首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the seismicity rate changes that can represent an earthquake precursor were investigated along the Sagaing Fault Zone (SFZ), Central Myanmar, using the Z value technique. After statistical improvement of the existing seismicity data (the instrumental earthquake records) by removal of the foreshocks and aftershocks and man-made seismicity changes and standardization of the reported magnitude scales, 3574 earthquake events with a M w ≥ 4.2 reported during 1977–2015 were found to directly represent the seismotectonic activities of the SFZ. To find the characteristic parameters specifically suitable for the SFZ, seven known events of M w ≥ 6.0 earthquakes were recognized and used for retrospective tests. As a result, utilizing the conditions of 25 fixed earthquake events considered (N) and a 2-year time window (T w), a significantly high Z value was found to precede most of the M w ≥ 6.0 earthquakes. Therefore, to evaluate the prospective areas of upcoming earthquakes, these conditions (N = 25 and T w = 2) were applied with the most up-to-date seismicity data of 2010–2015. The results illustrate that the vicinity of Myitkyina and Naypyidaw (Z = 4.2–5.1) cities might be subject to strong or major earthquakes in the future.  相似文献   

2.
Earthquakes in Kenya are common along the Kenya Rift Valley because of the slow divergent movement of the rift and hydrothermal processes in the geothermal fields. This implies slow but continuous radiation of seismic energy, which relieves stress in the subsurface rocks. On the contrary, the NW-SE trending rift/fault zones such as the Aswa-Nyangia fault zone and the Muglad-Anza-Lamu rift zone are the likely sites of major earthquakes in Kenya and the East African region. These rift/fault zones have been the sites of a number of strong earthquakes in the past such as the M w = 7.2 southern Sudan earthquake of 20 May 1990 and aftershocks of M w = 6.5 and 7.1 on 24 May 1990, the 1937 M s = 6.1 earthquake north of Lake Turkana close to the Kenya-Ethiopian border, and the 1913 M s = 6.0 Turkana earthquake, among others. Source parameters of the 20 May 1990 southern Sudan earthquake show that this earthquake consists of only one event on a fault having strike, dip, and rake of 315°, 84°, and ?3°. The fault plane is characterized by a left-lateral strike slip fault mechanism. The focal depth for this earthquake is 12.1 km, seismic moment M o = 7.65 × 1019 Nm, and moment magnitude, M w = 7.19 (?7.2). The fault rupture started 15 s earlier and lasted for 17 s along a fault plane having dimensions of ?60 km × 40 km. The average fault dislocation is 1.1 m, and the stress drop, , is 1.63 MPa. The distribution of historical earthquakes (M w ≥ 5) from southern Sudan through central Kenya generally shows a NW-SE alignment of epicenters. On a local scale in Kenya, the NW–SE alignment of epicenters is characterized by earthquakes of local magnitude M l ≤ 4.0, except the 1928 Subukia earthquake (M s = 6.9) in central Kenya. This NW–SE alignment of epicenters is consistent with the trend of the Aswa-Nyangia Fault Zone, from southern Sudan through central Kenya and further southwards into the Indian Ocean. We therefore conclude that the NW–SE trending rift/fault zones are sites of strong earthquakes likely to pose the greatest earthquake hazard in Kenya and the East African region in general.  相似文献   

3.
This report summarizes the seismicity in Switzerland and surrounding regions in the years 2015 and 2016. In 2015, the Swiss Seismological Service detected and located 735 earthquakes in the region under consideration. With a total of 20 earthquakes of magnitude ML ≥ 2.5, the seismic activity of potentially felt events in 2015 was close to the average of 23 earthquakes over the previous 40 years. Seismic activity was above average in 2016 with 872 located earthquakes of which 31 events had ML ≥ 2.5. The strongest event in the analyzed period was the ML 4.1 Salgesch earthquake, which occurred northeast of Sierre (VS) in October 2016. The event was felt in large parts of Switzerland and had a maximum intensity of V. Derived focal mechanisms and relative hypocenter relocations of aftershocks image a SSE dipping reverse fault, which likely also hosted an ML 3.9 earthquake in 2003. Another remarkable earthquake sequence in the Valais occurred close to Sion with four felt events (ML 2.7–3.2) in 2015/16. We associate this sequence with a system of WNW-ESE striking fault segments north of the Rhône valley. Similarities with a sequence in 2011, which was located about 10 km to the NE, suggest the existence of an en-echelon system of basement faults accommodating dextral slip along the Rhône-Simplon line in this area. Another exceptional earthquake sequence occurred close to Singen (Germany) in November 2016. Relocated hypocenters and focal mechanisms image a SW dipping transtensional fault segment, which is likely associated with a branch of the Hegau-Bodensee Graben. On the western boundary of this graben, micro-earthquakes close to Schlattingen (TG) in 2015/16 are possibly related to a NE dipping branch of the Neuhausen Fault. Other cases of earthquakes felt by the public during 2015/16 include earthquakes in the region of Biel, Vallorcine, Solothurn, and Savognin.  相似文献   

4.
The spatio-temporal variation in seismicity in western Turkey since the late 1970s is investigated through a rate/state model, which considers the stressing history to forecast the reference seismicity rate evolution. The basic catalog was divided according to specific criteria into four subsets, which correspond to areas exhibiting almost identical seismotectonic features. Completeness magnitude and reference seismicity rates are individually calculated for each subset. The forecasting periods are selected to be the inter-seismic time intervals between successive strong (M ≥ 5.8) earthquakes. The Coulomb stress changes associated with their coseismic slip are considered, along with the constant stressing rate to alter the rates of earthquake production. These rates are expressed by a probability density function and smoothed over the study area with different degrees of smoothing. The influence of the rate/state parameters in the model efficiency is explored by evaluating the Pearson linear correlation coefficient between simulated and observed earthquake occurrence rates along with its 95 % confidence limits. Application of different parameter values is attempted for the sensitivity of the calculated seismicity rates and their fit to the real data to be tested. Despite the ambiguities and the difficulties involved in the experimental parameter value determination, the results demonstrate that the present formulation and the available datasets are sufficient enough to contribute to seismic hazard assessment starting from a point such far back in time.  相似文献   

5.
The goal of this study was to determine whether principal component analysis (PCA) can be used to process GPS ionospheric total electron content (TEC) data on a monthly basis to identify early earthquake-associated TEC anomalies. PCA is applied to GPS (mean value of a month) ionospheric TEC records collected from the Japan GEONET system to detect TEC anomalies associated with 10 earthquakes in Japan (M?≥?6.0) from 2006 to 2007. According to the results, PCA was able to discriminate clear TEC anomalies in the months when all 10 earthquakes occurred. After reviewing the months when no M?≥?6.0 earthquake occurred but the geomagnetic storm activity was present, it is possible that the maximal principal eigenvalues PCA returned for these 10 earthquakes indicate earthquake-associated TEC anomalies. Previously, PCA has been used to discriminate earthquake-associated TEC anomalies recognized by other researchers who found that a statistical association between large earthquakes and TEC anomalies could be established in the 5 days before earthquake nucleation and in 24 h before earthquake; however, since PCA uses the characteristics of principal eigenvalues to determine earthquake-related TEC anomalies, it is possible to show that such anomalies existed earlier than this 5-day statistical window. In this paper, this is shown through the application of PCA to one-dimensional TEC data relating to the earthquake of 17 February 2007 (M?=?6.0). The analysis is applied to daily TEC and reveals a large principal eigenvalue (representative of an earthquake-associated anomaly) for 02 February, 15 days before the 17 February earthquake.  相似文献   

6.
Japan Marine Science and Technology Center installed a cabled geophysical observatory system off Kushiro, Hokkaido Island in July 1999. This observatory system comprises three ocean bottom seismographs (OBSs), two tsunami gauges, and a geophysical/geochemical monitoring system. 4 years and 2 months after the installation, a megathrust earthquake (the 2003 Tokachi-Oki earthquake, 26th September in Japan Standard Time (JST), MJMA 8.0) occurred along a plate boundary underneath a forearc basin where the system is located. The system recorded clear unsaturated seismograms just at 28.6 km from the epicenter. This paper demonstrates advantages brought by the cabled observatory to record the megathrust earthquake showing how earthquake detectability is improved dramatically combining permanent OBS and land-based observations around the region, and importance of the in situ monitoring on the seismogenic zone. In the present study, processing OBSs and land-based network together, and comparing magnitudes of common observed earthquakes with national authorized network, event detection level improved down to M 1.5, which is much lower than the previously designed as down to  2. Comparing detection level before and after installing OBSs, we found dramatic improvement of the earthquake detection level in the interesting region. Real-time continuous observations of microearthquakes since 1999 have brought us tremendous findings. First, a seismic quiescence started about 10 days before the 2003 Tokachi-Oki earthquake. Second, aftershock distribution is not uniform over the focal area and can be divided into several sub-regions, which might indicate an existence of several asperities. We think that the geophysical observations helped to understand the initiation process of the rupture of the 2003 Tokachi-Oki earthquake and that observations including seismological, geodynamic, hydrogeological, and the other multidisciplinary observations would provide a clue to future understanding of seismogenic processes at subduction zones.  相似文献   

7.
Since the year 1973, more than 54,000 M w ≥ 3.0 earthquakes have occurred around Taiwan, and their magnitude–frequency relationship was found following with the Gutenberg–Richter recurrence law with b value equal to 0.923 from the least-square calculation. However, using this b value with the McGuire–Arabasz algorithm results in some disagreement between observations and expectations in magnitude probability. This study introduces a simple approach to optimize the b value for better modeling of the magnitude probability, and its effectiveness is demonstrated in this paper. The result shows that the optimal b value can better model the observed magnitude distribution, compared with two customary methods. For example, given magnitude threshold = 5.0 and maximum magnitude = 8.0, the optimal b value of 0.835 is better than 0.923 from the least-square calculation and 0.913 from maximum likelihood estimation for simulating the earthquake’s magnitude probability distribution around Taiwan.  相似文献   

8.
We performed a probabilistic analysis of earthquake hazard input parameters, NW Turkey covers Gelibolu and Biga Peninsulas, and its vicinity based on four seismic sub-zones. The number of earthquakes with magnitude M ≥ 3.0 occurred in this region for the period between 1912 and 2007 is around 5130. Four seismic source sub-zones were defined with respect to seismotectonic framework, seismicity and fault geometry. The hazard perceptibility characterization was examined for each seismic source zone and for the whole region. The probabilities of earthquake recurrences were obtained by using Poisson statistical distribution models. In order to determine the source zones where strong and destructive earthquakes may occur, distribution maps for a, b and a/b values were calculated. The hazard scaling parameters (generally known as a and b values) in the computed magnitude–frequency relations vary in the intervals 4.28–6.58 and 0.59–1.13, respectively, with a RMS error percentage below 10 %. The lowest b value is computed for sub-zone three indicating the predominance of large earthquakes mostly at Gelibolu (Gallipoli) and north of Biga Peninsula (southern Marmara region), and the highest b value is computed for sub-zone two Edremit Bay (SW Marmara region). According to the analysis of each seismic sub-zone, the greatest risk of earthquake occurrence is determined for the triangle of Gelibolu–Tekirda? western part of Marmara Sea. Earthquake occurrence of the largest magnitude with 7.3 within a 100-year period was determined to be 46 % according to the Poisson distribution, and the estimated recurrence period of years for this region is 50 ± 12. The seismic hazard is pronounced high in the region extending in a NW–SE direction, north of Edremit Bay, west of Saros Bay and Yenice Gönen (southern Marmara region) in the south. High b values are generally calculated at depths of 5–20 km that can be expressed as low seismic energy release and evaluated as the seismogenic zone.  相似文献   

9.
Satellite thermal infrared images contain valuable earthquake precursor information. Past studies concluded that such information appeared only a few days or dozens of days before an earthquake would occur. In our study, though, we observed that the time intervals between the thermal infrared precursor and an earthquake??s occurrence can be up to 10?years. An infrared image can also synchronously indicate the locations of additional future earthquakes with different epicenters within a region. The shape, area, intensity, and movement of thermal infrared anomaly areas are a combination of all the future strong earthquakes within a region. These distant future earthquakes are generally located near the edges, endpoints, or corners of the main structure, fine structures or periphery structures of a thermal infrared anomaly area and play a role in confining the anomaly area. There have not been any exceptions among the strong earthquakes we analyzed, which have included the 2011 Japan M w 9 event, the 2010 Yushu M S 7.1 event, the 2008 Wenchuan M S 8 event, and many other strong events following the 2004 Sumatra M S 9 event. Surprisingly, some of the earthquakes can outline an area of elevated temperature observed many months ago. If we can roughly locate these potential epicenters through the analysis of thermal infrared images and combining the analysis with other information, and then dynamically monitor them, it may be easier to observe the precursor of an earthquake and predict its occurrence.  相似文献   

10.
Seismic hazard analysis of the northwest Himalayan belt was carried out by using extreme value theory (EVT). The rate of seismicity (a value) and recurrence intervals with the given earthquake magnitude (b value) was calculated from the observed data using Gutenberg–Richter Law. The statistical evaluation of 12,125 events from 1902 to 2017 shows the increasing trend in their inter-arrival times. The frequency–magnitude relation exhibits a linear downslope trend with negative slope of 0.8277 and positive intercept of 4.6977. The empirical results showed that the annual risk probability of high magnitude earthquake M?≥?7.7 in 50 years is 88% with recurrence period of 47 years, probability of M?≤?7.5 in 50 years is 97% with recurrence period of 27 years, and probability of M?≤?6.5 in 50 years is 100% with recurrence period of 4 years. Kashmir valley, located in the NW Himalaya, encompasses a peculiar tectonic and structural setup. The patterns of the present and historical seismicity records of the valley suggest a long-term strain accumulation along NNW and SSE extensions with the decline in the seismic gap, posing a potential threat of earthquakes in the future. The Kashmir valley is characterized by the typical lithological, tectono-geomorphic, geotechnical, hydrogeological and socioeconomic settings that augment the earthquake vulnerability associated with the seismicity of the region. The cumulative impact of the various influencing parameters therefore exacerbates the seismic hazard risk of the valley to future earthquake events.  相似文献   

11.
The earthquake hazard parameters and earthquake occurrence probabilities are computed for the different regions of the North Anatolia Fault Zone (NAFZ) using Bayesian method. A homogenous earthquake catalog for M S magnitude which is equal or larger than 4.0 is used for a time period between 1900 and 2015. Only two historical earthquakes (1766, M S = 7. 3 and 1897, M S = 7. 0) are included in Region 2 (Marmara Region) where a large earthquake is expected in the near future since no large earthquake has been observed for the instrumental period. In order to evaluate earthquake hazard parameters for next 5, 10, 20, 50, 100 years, M max (maximum regional magnitude), β value, λ (seismic activity or density) are computed for the different regions of NAFZ. The computed M max values are changed between 7.11 and 7.89. While the highest magnitude value is calculated in the Region 9 related to Tokat-Erzincan, the lowest value in the Region 10 including the eastern of Erzincan. The “quantiles” of “apparent” and “true” magnitudes of future time intervals of 5, 10, 20, 50, and 100 years are calculated for confidence limits of probability levels of 50, 70 and 90 % of the 10 different seismic source regions. The region between Tokat and Erzincan has earthquake hazard level according to the determined parameters. In this region the expected maximum earthquake size is 7.8 with 90 % occurrence probability in next 100 years. While the regional M max value of Marmara Region is computed as 7.61, expected maximum earthquake size is 7.37 with 90 % occurrence probability in next 100 years.  相似文献   

12.
Turkey is one of several countries frequently facing significant earthquakes because of its geological and tectonic position on earth. Especially, graben systems of Western Turkey occur as a result of seismically quite active tensional tectonics. The prediction of earthquakes has been one of the most important subjects concerning scientists for a long time. Although different methods have already been developed for this task, there is currently no reliable technique for finding the exact time and location of an earthquake epicenter. Recently artificial intelligence (AI) methods have been used for earthquake studies in addition to their successful application in a broad spectrum of data intensive applications from stock market prediction to process control. In this study, earthquake data from one part of Western Turkey (37–39.30° N latitude and 26°–29.30° E longitude) were obtained from 1975 to 2009 with a magnitude greater than M ≥ 3. To test the performance of AI in time series, the monthly earthquake frequencies of Western Turkey were calculated using catalog data from the region and then the obtained data set was evaluated with two neural networks namely as the multilayer perceptron neural networks (MLPNNs) and radial basis function neural networks (RBFNNs) and adaptive neuro-fuzzy inference system (ANFIS). The results show that for monthly earthquake frequency data prediction, the proposed RBFNN provides higher correlation coefficients with real data and smaller error values.  相似文献   

13.
Recently, new theories on underground geophysical and geochemical interactions which had been reported to occur during the preparation stages of earthquakes and the remotely measurable variations have been put to test and some warning factors were suggested as earthquake precursors. Data vendors are providing daily basis information from the earth's surface by combining remote sensing data and in situ observations. In this paper, we analyze atmospheric, oceanic, and surface changes in the ocean, coast, and land lying near the epicenters of two recent major earthquakes. The changes are studied in terms of the regional fault locations which have been reported by the U.S. Geological Survey as the shake triggering geological structures. Our detailed analyses showed anomalous increases of surface latent heat flux (SLHF) for both the earthquakes. Meaningfully limited to the geographical extents of the regional active faults, the SLHF variation patterns suggest pre-seismic activity 2–3 weeks before the main events. The agreement of these variations with abnormalities in other climatic and surface factors like relative humidity and temperature represents an unusual situation during the same period as well. Spatiotemporal variations of chlorophyll-a was also studied as another earthquake indicator. Abnormal rises in these factors are possibly caused by the formation of micro-cracks, heat production, evaporation, ionization, and upwelling of nutrient-rich water produced by pre-seismic activity prior to the main events.  相似文献   

14.
Seismic hazard assessment of slow active fault zones is challenging as usually only a few decades of sparse instrumental seismic monitoring is available to characterize seismic activity. Tectonic features linked to the observed seismicity can be mapped by seismic imaging techniques and/or geomorphological and structural evidences. In this study, we investigate a seismic lineament located in the Swiss Alpine foreland, which was discussed in previous work as being related to crustal structures carrying in size the potential of a magnitude M 6 earthquake. New, low-magnitude (?2.0 ≤ ML ≤ 2.5) earthquake data are used to image the spatial and temporal distribution of seismogenic features in the target area. Quantitative and qualitative analyses are applied to the waveform dataset to better constrain earthquakes distribution and source processes. Potential tectonic features responsible for the observed seismicity are modelled based on new reinterpretations of oil industry seismic profiles and recent field data in the study area. The earthquake and tectonic datasets are then integrated in a 3D model. Spatially, the seismicity correlates over 10–15 km with a N–S oriented sub-vertical fault zone imaged in seismic profiles in the Mesozoic cover units above a major decollement on top of the mechanically more rigid basement and seen in outcrops of Tertiary series east of the city of Fribourg. Observed earthquakes cluster at shallow depth (<4 km) in the sedimentary cover. Given the spatial extend of the observed seismicity, we infer the potential of a moderate size earthquake to be generated on the lineament. However, since the existence of along strike structures in the basement cannot be excluded, a maximum M 6 earthquake cannot be ruled out. Thus, the Fribourg Lineament constitutes a non-negligible source of seismic hazard in the Swiss Alpine foreland.  相似文献   

15.
The Surat City, which is the second most populated city in the state of Gujarat in western India, warrants site-specific seismic hazard assessment due to its rapid urbanization and proximity to major seismogenic zones. This study reports results of microtremor investigations at 72 single stations and 4 arrays in an area of 325 km2 spanning the city. The resonant frequencies, associated peak amplification values and liquefaction vulnerability indices were deduced from the horizontal to vertical spectral ratios. Ground amplification (AHVSR) in the range of 3.0–5.0 was observed in the 2.0–4.0-Hz frequency band at most of the sites. A secondary AHVSR between 2.0 and 3.0 is also observed in the 6.0–7.0-Hz frequency band at a few sites. Locales that are most susceptible to liquefaction are identified based on their vulnerability index (K g) exceeding the value of 10. The shear wave velocities (V s) ≥ 500 m/s inferred from array measurements occur at 38 m depth in the western part and ~16 m depth in the eastern part of city. The response spectra estimated from strong motion data recorded at an accelerograph site in Surat from three earthquakes of M w ≥ 3.2 that occurred in Kachchh, Saurashtra and Narmada regions are in accordance with our inferences of characteristic site frequencies and amplification. Our results, in agreement with the damage scenario during the 2001 Bhuj earthquake, provide valuable inputs for site-specific seismic hazard evaluation of the Surat City.  相似文献   

16.
The seismic hazard for the Lake Van basin is computed using a probabilistic approach, along with the earthquake data from 1907 to present. The spatial distribution of seismic events between the longitudes of 41–45° and the latitudes of 37.5–40°, which encompasses the region, indicates distinct seismic zones. The positions of these zones are well aligned with the known tectonic features such as the Tutak-Çald?ran fault zone, the Özalp fault zone, the Geva? fault zone, the Bitlis fault zone and Karl?ova junction where the North Anatolian fault zone and East Anatolian fault zone meet. These faults are known to have generated major earthquakes which strongly affected cities and towns such as Van, Mu?, Bitlis, Özalp, Muradiye, Çald?ran, Erci?, Adilcevaz, Ahlat, Tatvan, Geva? and Gürp?nar. The recurrence intervals of M s ≥ 4 earthquakes were evaluated in order to obtain the parameters of the Gutenberg–Richter measurements for seismic zones. More importantly, iso-acceleration maps of the basin were produced with a grid interval of 0.05 degrees. These maps are developed for 100- and 475- year return periods, utilizing the domestic attenuation relationships. A computer program called Sistehan II was utilized to generate these maps.  相似文献   

17.
The goal of this research is to examine one-dimensional total electron content (TEC) data using principal component analysis (PCA) to search for total electron content (TEC) anomalies associated with large earthquakes in 24 h prior to nucleation. The characteristics of principal eigenvalues generated for TEC prior to 24 earthquakes of magnitude scale M?≥?5.0 and 6 lesser earthquakes of magnitude scale M?<?5 that occurred in Taiwan from 01 January 2000 to 31 December 2001 are examined. In an earlier paper, I was able to confirm the statistical findings of Liu et al. (J Geophys Res 111, 2006) that sparse earthquake-associated TEC anomalies existed in 5 days prior to the 12 large earthquakes they examined (Lin, Terr Atm Ocean Sci, 2010). In this paper, I wish to examine the subtlety of principal component analysis in detecting earthquake-associated TEC anomalies by examining if such precursors can be detected in 24 h prior to large earthquakes. Of the earthquakes examined, TEC anomalies given by clear extreme principal eigenvalues were evident within 24 h of nucleation for 21 of the 24 earthquakes of M?≥?5.0. After making allowance for the general status of background TEC, it is clear that these extreme principal eigenvalues are representative of earthquake-associated anomalies. For the smaller earthquakes (M?<?5), it was not possible to differentiate earthquake-associated anomalies from background effects on TEC status. These new findings confirm the validity of PCA in searching for earthquake-associated TEC anomalies and show that it is subtle enough to detect TEC anomalies within 24 h leading to a large earthquake. If this approach continues to prove successful, it could theoretically be used in real-time prediction of large earthquakes through early detection of earthquake-associated TEC anomalies.  相似文献   

18.
Linking earthquakes of moderate size to known tectonic sources is a challenge for seismic hazard studies in northwestern Europe because of overall low strain rates. Here we present a combined study of macroseismic information, tectonic observations, and seismic waveform modelling to document the largest instrumentally known event in the French northern Alps, the April 29, 1905, Chamonix earthquake. The moment magnitude of this event is estimated at Mw 5.3 ± 0.3 from records in Göttingen (Germany) and Uppsala (Sweden). The event of April 29 was followed by several afterschocks and in particular a second broadly felt earthquake on August 13, 1905. Macroseismic investigations allow us to favour a location of the epicentres 5–10 km N–NE of Chamonix. Tectonic analysis shows that potentially one amongst several faults might have been activated in 1905. Among them the right lateral strike-slip fault responsible for the recent 2005 Mw = 4.4 Vallorcine earthquake and a quasi-normal fault northeast of the Aiguilles Rouges massif are the most likely candidates. Discussion of tectonic, macroseismic, and instrumental data favour the normal fault hypothesis for the 1905 Chamonix earthquake sequence.  相似文献   

19.
We refine the 1-D velocity model of the Central India Tectonic Zone (CITZ) using well-selected arrival times of P- and S-phases of 354 local earthquakes of magnitude (Mw) between 2.0 and 5.8, recorded by national seismic network from May 1997 to March 2016. Further, we have determined the source mechanisms of 26 selected local events using moment tensor inversion to characterize the dynamics beneath the CITZ. The best-fit simulation between observed and synthetic waveforms obtained the nodal and auxiliary planes of the each faults associated with the earthquake moment magnitude (Mw) for each event. Depth of the fault plane along the CITZ varies from 5 to 38 km. From this study, we found that the western part along the CITZ shows minimum focal depth and reaches maximum 38 kms at Jabalpur in the eastern part. This complex nature of earthquake dynamics occurrence along the CITZ. We propose that the curviplanar the CITZ dominated with sinistral curvature is subjected to compression along the longer ~E–W segments and transtension along shorter segments with ~NE–SW orientations. The occurrences of normal faulting, intrusion of mafic plutons and CLVD mechanisms for earthquakes are interpreted to be linked to the transtension zones and reverse mechanisms associated with the compressions along ~E–W segments.  相似文献   

20.
The seismic risks to which populations are exposed should be estimated reliably for mitigation and preparation of response to disastrous earthquakes. Three parameters need to be known: Population numbers, properties of the built environment, and the seismic hazard. If we focus on large cities, we can say that at least one of these is known satisfactorily, namely the population, but not the other two. In the developing world, the numbers of buildings in a city are known only approximately, their distribution into building types (resistance to shaking) has to be assumed, and the distribution of types throughout the city is unknown. Recent verification of the world seismic hazard map has shown that it is grossly misleading: Instrumental measurements of accelerations due to six earthquakes were about three times larger, on average, than the maximum likely accelerations shown on the map; the macroseismic intensities reported for the last 60 earthquakes with M ≥ 7.5 were all significantly larger than expected, based on the hazard map (by 2.3 intensity units for the 12 deadliest earthquakes); and calculations of losses of life based on the hazard map underestimate the losses sustained in the 12 recent earthquakes with more than 1,000 fatalities by two to three orders of magnitude. This means that the seismic risk in most of the approximately 1,000 large cities at risk in the developing world is unknown. To remedy this intolerable situation, models for the built environment in cities need to be constructed, using cost-effective analyses of satellite images, and worst case scenario estimates of the losses in case of the nearest maximum credible earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号