共查询到20条相似文献,搜索用时 15 毫秒
1.
Eric R. Priest 《Astrophysics and Space Science》1996,237(1-2):49-73
The theory of magnetic reconnection has advanced substantially over the past few years. There now exists a new generation
of fast two-dimensional models known as almost-uniform reconnection and nonuniform reconnection, depending on the boundary
conditions. Also, we are beginning to explore the uncharted region of three-dimensional reconnection, where regimes of “spine
reconnection” and “fan reconnection” have been discovered. Furthermore, part of the coronal heating problem appears to have
been solved with recent observational support for the Converging Flux Model in which heating is produced by coronal reconnection
driven by footpoint motions. 相似文献
2.
Coronal holes are extensive regions of extremely low density in the solar corona within 60° of latitude from the equator. (They are not to be confused with the well-known coronal cavities which surround quiescent prominences beneath helmet streamers.) We have superposed maps of the calculated current-free (potential) coronal magnetic field with maps of the coronal electron density for the period of November 1966, and find that coronal holes are generally characterized by weak and diverging magnetic field lines. The chromosphere underlying the holes is extremely quiet, being free of weak plages and filaments. The existence of coronal holes clearly has important implications for the energy balance in the transition region and the solar wind.The National Center for Atmospheric Research is sponsored by the National Science Foundation. 相似文献
3.
The dynamics of interacting coronal loops and arcades have recently been highlighted by observations from theYohkoh satellite and may represent a viable mechanism for heating the solar corona. Here such an interaction is studied using two-dimensional
resistive magnetohydrodynamic (MHD) simulations. Initial potential field structures evolve in response to imposed photospheric
flows. In addition to the anticipated current sheet about theX-point separating the colliding flux systems, significant current layers are found to lie all the way along the separatrices
that intersect at theX-point and divide the coronal magnetic field into topologically distinct regions. Shear flows across the separatrices are
also observed. Both of these features are shown to be compatible with recent analytical studies of two-dimensional linear
steady-state magnetic reconnection, even though the driven system that has been simulated is not strictly ‘open’ in the sense
implied by steady-state calculations. The implications for future steady-state models are also discussed. The presence of
the neutral point also brings into question any constant-density approximations that have previously been used for such quasi-steady
coronal evolution models. This results from the intimate coupling between the neutral point and its separatrices communicated
via the gas pressure.
In terms of the detailed energetics during the arcade evolution, preliminary results reveal that on the order of 3% of the
energy injected by the footpoint motions is lost purely through ohmic dissipation. We would therefore anticipate a local hot
spot between the interacting flux systems, and a brightening distributed along the length of any separatrix field lines. Furthermore,
as the resistivityη is reduced, the flux annihilation rate and the ohmic dissipation rate are found to scale independently ofη. 相似文献
4.
T. G. Forbes 《Solar physics》1988,117(1):97-121
Shock waves produced by impulsively driven reconnection may be important during flares or during the emergence of magnetic flux from the photosphere into the corona. Here we investigate such shock waves by carrying out numerical experiments using two-dimensional magneto-hydrodynamics. The results of the numerical experiments imply that there are three different categories of shocks associated with impulsively driven reconnection: (1) fast-mode, blast waves which rapidly propagate away from the reconnection site; (2) slow-mode, Petschek shocks which are attached to the reconnection site; and (3) fast-mode, termination shocks which terminate the plasma jets flowing out from the reconnection site. Fast-mode blast waves are a common feature of many flare models, but the Petschek shocks and jet termination shocks are specific to reconnection models. These two different types of reconnection shocks might contribute to chromospheric ablation and energetic particle acceleration in flares. 相似文献
5.
It is shown that coronal holes may be used as indicators to trace the location of the neutral line on the source surface in the corona. At the same time, coronal holes are shown to concentrate in regions of enhanced magnetic field at the source surface. This provides us with a simple method for predicting the interplanetary current sheet and sector structure which, in turn, determine the location of the proton complexes and the outflow regions of high-velocity streams. Rotation of coronal holes has been studied. Rather than being rigid, it displays the same reduced differentiallity as the rest of the corona. However, there are particular periods 2 or 3 years before the cycle minimum when the solid-body type of rotation is settled for both the coronal holes and the corona as a whole. 相似文献
6.
In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to ?0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models. 相似文献
7.
A new type of coordinates suitable to describe mass outflow out of coronal holes assuming symmetry under the icosahedral group is introduced. 相似文献
8.
9.
We present two-dimensional numerical simulations of magnetic reconnection in a configuration relevant to two-ribbon solar flares. The calculations extend those of Forbes and Priest (1982a, b, 1983) and some puzzling aspects of their results are clarified. In particular, the roles of magnetic diffusion, of the tearing mode and of turbulence are individually examined. We stress the important part played by boundary conditions in determining the evolution of the initial current sheet and suggest that in future the evolution of the entire overlying magnetic arcade be modelled as well as the current sheet that is created below the rising arcade. Tearing at very high magnetic Reynolds numbers is likely to develop into an impulsive bursty regime of reconnection after a time which depends on the initial level of turbulence. 相似文献
10.
The present review concerns the relevance of collisionless reconnection in the astrophysical context. Emphasis is put on recent developments in theory obtained from collisionless numerical simulations in two and three dimensions. It is stressed that magnetic reconnection is a universal process of particular importance under collisionless conditions, when both collisional and anomalous dissipation are irrelevant. While collisional (resistive) reconnection is a slow, diffusive process, collisionless reconnection is spontaneous. On any astrophysical time scale, it is explosive. It sets on when electric current widths become comparable to the leptonic inertial length in the so-called lepton (electron/positron) “diffusion region”, where leptons de-magnetise. Here, the magnetic field contacts its oppositely directed partner and annihilates. Spontaneous reconnection breaks the original magnetic symmetry, violently releases the stored free energy of the electric current, and causes plasma heating and particle acceleration. Ultimately, the released energy is provided by mechanical motion of either the two colliding magnetised plasmas that generate the current sheet or the internal turbulence cascading down to lepton-scale current filaments. Spontaneous reconnection in such extended current sheets that separate two colliding plasmas results in the generation of many reconnection sites (tearing modes) distributed over the current surface, each consisting of lepton exhausts and jets which are separated by plasmoids. Volume-filling factors of reconnection sites are estimated to be as large as \({<}10^{-5}\) per current sheet. Lepton currents inside exhausts may be strong enough to excite Buneman and, for large thermal pressure anisotropy, also Weibel instabilities. They bifurcate and break off into many small-scale current filaments and magnetic flux ropes exhibiting turbulent magnetic power spectra of very flat power-law shape \(W_b\propto k^{-\alpha }\) in wavenumber k with power becoming as low as \(\alpha \approx 2\). Spontaneous reconnection generates small-scale turbulence. Imposed external turbulence tends to temporarily increase the reconnection rate. Reconnecting ultra-relativistic current sheets decay into large numbers of magnetic flux ropes composed of chains of plasmoids and lepton exhausts. They form highly structured current surfaces, “current carpets”. By including synchrotron radiation losses, one favours tearing-mode reconnection over the drift-kink deformation of the current sheet. Lepton acceleration occurs in the reconnection-electric field in multiple encounters with the exhausts and plasmoids. This is a Fermi-like process. It results in power-law tails on the lepton energy distribution. This effect becomes pronounced in ultra-relativistic reconnection where it yields extremely hard lepton power-law energy spectra approaching \(F(\gamma )\propto \gamma ^{-1}\), with \(\gamma \) the lepton energy. The synchrotron radiation limit becomes substantially exceeded. Relativistic reconnection is a probable generator of current and magnetic turbulence, and a mechanism that produces high-energy radiation. It is also identified as the ultimate dissipation mechanism of the mechanical energy in collisionless magnetohydrodynamic turbulent cascades via lepton-inertial-scale turbulent current filaments. In this case, the volume-filling factor is large. Magnetic turbulence causes strong plasma heating of the entire turbulent volume and violent acceleration via spontaneous lepton-scale reconnection. This may lead to high-energy particle populations filling the whole volume. In this case, it causes non-thermal radiation spectra that span the entire interval from radio waves to gamma rays. 相似文献
11.
C. G. Campbell 《Monthly notices of the Royal Astronomical Society》2010,401(1):177-190
Wind flows and collimated jets are believed to be a feature of a range of disc accreting systems. These include active galactic nuclei, T Tauri stars, X-ray binaries and cataclysmic variables. The observed collimation implies large-scale magnetic fields and it is known that dipole-symmetry fields of sufficient strength can channel wind flows emanating from the surfaces of a disc. The disc inflow leads to the bending of the poloidal magnetic field lines, and centrifugally driven magnetic winds can be launched when the bending exceeds a critical value. Such winds can result in angular momentum transport at least as effective as turbulent viscosity, and hence they can play a major part in driving the disc inflow.
It is shown here that if the standard boundary condition of vanishing viscous stress close to the stellar surface is applied, together with the standard connection between viscosity and magnetic diffusivity, then poloidal magnetic field bending increases as the star is approached with a corresponding increase in the wind mass loss rate. A significant amount of material can be lost from the system via the enhanced wind from a narrow region close to the stellar surface. This occurs for a Keplerian angular velocity distribution and for a modified form of angular velocity, which allows for matching of the disc and stellar rotation rates through a boundary layer above the stellar surface. The enhanced mass loss is significantly affected by the behaviour of the disc angular velocity as the stellar surface is approached, and hence by the stellar rotation rate. Such a mechanism may be related to the production of jets from the inner regions of disc accreting systems. 相似文献
It is shown here that if the standard boundary condition of vanishing viscous stress close to the stellar surface is applied, together with the standard connection between viscosity and magnetic diffusivity, then poloidal magnetic field bending increases as the star is approached with a corresponding increase in the wind mass loss rate. A significant amount of material can be lost from the system via the enhanced wind from a narrow region close to the stellar surface. This occurs for a Keplerian angular velocity distribution and for a modified form of angular velocity, which allows for matching of the disc and stellar rotation rates through a boundary layer above the stellar surface. The enhanced mass loss is significantly affected by the behaviour of the disc angular velocity as the stellar surface is approached, and hence by the stellar rotation rate. Such a mechanism may be related to the production of jets from the inner regions of disc accreting systems. 相似文献
12.
13.
Bhimsen K. Shivamoggi 《Astrophysics and Space Science》1985,110(2):397-399
We consider the magnetic field reconnection in a plasma induced by perturbing the boundaries of a slab of incompressible plasma with a magnetic neutral surface inside. We assume that the boundaries of the plasma slab are perturbed at a rate which is fast compared with the hydromagnetic evolution rate; and investigate the ensuing adjustments in the plasma and the magnetic field threading through it. 相似文献
14.
Coronal magnetic fields 总被引:1,自引:0,他引:1
The observational evidence on the strength of the coronal magnetic field above active regions is reviewed. Recent advances in observations and plasma theory are used to determine which data are the more reliable and to revise some earlier estimates of field strength. The results from the different techniques are found to be in general agreement, and the relation 279-01, 1.02 R/R
10 is consistent with all the data to within a factor of about 3.The National Center for Atmospheric Research is supported by the National Science Foundation. 相似文献
15.
16.
17.
T. Török M. Temmer G. Valori A. M. Veronig L. van Driel-Gesztelyi B. Vršnak 《Solar physics》2013,286(2):453-477
We study a filament eruption, two-ribbon flare, and coronal mass ejection (CME) that occurred in NOAA Active Region 10898 on 6 July 2006. The filament was located South of a strong sunspot that dominated the region. In the evolution leading up to the eruption, and for some time after it, a counter-clockwise rotation of the sunspot of about 30 degrees was observed. We suggest that the rotation triggered the eruption by progressively expanding the magnetic field above the filament. To test this scenario, we study the effect of twisting the initially potential field overlying a pre-existing flux-rope, using three-dimensional zero-β MHD simulations. We first consider a relatively simple and symmetric system, and then study a more complex and asymmetric magnetic configuration, whose photospheric-flux distribution and coronal structure are guided by the observations and a potential field extrapolation. In both cases, we find that the twisting leads to the expansion of the overlying field. As a consequence of the progressively reduced magnetic tension, the flux-rope quasi-statically adapts to the changed environmental field, rising slowly. Once the tension is sufficiently reduced, a distinct second phase of evolution occurs where the flux-rope enters an unstable regime characterised by a strong acceleration. Our simulations thus suggest a new mechanism for the triggering of eruptions in the vicinity of rotating sunspots. 相似文献
18.
对地日冕物质抛射研究 总被引:5,自引:0,他引:5
日冕物质抛射,作为太阳大气中频繁发生的极为壮观的活动现象,越来越受到太阳物理学家的关注。其中一类特殊的抛射事件--对地日冕物质抛射,通常与大的地磁暴、行星际激波和高能粒子事件相伴生,具有强烈的地球物理效应,是影响空间天气的主要因素之一。概括了对地日冕物质抛射的研究现状,重点介绍了与对土日冕物质抛射事件相联系的光球向量磁场演化的观测研究成果,并由典型事件探讨了暗条爆发、耀五等剧烈太阳活动和对地日冕物质抛射之间的密切关系,提出了尚待解决的主要问题和进一步的研究方向。 相似文献
19.
Coronal holes as sources of solar wind 总被引:3,自引:0,他引:3
J. T. Nolte A. S. Krieger A. F. Timothy R. E. Gold E. C. Roelof G. Vaiana A. J. Lazarus J. D. Sullivan P. S. McIntosh 《Solar physics》1976,46(2):303-322
We investigate the association of high-speed solar wind with coronal holes during the Skylab mission by: (1) direct comparison of solar wind and coronal X-ray data; (2) comparison of near-equatorial coronal hole area with maximum solar wind velocity in the associated streams; and (3) examination of the correlation between solar and interplanetary magnetic polarities. We find that all large near-equatorial coronal holes seen during the Skylab period were associated with high-velocity solar wind streams observed at 1 AU.Harvard College Observatory-Smithsonian Astrophysical Observatory.A substantial portion of this work was done while a visiting scientist at American Science and Engineering. 相似文献
20.
Jun-Ichi Sakai 《Solar physics》1996,169(2):367-376
It is shown by using a 3-D resistive MHD simulation code, taking into account the recombination effect, that magnetic reconnection during collision of two current loops can be enhanced by recombination. It is also shown that the temperature in the thin current sheet formed between two loops increases from few to about thirty times larger than a case of no recombination, depending on both the plasma beta and the strength of recombination. The simulation results obtained here may be applicable for a mechanism of chromospheric heating and as an explanation of X-ray bright points as well as solar flares observed in the chromosphere.Dedicated to Cornelis de Jager 相似文献