resistivity tomography, and three-dimensional shallow seismic surveys. The vertical and horizontal contacts between the different geological units of the Ligurian and Tuscan series were resolved with a high degree of spatial accuracy. Three-dimensional high-resolution geophysical imaging proved to be a very effective means of characterising small-scale fractured reservoirs.  相似文献   

10.
Natural Hazards - This paper presents an investigation of the collapse of a 325-year-old multi-tiered heritage temple during the 2015 Gorkha earthquake in Kathmandu, Nepal. The research comprises a...  相似文献   

11.
A combined hydrochemical and stable isotope approach was used to investigate the origin of nitrate in the shallow unconfined groundwater of Kharkiv city, Eastern Ukraine. The contamination was investigated in the context of land use within the catchment area. The observed enrichment of sulfate, chloride and nitrate suggests significant groundwater contamination in the shallow urban aquifer, which is widely used as drinking water source for the urban population. Characteristic nitrate/chloride ratios as well as stable isotope ratios (N and O) of nitrate in the most contaminated springs confirmed that septic waste from leaky sewer systems was the main source of nitrate contamination in the groundwater. Nitrate contamination is linked to the type of land use and sewage treatment regime in the catchment area. It is also modulated by the regional hydrogeology, which determines the susceptibility of a given aquifer toward groundwater pollution. A more quantitative assessment of nitrate sources based on the nitrate isotope analysis alone is rather difficult. However, our study confirms that the combination of hydrochemical tracers, robust land-use analysis and nitrate stable isotope measurements represents a valuable approach to identify the origin of the nitrate contamination.  相似文献   

12.
Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns.  相似文献   

13.
Landslide hazard zonation in and around Thodupuzha — Idukki — Munnar road (TM Road) in Idukki district, Kerala, India has been carried out using geospatial techniques. Being a landslide prone area a hazard zonation is attempted using terrain fragility concept. Based on the traverse mapping, slide prone areas and palaeo-slides along the TM road were identified. Precambrian crystallines consisting of hornblende-biotite gneiss, biotite gneiss, granite gneiss, charnockite and pink granites form the main rock types. Factor maps of various terrain parameters such as slope, landuse, relative relief, drainage pattern, drainage density, landform, and surface material were prepared and their integration carried out on a GIS platform. Based on geospatial analyses, the study area (438 sq. km) is ranked into four classes of relative fragility viz. highly fragile (8.25 sq. km), fragile (41.25 sq. km), moderately fragile (232 sq. km) and stable (156.5 sq. km). The first two categories together form 11% of the area, the most hazardous regions, which require immediate mitigation measures for slope protection. The study forms a basis for evolving a strategy for the development of the entire TM road of Idukki district. The fragility concept used in this study is a fast and cost effective model for identifying landslide prone areas, especially in the Western Ghats.  相似文献   

14.
The concurrent use of karst aquifers as drinking water resources and receptors of combined sewer overflow lacking appropriate pre-treatment may cause conflicts between drinking water supply and storm water management. A storm water tank (SWT) for combined wastewater is identified as the source of sporadic contamination of a karst spring (Gallusquelle, “Schwäbische Alb”, SW Germany) used for public water supply. Spring water quality was examined by routine and event sampling and by evaluating physicochemical and microbiological parameters. The total number of microbial colonies growing at 20°C and the number of Escherichia coli colonies rose to values up to four orders of magnitude higher than background, 2–5 days after overflow of the SWT. High concentrations of chloride, sodium, and total organic carbon (TOC) and high values of turbidity coincide with this increase. However, high bacterial contamination is also observed while turbidity and TOC are low. Several wastewater-related organic micro-pollutants such as chlorinated and non-chlorinated organophosphates were detected in the SWT and, depending on their Kow values and their biodegradability, in lower concentrations at the spring.  相似文献   

15.

研究地质灾害易发性的评价方法,对地质灾害防治有着非常重要的现实意义。本文以青海省西宁市湟中县为研究区域,选取高程、坡度、坡向、地形起伏度、距河流距离、距断层距离和工程岩组7个评价因子,利用确定性系数与逻辑回归模型相结合的方法计算出每个单元格地质灾害发生的概率。同时利用ROC曲线和AUC值对模型分类精度进行验证,最终得到AUC值为0.863,说明该方法对湟中县地质灾害易发性评价具有较强的适用性和客观性。本文研究表明,高层、坡向、距河流距离和工程岩组4个因子对研究区地质灾害的影响最为显著。从地质灾害的空间分布来看,该方法计算结果表明极高、高易发区主要分布在湟水河及其干流两侧低山丘陵地区,低易发区主要分布在研究区北部和西南地区。从评价因子的角度分析,高易发区主要分布在离河流500 m的松散冲洪积岩层和软弱层状碎屑岩岩层上。以上研究结果表明,基于CF-Logistic回归模型对研究区地质灾害易发性评价有较强的参考价值,能为研究区地质灾害的防治工作提供理论依据及方法。

  相似文献   

16.
 A field study from October 1989 through July 1992, conducted on a 4.1-km2 area in south-central Wisconsin, USA, examined the distributions of atrazine and its chlorinated metabolites in groundwater and related those distributions to the groundwater flow system. MODFLOW and PATH3D were used to assess bedrock-aquifer susceptibility to contamination. Estimated travel time from water table to bedrock surface ranges from <0.25 to >512 yr. Spatial distribution of the estimates demonstrates that increased travel time to bedrock can result from the presence of shallow surface-water bodies, greater depths to bedrock, and smaller hydraulic conductivities. Estimated travel times to local domestic wells are inversely related to atrazine and desethylated atrazine concentrations observed in water from those wells. The potential impact of long-term atrazine use on aquifer water quality was investigated using MT3D in two best-case scenarios. Uncertainties associated with predicted atrazine concentrations at various depths and times were estimated. For shallow groundwater, widespread violations of Wisconsin's current preventive action limit were predicted, but with large uncertainty stemming from uncertain estimates of input parameter values. The simulations indicate, however, that moderate inputs at the water table are very unlikely to produce violations of Wisconsin's standards deeper in the aquifer. Received, October 1997 Revised, July 1998 Accepted, July 1998  相似文献   

17.
The Vilarelho da Raia-Chaves region, located in northern Portugal adjacent to the Spanish border, is characterized by both hot and cold CO2-rich mineral waters issuing from springs and drilled wells. The present paper updates the conceptual circulation model of the Vilarelho da Raia cold CO2-rich mineral waters. Vilarelho da Raia mineral waters, dominated by Na and HCO3 ions, have formed mainly by interaction with CO2 of deep-seated mantle origin. The δ 18O, δ 2H and 3H values indicate that these waters are the result of meteoric waters infiltrating into Larouco Mountain, NW of Vilarelho da Raia, circulating at shallow depths in granitic rocks and moving into Vilarelho da Raia area. The conceptual geochemical and geophysical circulation model indicates that the hot and cold CO2-rich mineral waters of Chaves (76 °C) and Vilarelho da Raia (17 °C) should be considered manifestations of similar but not the same geohydrological systems. Electronic Publication  相似文献   

18.
Coal mine fire is a serious problem in Jharia coal field, India. The coal mine fire can be detected with different techniques such as borehole temperature measurement, thermo-compositional analysis, remote sensing techniques, thermo-graphic measurement and geophysical methods. In this study, various geophysical methods were used to detect the surface and subsurface coal mine fires. Geophysical techniques used in the present study are apparent resistivity, self-potential (SP), magnetic method and thermography. Geophysical anomalies such as low SP value of \(-60\hbox { mV}\), high negative magnetic response and low apparent resistivity value helped us to detect and delineate the fire and non-fire areas laterally as well as depthwise. Furthermore, the thermography survey was carried out in the coal field using thermal imaging camera in order to substantiate the geophysical methods. This integrated approach was found to be more advantageous for the detection and delineation of surface and subsurface fire with respect to use of any specific techniques. Moreover, the level of threat towards the locality, national railway line was also assessed unambiguously using the above techniques. Hence, proper planning and implementation towards the mitigation of hazard can be achieved on the basis of the reported results.  相似文献   

19.
熊德清  崔笑烽 《地质通报》2021,40(11):1967-1980
喜马拉雅山脉是欧亚板块和印度洋板块挤压碰撞形成的巨大山脉,历史上曾多次发生7级以上地震,引发大量次生地质灾害。收集以往资料,结合野外调查和遥感解译,利用喜马拉雅山脉地震带(日喀则段)地貌图和GIS的数据管理与空间分析功能,对日喀则地区主要地质灾害进行分析,绘制地质灾害分布图和密度等值线图。结果表明:①研究区主要地质灾害集中分布,共5个集中区;②主要地质灾害发育于侵蚀剥蚀大起伏高山和冰缘作用的大起伏极高山地貌,河谷平原及冰碛丘陵次之,其他地貌特征发育灾害较少;③滑坡、崩塌灾害易发于海拔3500 m以下阳坡(90°~270°),在南东向敏感性最强,滑坡、崩塌分别易发于斜坡坡度15°~45°和35°~90°;④泥石流灾害多发生于流域面积小于5 km2,相对高差大于100 m的沟谷中,纵坡大于212.56‰的"V"形谷中尤为发育。  相似文献   

20.
Physico-chemical parameters, major ion chemistry and isotope composition of surface and groundwaters were determined in forested coastal catchments and adjacent coastal plains. Results showed obvious characterisation related to physical and hydrological setting, and highly variable spatial differences reflecting the complexities of these areas. All these coastal waters are dominated by Na–Cl and fall on a common dilution line; hydrochemical grouping is largely due to anionic differences (Cl, SO4 and HCO3), although Na and Mg ratios also vary. Six major hydrochemical facies were determined. For groundwaters, compositional differences are largely related to aquifer material and level of confinement; for coastal groundwaters important are tidal effects and proximity to the shoreline. Differentiation for surface waters is mainly by drainage morphology, flow regime plus proximity to the coast. Connectivity between water bodies is reflected by minor base flow to catchment streams, including with flood plain wetlands, but mostly occurs in low-lying zones where there is mixing of fresh and saline water within surface water and subterranean estuaries, or by seawater intrusion enhanced by overuse. Oxygen and hydrogen isotopic data for confined and semi-confined groundwaters along the coast indicates local recharge; fresh surface waters in the elevated catchments are shown to be sourced further inland plus have experienced evaporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号