首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Gulf of Aqaba is considered seismically as one of the most active zones of the Dead Sea Transform region. The main shock of the 1995 Gulf of Aqaba earthquake sequence is considered as the largest shock in the (surface wave magnitude Ms?=?7.2) since the sixteenth century. The present study is a trial to detect the probabilistic seismic hazard analysis (PSHA) for Nuweiba site. Data used for this study was a combination of both historical and recent instrumental data. Results of the hazard assessment, expressed as in the worst case scenario, reveal that Nuweiba is exposed to the occurrence of a maximum credible earthquake of magnitude $ m_{{\max }} ~ = ~7.4 \pm 0.31 $ , at hypocentral distance of 15.6?±?10 km. For structure with the return period of 100 years, with a 90% probability of exceedance, the maximum expected earthquake magnitude (ML) is 5.9 in this lifetime. The possibility of the maximum peak ground acceleration at the Nuweiba site is 0.41 g. Results of the hazard assessment can be used as an input data to assess the seismic risk for site of interest.  相似文献   

2.
This article presents the results of deterministic and probabilistic seismic hazard analyses (DSHA and PSHA) of the city of Hamedan and its neighboring regions. This historical city is one of the developing cities located in the west of Iran. For this reason, the DSHA and PSHA approaches have been used for the assessment of seismic hazards and earthquake risk evaluation. To this purpose, analyses have been carried out considering the historic and instrumented earthquakes, geologic and seismotectonic parameters of the region covering a radius of 100?km, keeping Hamedan as the center. Therefore, in this research, we studied the main faults and fault zones in the study area and calculated the length and distance of faults from the center of Hamedan. In the next step, we measured the maximum credible earthquake (MCE) and peak ground acceleration (PGA) using both DSHA and PSHA approaches and utilized the various equations introduced by different researchers for this purpose. The results of DSHA approach show that the MCE-evaluated value is 7.2 Richter, which might be created by Nahavand fault activities in this region. The PGA value of 0.56?g will be obtained from Keshin fault. The results of PSHA approach show that the MCE-evaluated value is 7.6 Richter for a 0.64 probability in a 50-year period. The PGA value of 0.45?g will be obtained from Keshin fault. Seismic hazard parameters have been evaluated considering the available earthquake data using Gutenberg?CRichter relationship method. The ??a?? and ??b?? parameters were estimated 5.53 and 0.68, respectively.  相似文献   

3.
Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, \({\hbox {M}}_{\mathrm{w}} = 6.4\) (1993). Disaggregation of PSHA results for the PGA and spectral acceleration (\({\hbox {S}}_{\mathrm{a}}\)) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.  相似文献   

4.
Kijko  A.  Retief  S. J. P.  Graham  G. 《Natural Hazards》2002,26(2):175-201
In this part of our study the probabilistic seismic hazard analysis (PSHA) for Tulbagh was performed. The applied procedure is parametric and consists essentially of two steps. The first step is applicable to the area in the vicinity of Tulbagh and requires an estimation of the area-specific parameters, which, in this case, is the mean seismic activity rate, , the Gutenberg-Richter parameter, b, and the maximum regional magnitude, mmax. The second step is applicable to the Tulbagh site, and consists of parameters of distribution of amplitude of the selected ground motion parameter. The current application of the procedure provides an assessment of the PSHA in terms of peak ground acceleration (PGA) and spectral acceleration (SA). The procedure permits the combination of both historical and instrumental data. The historical part of the catalogue only contains the strongest events, whereas the complete part can be divided into several subcatalogues, each assumed complete above a specified threshold of magnitude. In the analysis, the uncertainty in the determination of the earthquake was taken into account by incorporation of the concept of `apparent magnitude'. The PSHA technique has been developed specifically for the estimation of seismic hazard at individual sites without the subjective judgement involved in the definition of seismic source zones, when the specific active faults have not been mapped or identified, and where the causes of seismicity are not well understood. The results of the hazard assessment are expressed as probabilities that specified values of PGA will be exceeded during the chosen time intervals, and similarly for the spectral accelerations. A worst case scenario sketches the possibility of a maximum PGA of 0.30g. The results of the hazard assessment can be used as input to a seismic risk assessment.  相似文献   

5.
Probabilistic seismic hazard maps for the sultanate of Oman   总被引:2,自引:0,他引:2  
This study presents the results of the first probabilistic seismic hazard assessment (PSHA) in the framework of logic tree for Oman. The earthquake catalogue was homogenized, declustered, and used to define seismotectonic source model that characterizes the seismicity of Oman. Two seismic source models were used in the current study; the first consists of 26 seismic source zones, while the second is expressing the alternative view that seismicity is uniform along the entire Makran and Zagros zones. The recurrence parameters for all the seismogenic zones were determined using the doubly bounded exponential distribution except the zones of Makran, which were modelled using the characteristic distribution. Maximum earthquakes were determined and the horizontal ground accelerations in terms of geometric mean were calculated using ground-motion prediction relationships developed based upon seismic data obtained from active tectonic environments similar to those surrounding Oman. The alternative seismotectonic source models, maximum magnitude, and ground-motion prediction relationships were weighted and used to account for the epistemic uncertainty. Hazard maps at rock sites were produced for 5?% damped spectral acceleration (SA) values at 0.1, 0.2, 0.3, 1.0 and 2.0?s spectral periods as well as peak ground acceleration (PGA) for return periods of 475 and 2,475?years. The highest hazard is found in Khasab City with maximum SA at 0.2?s spectral period reaching 243 and 397?cm/s2 for return periods 475 and 2,475 years, respectively. The sensitivity analysis reveals that the choice of seismic source model and the ground-motion prediction equation influences the results most.  相似文献   

6.
Gwadar City is located at the coastline of Pakistan. The city is currently in a phase of development, which is expected to become a future economic hub for Pakistan. This has led us to choose Gwadar for seismic hazard evaluation. Seismic hazard analysis for Gwadar is carried out using deterministic and probabilistic seismic hazard analysis techniques. The present study will help in sustainable development of a future large city and economic hub for Pakistan on ways of coping from a major threat of earthquake hazard. In deterministic seismic hazard analysis, line sources were identified close to Gwadar. Based on the analysis of maximum magnitude and closest distance (worse conditions), Makran subduction zone was identified out of all the line sources with earthquake potential of 8.2 at a distance of 30 km. This yielded a peak ground acceleration value of 0.38 g for Gwadar City. In second phase, probabilistic seismic hazard analysis technique with the area source modeling was adopted to acquire results at different return periods. For this purpose, seismic data were collected from the Pakistan Meteorological Department and International Seismological Center (2010) databases for development of a comprehensive data catalog. The a and b values were obtained using regression analysis for each source zone, and probabilistic analysis yielded the results of 0.34 g for a return period of 500 years. As per building codes of Pakistan, areas or cities with ground acceleration greater than 0.32 g are considered in seismic zone 4, and both deterministic and probabilistic hazard analysis place the city in seismic zone 4. These values correspond to rock site with shear wave velocity of 760 m/s.  相似文献   

7.
Probabilistic seismic hazard analysis (PSHA) along the route of an offshore pipeline for the transport of oil in the Bay of Bengal has been performed, in order to set up design parameters and identify possible geohazards. The complexity of geological and seismotectonic setting of the region where the pipeline is planned to be installed is the result of the interaction of the Indian, Eurasian and Burmese tectonic plates. In order to properly account for the intricate way by which these plates interact, a large area extending 450 km from the pipeline route has been considered for the compilation of a comprehensive earthquake catalogue, spanning the period 1663–2012 AD. Differently from earlier PSHA analyses conducted in the region based on assuming two-dimensional polygons as seismogenic provinces, this study adopted a seismotectonic source model which also includes for the first time a linear tectonic lineament representing the northward extension of the Sunda mega thrust, responsible for the large Sumatra–Andaman earthquake of 26 December 2004. Hazard computations have been performed over a grid of sites spaced 0.045° covering a rectangular area which contains the pipeline. Epistemic uncertainty in the hazard computations has been taken into account by a logic tree framework, incorporating different seismotectonic source models, maximum cut-off magnitude and ground-motion prediction equations. Horizontal median uniform hazard spectra and median uniform hazard spectra plus and minus one sigma on stiff ground have been calculated at the selected sites for different return periods. Peak ground acceleration with 10 % probability of exceedance in 50 years has been compared with values from previous hazard studies available for Bangladesh.  相似文献   

8.
The seismically active Northwest (NW) Himalaya falls within Seismic Zone IV and V of the hazard zonation map of India. The region has suffered several moderate (~25), large-to-great earthquakes (~4) since Assam earthquake of 1897. In view of the major advancement made in understanding the seismicity and seismotectonics of this region during the last two decades, an updated probabilistic seismic hazard map of NW Himalaya and its adjoining areas covering 28–34°N and 74–82°E is prepared. The northwest Himalaya and its adjoining area is divided into nineteen different seismogenic source zones; and two different region-specific attenuation relationships have been used for seismic hazard assessment. The peak ground acceleration (PGA) estimated for 10% probability of exceedance in 50 and 10 years at locations defined in the grid of 0.25 × 0.25°. The computed seismic hazard map reveals longitudinal variation in hazard level along the NW Himalayan arc. The high hazard potential zones are centred around Kashmir region (0.70 g/0.35 g), Kangra region (0.50 g/0.020 g), Kaurik-Spitti region (0.45 g/0.20 g), Garhwal region (0.50 g/0.20 g) and Darchula region (0.50 g/0.20 g) with intervening low hazard area of the order of 0.25 g/0.02 g for 10% probability in 50 and 10 years in each region respectively.  相似文献   

9.
Rigorous and objective testing of seismic hazard assessments against the real seismic activity must become the necessary precondition for any responsible seismic risk estimation. Because seismic hazard maps seek to predict the shaking that would actually occur, the reference hazard maps for the Italian seismic code, obtained by probabilistic seismic hazard assessment (PSHA), and the alternative ground shaking maps based on the neo-deterministic approach (NDSHA), are cross-compared and tested against the real seismicity for the territory of Italy. The comparison between predicted intensities and those reported for past earthquakes shows that models generally provide rather conservative estimates, except for PGA with 10 % probability of being exceeded in 50 years, which underestimates the largest earthquakes. In terms of efficiency in predicting ground shaking, measured accounting for the rate of underestimated events and for the territorial extent of areas characterized by high seismic hazard, the NDSHA maps appear to outscore the PSHA ones.  相似文献   

10.
This paper presents results of a site-specific probabilistic seismic hazard analysis for northern part of the Qeshm Island, one the most seismic prone areas of Iran. Seismotectonic and seismicity properties of seismic sources in the study area were characterized and used for evaluation of various strong ground motion parameters implementing the classical Cornell’s PSHA approach. The results show that peak rock accelerations for 475-year return period are 0.4 and 0.27 g, respectively, for 84th and 50th percentiles while being about 0.37 and 0.61 g for 2475-year return period. These values are slightly smaller than those read from national seismic zonation maps which can be attributed to the considered conservatism for development of such design maps. In order to incorporate local site conditions, a series of dynamic site response analyses based on the equivalent linear approach were also employed. The results indicate that the presence of soft subsurface deposits at the site significantly alters the fundamental characteristics of the response spectra. The obtained median (50th percentile) peak ground accelerations for 975-year return period range between 0.49 and 0.54 g at different locations in the study site showing minor amplifications relative to their corresponding bedrock acceleration of 0.48 g. Finally, the obtained site-specific spectrum was compared with the standard spectrum mandated by the design codes. In this regard, the agreement was found to be reasonable at period ranges shorter than about 0.5 s, while the differences were more obvious at longer periods. This reveals the need for implementation of site-specific design spectrum to avoid underestimation or overestimation of seismic forces for designing critically important structures especially when softer deposits are encountered.  相似文献   

11.
Indian peninsular shield, which was once considered to be seismically stable, is experiencing many earthquakes recently. As part of the national level microzonation programme, Department of Science and Technology, Govt. of India has initiated microzonation of greater Bangalore region. The seismic hazard analysis of Bangalore region is carried out as part of this project. The paper presents the determination of maximum credible earthquake (MCE) and generation of synthetic acceleration time history plot for the Bangalore region. MCE has been determined by considering the regional seismotectonic activity in about 350 km radius around Bangalore city. The seismotectonic map has been prepared by considering the faults, lineaments, shear zones in the area and historic earthquake events of more than 150 events. Shortest distance from the Bangalore to the different sources is measured and then peak ground acceleration (PGA) is calculated for the different source and moment magnitude. Maximum credible earthquake found in terms of moment magnitude is 5.1 with PGA value of 0.146 g at city centre with assuming the hypo central distance of 15.88 km from the focal point. Also, correlations for the fault length with historic earthquake in terms of moment magnitude, yields (taking the rupture fault length as 5% of the total fault length) a PGA value of 0.159 g. Acceleration time history (ground motion) and a response acceleration spectrum for the corresponding magnitude has been generated using synthetic earthquake model considering the regional seismotectonic parameters. The maximum spectral acceleration obtained is 0.332 g for predominant period of 0.06 s. The PGA value and synthetic earthquake ground motion data from the identified vulnerable source using seismotectonic map will be useful for the PGA mapping and microzonation of the area.  相似文献   

12.
Intermediate-depth earthquakes in the Vrancea region occur in response to stress generation due to descending lithosphere beneath the southeastern Carpathians. In this article, tectonic stress and seismicity are analyzed in the region on the basis of a vast body of observations. We show a correlation between the location of intermediate-depth earthquakes and the predicted localization of maximum shear stress in the lithosphere. A probabilistic seismic hazard assessment (PSHA) for the region is presented in terms of various ground motion parameters on the utilization of Fourier amplitude spectra used in engineering practice and risk assessment (peak ground acceleration, response spectra amplitude, and seismic intensity). We review the PSHA carried out in the region, and present new PSHA results for the eastern and southern parts of Romania. Our seismic hazard assessment is based on the information about the features of earthquake ground motion excitation, seismic wave propagation (attenuation), and site effect in the region. Spectral models and characteristics of site-response on earthquake ground motions are obtained from the regional ground motion data including several hundred records of small and large earthquakes. Results of the probabilistic seismic hazard assessment are consistent with the features of observed earthquake effects in the southeastern Carpathians and show that geological factors play an important part in the distribution of the earthquake ground motion parameters.  相似文献   

13.
The Sultanate of Oman forms the southeastern part of the Arabian plate, which is surrounded by relatively high active tectonic zones. Studies of seismic risk assessment in Oman have been an important on-going socioeconomic concern. Using the results of the seismic hazard assessment to improve building design and construction is an effective way to reduce the seismic risk. In the current study, seismic hazard assessment for the Sultanate of Oman is performed through the deterministic approach with particular attention on the uncertainty analysis applying a recently developed method. The input data set contains a defined seismotectonic model consisting of 26 seismic zones, maximum magnitudes, and 6 alternative ground motion prediction equations that were used in four different tectonic environments: obduction zone earthquake (Zagros fold thrust belt), subduction zone earthquakes (Makran subduction zones), normal and strike-slip transform earthquakes (Owen and Gulf of Aden zones), and stable craton seismicity (Arabian stable craton). This input data set yielded a total of 76 scenarios at each point of interest. A 10 % probability that any of the 76 scenarios may exceed the largest median ground acceleration is selected. The deterministic seismic hazards in terms of PGA, 5 % damped spectral acceleration at 0.1, 0.2, 1.0 and 2.0 s are performed at 254 selected points. The ground motion was calculated at the 50th and 84th percentile levels for selected probability of exceeding the median value. The largest ground motion in the Sultanate of Oman is observed in the northeastern part of the country.  相似文献   

14.
Seismic hazard assessment is the key tool for rational planning, safety and design of infrastructures in seismically vulnerable regions. Gujarat is the only state in peninsular India with the maximum seismic hazard of large shallow earthquakes originating from intra-plate seismicity. Probabilistic seismic hazard assessment (PSHA) of Gujarat is carried out in this paper. Three seismogenic sources, namely Kutch, Saurashtra and Mainland Gujarat, are considered, and seismicity parameters are estimated separately for each region taking into account the completeness of the available earthquake data. Peak ground acceleration (PGA) of the horizontal component and spectral acceleration at specific periods are considered as the intensity measures. Ground motion predictive equation chosen was reported to be based on simulated ground motions and verified against the strong motion records in the study region. Results are reported for the 17 major cities at the bedrock and also for the soil sites. Apart from hazard curves, 2475 and 475 years of return periods are considered for the PGA and uniform hazard spectra (UHS). The results are compared with the present recommendations of Indian Standards. Key observations include (1) Indian Standards underpredict PGA in the entire Gujarat when the soil sites are considered and in a few cities even at the bedrock; (2) amplification of PGA (or short period hazard) on account of soil sites should be included in the Indian Standard, which is currently absent; (3) shape of the UHS indicates that a separate amplification is required at the hyperbolic portion; and (4) ratio of 2475–475 years of PGA, which is considered 2.0 in Indian Standard, should be reduced to 1.5. Time-dependent recurrence model is also included in this paper and compared with conventional PSHA. General observations include that (1) hazard may increase significantly on account of time dependency; (2) this also influences the disaggregation and in turn the selection of ground motions; and (3) time since last earthquake significantly influences the extent of the effect of time dependency.  相似文献   

15.
A probabilistic seismic hazard assessment at Kancheepuram in Southern India was carried out with the scope of defining the seismic input for the vulnerability assessment of historical and monumental structures at the site, in terms of horizontal Uniform Hazard Spectra and a suite of spectrum-compatible natural accelerograms to perform time-history analysis. The standard Cornell?CMcGuire and a zone-free approach have been used for hazard computations after the compilation of a composite earthquake catalogue for Kancheepuram. Epistemic uncertainty in the seismic hazard was addressed within a logic-tree framework. Deaggregation of the seismic hazard for the peak ground acceleration shows low seismicity at Kancheepuram controlled by weak-to-moderate earthquakes with sources located at short distances from the archaeological site. Suites of natural accelerograms recorded on rock have been selected by imposing a custom-defined compatibility criterion with the probabilistic spectra. The site of Kancheepuram is characterized by a seismicity controlled by weak-to-moderate earthquakes with sources at short distances from the site, the PGA expected for 475- and 2,475-year return period are, respectively, 0.075 and 0.132?g. The Indian code-defined spectra (DBE and MCE) tend to underestimate spectral ordinates at low periods. On the other hand, the PGA are comparable and the spectral ordinates for longer periods from the probabilistic study are significantly lower.  相似文献   

16.
Hamouda  Amr Z. 《Natural Hazards》2011,59(1):465-479
The entrance of the southern Suez Gulf of the Red Sea is known to be an area of high seismic activity in Egypt. The high rate of seismic activity in this area is mainly related to the adjustment in motion at the triple junction between the African plate, the Arabian plate, and the Sinai microplate. The present study attempts to estimate the Probabilistic Seismic Hazard Analysis (PSHA) for Hurghada site. This was done in two steps; the first one is by estimating specific parameters for the site, such as the mean seismic activity, λ, the Gutenberg-Richter parameter, b, and the maximum regional magnitude, m max. The second step is by selecting a ground motion parameter that is applicable to Hurghada site. The procedure permits the combination of both historical and recent instrumental data. The results of the hazard assessment, expressed as the worst case scenario, detect that Hurghada is exposed to the maximum credible earthquake event of magnitude m max = 7.1 ± 0.31, at hypocentral distance of 31.6 ± 10 km. The possibility of the maximum Peak Ground Acceleration (PGA), which occurred in relation to this event at Hurghada site, is equal to 0.29 g. The mean return periods with the selected accelerations for Hurghada, a horizontal acceleration of 0.1 g, is expected to occur once every 74–106 years, with an average of one every 90 years. This result which obtained from the hazard assessment can be used as an input data for a seismic risk assessment.  相似文献   

17.
作为地震灾害评估的理论基础,地震动力学主要研究与地震活动有关的断裂机制、破裂过程、震源辐射和由此而引起的地震波的传播及地面运动规律。对地震力学、震源辐射和能量释放等经典理论问题进行了系统研究。在此基础上,应用最新的定量地震学研究方法,以逻辑树的形式综合地震、地质和大地测量资料,提供了不同构造环境和断裂机制条件下地震灾害评估的概率分析和确定性分析实例。用于震源分析的典型构造类型包括板内地壳震源层、地壳活动断层及其速率、板块俯冲界面和俯冲板片。由于输入模型中不确定因素的存在,如输入参数的随机性和科学分析方法本身的不确定性,对分析结果的不确定性需审慎对待。通常对不同的模型或参量,包括地面衰减模型,进行加权平均可较为合理地减小结果的偏差:概率分析和确定性分析方法的结合亦为可取之有效途径。  相似文献   

18.
The objective of this study is to evaluate the seismic hazard at the Esfarayen-Bojnurd railway using the probabilistic seismic hazard assessment (PSHA) method. This method was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. Attenuation equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 1.2 × 1.2 km covering the study area, ground acceleration for every node was calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to return periods of 74, 475 and 2475 years.  相似文献   

19.
Kahramanmaras and its surroundings are under the influence of East Anatolian and Dead Sea fault zones which have significance in the tectonics of Turkey. The long-term energy accumulation in these zones creates a very high risk level in terms of seismic hazard. In this study, the seismic hazard of Kahramanmaras Province and its vicinity was tried to be determined by using the probabilistic seismic hazard method approach. The earthquake catalog used in the study comprises 424 earthquakes equal or greater than M w ?=?4.0, covering a time period between 1 January 1900 and 1 January 2015. The earthquake data have been compiled from the catalogs of the International Seismological Center (ISC), Republic of Turkey Prime Ministry Disaster and Emergency Management Precidency (RTPMDEMP), Bogazici University Kandilli Observatory and Earthquake Research Institute. Seismic sources that could affect the study area have been identified according to the Earthquake Model of the Middle East (EMME). Seismic hazard parameters and peak horizontal acceleration values were obtained by using the selected attenuation relationships, and the results were given with iso-acceleration maps corresponding to a recurrence period of 475 years. The calculated peak horizontal acceleration values are generally varying between 0.21 and 0.41 in the study area. The result of this study shows that the southeastern parts of the study area have a greater seismic hazard compared with other parts.  相似文献   

20.
F. Kebede  T. van Eck   《Tectonophysics》1997,270(3-4):221-237
A probabilistic seismic hazard analysis (PSHA) for the Horn of Africa is presented. Our seismicity database consists of a revised and up-to-date regional catalogue compiled from different agencies, checked for completeness with respect to time and homogenized with respect to magnitude (Ms). The seismic source zones are based on our present day knowledge of the regional seismotectonics. Among the results we present regional hazard maps for 0.01 annual probability for intensity and Peak Ground Acceleration (PGA) and hazard curves and response spectra for six economical significant sites within the region. The model uncertainties with respect to seismicity are analysed in a novel approach and form part of a sensitivity analysis that quantifies our PSHA modelling uncertainties.

For 0.01 annual probability we find randomly oriented horizontal PGA that exceed just 0.2 g and MM-scale intensity VIII in the Afar depression and southern Sudan. Uncertainties amount to 20% g PGA in some cases, mainly due to attenuation uncertainties. Intensity uncertainties seldom exceed 0.5 intensity units. Relatively large seismic hazard is found for Djibouti (VIII for 0.01 annual probability), slightly lower for the port of Massawa (between VII and VIII for 0.01 annual probability) and low for the port of Assab (between VI and VII for 0.01 annual probability).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号