首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Seismicity constraints on stress regimes along Sinai subplate boundaries   总被引:1,自引:0,他引:1  
The relative movement between African, Arabian and Eurasian plates has significantly controlled the tectonic process of Sinai subplate region, although its kinematics and precise boundaries are still doubtful. The respective subplate bounded on both sides by the Aqaba-Dead Sea transform fault to the east and the Gulf of Suez, the only defined part, to the west. Seismicity parameters, moment magnitude relation and fault plane solutions were combined to determine the active tectonics along the aforementioned boundaries. Seven shallow seismogenic zones were defined by the heterogeneity in stress field orientations. Along the eastern boundary, the average fault plane solution obtained from the moment tensor summation (MTS) reveals a sinistral strike-slip faulting mechanism. The corresponding seismic strain rate tensor showed that the present tectonic stress producing earthquakes along the boundary is dominated by both NW-SE compression and NE-SW dilatation. Towards the north, the average focal mechanism showed a normal faulting mechanism of N185°E compression and an N94°E extension in the Carmel Fairi seismic zone. On the other hand, the active crustal deformation along the western boundary (Gulf of Suez region) showed a prevailing tensional stress regime of NE to ENE orientations; producing an average fault plane solution of normal faulting mechanism. The seismic strain rate tensor reveals a dominant stress regime of N58°E extension and N145°E compression in consistence with the general tectonic nature in northeastern Africa. Finally, the extensional to strike-slip stress regimes obtained in the present study emphasize that the deformation accommodated along the Sinai subplate boundaries are in consistence with the kinematics models along the plate boundaries representing the northern extremity part of the Red Sea region.  相似文献   

2.
The study examines the Egyptian Red Sea shelf and throws more light on the structural set-up and tectonics controlling the general framework of the area and nature of the crust. Herein, an integrated study using gravity and magnetic data with the available seismic reflection lines and wells information was carried out along the offshore area. The Bouguer and reduced-to-pole aeromagnetic maps were processed and reinterpreted in terms of rifting and plate tectonics. The qualitative interpretation shows that the offshore area is characterized by positive gravity everywhere that extremely increases towards the centre of the graben, supporting the presence of an intrusive zone below the axial/main trough. The gravity data were confirmed by the presence of high magnetic amplitudes, magnetic linearity and several dipoles concentrated along the rift axis for at least 250 km. The lineament analysis indicates widespread of the Erythrean (Red Sea) trend that was offset/cut by transform faults in the NE direction (Aqaba). The tectonic model suggests the presence of one tensional (N65°E) and two compressional (N15°W, N30°W) phases of tectonism, resulted in six cycles of deformations, classified into three left lateral (N35°E, N15°E and N–S) and three right lateral (N85°W, N45°W and N60°W). The basement relief map reveals a rough basement surface that varies in depth between 1 and 5.6 km. It outlines several offshore basins, separated from each other by ridges. The models show that the basement consists of tilted fault blocks, which vary greatly in depth and composition and slopes generally to the west. They indicate that the coastal plain is underlain by acidic basement blocks (continental crust) with no igneous activity while suggesting elevated basic materials (oceanic crust) below the rift axis. The study suggests that northern Red Sea forms an early stage of seafloor spreading or at least moved past the late stage of continental rifting.  相似文献   

3.
Preliminary heat flow values ranging from 42 to 175 mW m–2 have been estimated for Egypt from numerous geothermal gradient determinations with a reasonably good geographical distribution, and a limited number of thermal conductivity determinations. For northern Egypt and the Gulf of Suez, gradients were calculated from oil well bottom hole temperature data; east of the Nile, and at three sites west of the Nile, gradients were calculated from detailed temperature logs in shallow boreholes. With one exception, the heat flow west of the Nile and in northern Egypt is estimated to be low, 40–45 mW m–2, typical of a Precambrian Platform province. A local high, 175 mW m–2, is probably due to local oxidational heating or water movement associated with a phosphate mineralized zone. East of the Nile, however, including the Gulf of Suez, elevated heat flow is indicated at several sites, with a high of 175 mW m–2 measured in a Precambrian granitic gneiss approximately 2 km from the Red Sea coast. These data indicate potential for development of geothermal resources along the Red Sea and Gulf of Suez coasts. Water geochemistry data confirm the high heat flow, but do not indicate any deep hot aquifers. Microearthquake monitoring and gravity data indicate that the high heat flow is associated with the opening of the Red Sea.  相似文献   

4.
In this study, we aim to map the Curie point depth surface for the northern Red Sea rift region and its surroundings based on the spectral analysis of aeromagnetic data. Spectral analysis technique was used to estimate the boundaries (top and bottom) of the magnetized crust. The Curie point depth (CPD) estimates of the Red Sea rift from 112 overlapping blocks vary from 5 to 20 km. The depths obtained for the bottom of the magnetized crust are assumed to correspond to Curie point depths where the magnetic layer loses its magnetization. Intermediate to deep Curie point depth anomalies (10–16 km) were observed in southern and central Sinai and the Gulf of Suez (intermediate heat flow) due to the uplifted basement rocks. The shallowest CPD of 5 km (associated with very high heat flow, ~235 mW m?2) is located at/around the axial trough of the Red Sea rift region especially at Brothers Island and Conrad Deep due to its association with both the concentration of rifting to the axial depression and the magmatic activity, whereas, beneath the Gulf of Aqaba, three Curie point depth anomalies belonging to three major basins vary from 10 km in the north to about 14 km in the south (with a mean heat flow of about 85 mW m?2). Moreover, low CPD anomalies (high heat flow) were also observed beneath some localities in the northern part of the Gulf of Suez at Hammam Fraun, at Esna city along River Nile, at west Ras Gharib in the eastern desert and at Safaga along the western shore line of the Red Sea rift. These resulted from deviatoric tensional stresses developing in the lithosphere which contribute to its further extension and may be due to the opening of the Gulf of Suez and/or the Red Sea rift. Furthermore, low CPD (with high heat flow anomaly) was observed in the eastern border of the study area, beneath northern Arabia, due to the quasi-vertical low-velocity anomaly which extends into the lower mantle and may be related to volcanism in northern Arabia. Dense microearthquakes seem to occur in areas where the lateral gradients of the CPD are steep (e.g. entrance of the Gulf of Suez and Brothers Island in the Red Sea). These areas may correspond to the boundaries between high and low thermal regions of the crust. Thus, the variations in the microseismic activity may be closely related to thermal structures of the crust. Indeed, shallow cutoff depths of seismicity can also be found in some geothermal areas (e.g. western area of Safaga city along the Red Sea coastal region and at Esna city along the River Nile). These facts indicate that the changes in the thickness of the seismogenic layer strongly depend on temperature. Generally, the shallow Curie point depth indicates that some regions in our study area are promising regions for further geothermal exploration particularly in some localities along the River Nile, Red Sea and Gulf of Suez coastal regions.  相似文献   

5.
Although the precise boundaries and kinematics of the Sinai subplate are still doubtful, it has a significant role in the tectonic evolution of the northern Red Sea region. On the basis of earthquake distribution, the Sinai region can be considered as a subplate partially separated from the African plate by the Suez rift. The relative motion between Africa, Sinai and Arabia is the main source generating the present-day earthquake activity in the Gulf of Suez and the Gulf of Aqaba regions.According to geological observations, the southern segment of the Dead Sea fault system can be characterized by a left-lateral displacement of about 107km since the Middle Miocene, in contrast to the northern segment where only 25 to 35km offset can be inferred. We think that along the southern segment the total displacement was 72km until the late Miocene (10Ma). The earthquake activity is strongly reduced along the northern segment of the Dead Sea fault segment. Therefore, we suggest that the northern part (Yammouneh fault) evolves through initial cracking of the crust due to build-up of stress since the Pliocene time (5Ma) and propagates northward into Lebanon and Syria. This last 5 million years is the period when the southern and northern segments became linked and formed a single fault system with a new displacement of 35km.According to the proposed model the predicted opening pole of the Red Sea is near 34.0oN, 22.0oE with an angle of total rotation of 3.4o since the early miocene, providing a 0.82cm/a opening rate in the northern Red Sea. We suggest that the Dead Sea strike-slip fault was active since Middle Miocene time (15Ma) with a slip rate of 0.72cm/a to provide a total displacement of about 107km. This strike slip motion occured about an Euler pole near 33.0oN, 21.0oE with a rotation angle of about 3.0o. It can be inferred from the proximity of the pole and angle of rotations for the Red Sea and Dead Sea fault that more than 85% of the motion has been accommodated on the Gulf of Aqaba and the Dead Sea fault and less than 15% in the Gulf of Suez.This model predicts a normal extensional motion in the Gulf of Suez with a minor left-lateral strike-slip component. We expect the pole of this motion to be at 31.0oN, 29.0oE, offshore of Alamein city about 320 km west of the Nile Delta. The rate of motion through the last 15Ma (Middle Miocene) is about 0.1 cm/a and the angle of rotation is 0.9o. During this period the total opening of the Suez rift is 15 km while the rest of the motion (45 km) occured mainly through the first phase of the development before the Middle Miocene.  相似文献   

6.
南海深部构造对研究南海构造演化和油气勘探具有重要意义.本文对南海地区的自由空气重力异常进行布格校正、海水层校正和沉积层校正,得到布格重力异常,再对布格重力异常进行区域异常和局部异常分离,利用位场界面反演方法对区域布格异常进行反演计算得到研究区域的莫霍面深度分布;采用全变倾角化极方法对研究区域的卫星磁异常数据进行化极处理,并进一步对化极磁异常作向上延拓,得到延拓后化极磁异常结果.分析布格重力异常、莫霍面深度及化极磁异常特征,结合天然地震层析成像的证据,得到以下结论:推测南海北部陆缘的古俯冲带位置是从118.5°E,24°N沿北东向延伸至109°E,15°N;红河断裂入海后经过莺歌海盆地在海南岛南部转为南北向与越东断裂相接并延伸至万安盆地;推测中特提斯洋的部分闭合位置是从110°E,2°N到101°E,21°N.  相似文献   

7.
Two felt moderate-sized earthquakes with local magnitudes of 4.9 on October 11, 1999 and 4.3 on November 08, 2006 occurred southeast of Beni Suef and Cairo cities. Being well recorded by the digital Egyptian National Seismic Network (ENSN) and some regional broadband stations, they provided us with a unique opportunity to study the tectonic process and present-day stress field acting on the northern part of the Eastern Desert of Egypt. In this study, we analyze the main shocks of these earthquakes and present 15 well recorded aftershocks (0.9 ≤ ML ≤ 3.3) which have small errors on both horizontal and vertical axes. The relocation analysis using the double difference algorithm clearly reveals a NW trending fault for the 1999 earthquake. The spatial distribution of its aftershocks indicates a propagation of rupture from the SW towards the NW along a fault length ~5 km dipping nearly ~40°SW. We also determined the focal mechanisms of the two main shocks by two methods (polarities and amplitudes ratios of P, SV and SH and regional waveform inversion). Our results indicate a normal faulting mechanism with a slight shear component for the first event, while pure normal faulting for the second one. The spatial distribution of the 1999 aftershocks sequence along with the retrieved focal mechanism confirmed the NW plane as the true fault plane. While for the 2006 event, the few aftershocks do not reveal any fault geometry; its focal mechanism indicated a pure normal fault nearly trending WNW-ESE that corresponds more likely to the extension of the 1999 earthquake fault. The seismicity distribution between the two earthquake sequences reveals a noticeable gap that may be a site of a future event. The NNE-SSW extensional stress indicated by the mechanisms of these events is in agreement with the regional stress field and the rifting of the northern Red Sea in its northern branches (Gulf of Suez and Gulf of Aqaba). The source parameters (seismic moment, moment magnitude, fault radius, stress drop and displacement across the fault) were also estimated and compared based on both the regional waveform inversion and the displacement spectra and interpreted in the context of the tectonic setting. The obtained results imply a reactivation of the pre-exiting NW-SE faults as a result of extensional deformation from the northern Red Sea-Gulf of Suez rifts.  相似文献   

8.
The study area is located in the Sinai Peninsula, which is considered one of the most promising regions for oil resources. Three different tectonic forces affect the area in the triple junction structures associated with the opening of the Gulf of Suez and the strike slip movement along the Gulf of Aqaba. The main goal of this work is to model the structure of the basement rocks in the study area using magnetic methods. To achieve this, a high-resolution land magnetic survey was acquired and the results were combined with existing seismic reflection data. The magnetic interpretation was carried out using the analytical signal, horizontal gradient, Euler and Werner deconvolution and 3D magnetic modelling methods. We concluded that most of the deduced structures are trending in N–S, N35°–N45° west and E–W directions. The Aqaba trend (N15°–N25° east) is barely noticeable. The depth to the basement rocks ranges from 1 km to more than 2 km below sea level and these results are in agreement with the available well log data. In addition, interpretation of seismic reflection sections was carried out and compared with overlapping magnetic profiles interpreted using Euler deconvolution. They show that the sedimentary section was affected by the basement tectonics, with faults extending from the basement upwards through the sedimentary cover. These faults constitute good potential structural traps for oil accumulation.  相似文献   

9.
《Geofísica Internacional》2014,53(3):309-319
Wadi Natash area is located in the southern part of the Eastern desert of Egypt. It has a great importance for containing accumulations from the radioactive minerals of Uranium, Thorium and Potassium. An integrated potential study was carried out on the study area with the aim of locating depths to causative bodies with sufficient magnetic susceptibility that may represent magmatic intrusions with relation to the radioactivity location and delineate the subsurface structures affecting the area. Both magnetic and Bouguer data as well as radiometric data were interpreted rapidly for source positions and depths using Euler deconvolution, Werner deconvolution and 3D modeling techniques. The results deduced from the trend analyses show that the major fault trend affecting the area have NNW-SSE (Red Sea–Gulf of Suez trend) direction intersected by the less predominant NNE-SSW(The Gulf of Aqaba–Dead Sea trend) and WNW-ESE (Najd Fault System) fault trends. The causative bodies were imaged at depths ranging from 0.3 km to about 1.5 km. The depths along the interpreted profiles display discontinuities in potential field markers due to presence of the NNW-SSE fault trends act as pass channels for the hydrothermal solutions.It can be stated that the radioactive mineral accumulations were caused by the hydrothermal solutions rich with radioactive minerals as a result of intruding Natash volcanic to the granitic rocks. The Qouseir clastics and the Nudian sand stone were affected by these solutions and show a positive response for the radioactive minerals.  相似文献   

10.
Although Egypt is not characterized by abundant Cenozoic igneous activity, its location in the northeastern corner of the African plate suggests that it may possess geothermal resources, especially along its eastern margin. Regional geothermal exploration has been carried out in Egypt using the thermal gradient/heat flow technique and groundwater temperature/chemistry technique. In the thermal gradient/heat flow study, existing oil-well bottom-hole temperature data as well as subsurface temperature measurements in existing boreholes were utilized before special thermal gradient holes were drilled. Groundwater temperature and chemistry data were used to extend the geographic range of the direct subsurface thermal measurements. On a very modest budget, a regional thermal high has been discovered along the eastern margin of Egypt, and a local thermal anomaly has been discovered in this zone. Published geological information suggests that the sandstones of the Nubian Formation may be a suitable reservoir for geothermal fluids. The new data indicate that temperatures of 150°C or higher may be found in this reservoir in the Gulf of Suez and Red Sea coastal zone where it lies at a depth of 4 km and deeper.  相似文献   

11.
《Journal of Geodynamics》1999,27(4-5):451-468
The seismic activity of the Sinai subplate region on the basis of both historical (2200B.C.–1900 A.D.) and recent (1900–1995) earthquake catalogs have been evaluated.Moderateand large earthquakes occurred mainly at the subplate boundaries, Dead Sea Fault (DSF) systemin the east, Cyprean arc in the north, and Suez rift in the southwest.Along the Dead Sea Fault system the activity concentrated at the southern andcentralsegments. The earthquake distribution appears to have a tendency to cluster in time andspace.The swarms (February, 1983; April, 1990; August, 1993 and November, 1995) in the GulfofAqaba indicate that the southern segment of the Dead Sea Fault system is the mostseismogenicthrough the last two decades. North of the Dead Sea depression the seismic activitytends to haveoccurred with NW trend to extend under the Levantine Sea. Although the northernsegment ofthe Dead Sea Fault system is well defined from geological, geophysical and historicalearthquakeactivity recent seismic activity is practically absent especially north of Latitude 34°N.In the eastern Mediterranean the seismicity is much higher in the area of the Hellenicarcthan in the Cyprean arc. Moreover, the activity occurs in a wide belt suggesting that theplateboundary is a deformation zone instead of a single line.The seismic activity in the Gulf of Suez is scattered and does not have any distincttrend.However, three active zones are delineated. At the mouth of the gulf most of activityisconcentrated where the Sinai triple junction (Africa, Arabia, Sinai) is situated. The centralpartand the northern part of the gulf include the adjacent area as far as the river Nile. Actually,theactivity is markedly decreased from south to north.Although there is no seismological evidence that the Suez rift continues into theeasternMediterranean, the activity in the Gulf of Suez region cannot be ignored.The parameters of magnitude-frequency relation (a, b) indicate thatthelevel of earthquake activity in the Sinai subplate region is generally moderate. Moreover,theenergy release curve shows a regular trend and reflects occasional high activity. © 1999ElsevierScience Ltd. All rights reserved.  相似文献   

12.
Low‐temperature thermochronology provides information on the timing of rifting and denudation of passive margins, and the Red Sea with its well‐exposed, young rift margins is a suitable setting for its application. Here we present new apatite fission‐track (AFT) data from Sudan northern hinterland and Red Sea coastal areas. From the former region we obtained ages between 270 ± 2 Ma ad 253 ± 53 Ma, and from the coastal belt between 83 ± 8 Ma and 39 ± 7 Ma. These data prompted a review and comparison with low‐temperature thermochronological data from the whole Nubian Red Sea Margin, and a discussion on their implication in assessing the margin evolutionary style. AFT data are available for Egypt and Eritrea as well as apatite (U‐Th)/He (AHe) ages for two transects transversal to the margin in Eritrea. Both in Egypt and Eritrea AFT data record a cooling event at about 20–25 Ma (Early Miocene) and an earlier, more local, cooling event in Egypt at about 34 Ma (Early Oligocene). The thermal modeling of the Sudan samples provides an indication of a rapid cooling in Miocene times, but does not support nor rules out an Early Oligocene cooling phase. The re‐assessment of new and existing thermochronological data within the known geological framework of the Nubian and conjugate Arabian margins favours the hypothesis that early rifting stages were affecting the whole Gulf of Suez–Red Sea–Gulf of Aden system since the Oligocene. These precocious, more attenuated, phases were followed by major extension in Miocene times. As to the mode of margin evolution, AFT age patterns both in Egypt and Eritrea are incompatible with a downwarp model. The distribution of AHe ages across the Eritrean coastal plain suggests that there the escarpment was evolving predominantly by plateau degradation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Present-day seismicity,stress field and crustal deformation of Egypt   总被引:2,自引:1,他引:1  
In this study we investigate present-day seismicity and crustal deformation of Egypt based on a comprehensive earthquake catalog from 1900 to 2004 by focal mechanism stress inversion and by recent GPS observations. Spatial distribution of earthquake epicenters indicates that Egypt has been suffered from both interplate and intraplate earthquakes. Most earthquake activity (more than 70%) has been concentrated in northern Egypt along the geologically documented borders of Sinai subplate (northern Red Sea and its two branches Suez rift and Aqaba–Dead Sea transform). The majority of inland earthquake focal mechanisms in Egypt are normal with strike-slip component or strike-slip faulting events. Only a small minority, namely four events, exhibits reverse faulting. The inversion method of Gephart and Forsyth (1984) was applied to calculate the orientation of the principle stress axes and the shape of the stress tensor. The best fitting tensor in Egypt shows homogeneity stress field. The tension stress regime is dominant in northern Egypt. The stress directions are well resolved by the 95% confidence limits, the relative stress magnitude has a value of about 0.3. However, along southern Egypt the strike-slip regime is dominant. The shape factor (R-value) is 0.5, which means that the deviatoric components of σ1 and σ3 are of the same magnitude, but of opposite signs. The average horizontal velocity of GPS stations in Egypt is 5.15± 1.1 mm/year in mostly NNW direction. The results of deformation analysis indicate that the northern Egypt is deformed more than the southern part. Only the Egyptian-Mediterranean coastal–Nile Delta zone dominates as a compression deformation area. However, an extensional deformation has been observed throughout the rest of country. This means that the relative motion of African plate with respect to both Eurasian and Arabian has highly controlled the deformation processes in Egypt.  相似文献   

14.
Seismicity in the northernmost part of the Red Sea has been studied using data from Hurghada Seismological Network in addition to readings from the existing neighbouring networks. Relocated events in addition to data from national centers are used to obtain a complete and true picture for the seismicity of the area. The spatial distribution of earthquakes defines three earthquake zones in the Gulf of Aqaba and three zones at the entrance of the Gulf of Suez and southern tip of Sinai Peninsula. The thermal activity and the triple junction nature control the activity in this area. The activity defines also an active trend extending from the southern tip of Sinai Peninsula to the median zone of the Red Sea. The seismicity of this trend is probably related to the active spreading zone associated with the opening of the Red Sea. The b-values are derived for the entrance areas of the two gulfs and for Gulf of Aqaba. Values of b are 1.35 for the triple junction region, 1.13 for the activity before the 22 November 1995 Gulf of Aqaba mainshock and 1.25 for the aftershocks of this event.  相似文献   

15.
Geophysical data contiguous with the Narmada-Son lineament suggests its possible extension westward into the Arabian Sea and eastward up to the Shillong Plateau. The airborne magnetic anomaly map of the north Arabian Sea delineates a linear trend of magnetic anomalies in line with the Narmada-Son lineament. This group of magnetic anomalies, spreading over 20°N to 22°N, starts near the west coast of India at 21°N, 69°30′E and extends to the Murray Ridge. The tectonic feature represented by this group of magnetic anomalies is buried by a thick layer of sediments. This westward extension of the lineament is also reflected in the average Bouguer gravity anomaly map of the Indian Ocean. Towards the east, the gravity and magnetic data delineate a subsurface linear tectonic feature which extends in line with this lineament to the eastern syntaxial bend. These various geophysical signatures further suggest the lineament to be a typical rift-like structure. The tectonic implications of the lineament, which extends from the western to the eastern margins of the Indian plate, is discussed.  相似文献   

16.
Extensive microearthquake studies have been conducted in Egypt as a joint project between scientists from the Egyptian Geological Survey and Mining Authority (EGSMA) and U.S. scientists. At this stage, a great part of the data has been analyzed and two intensively active areas have been located: one in the Abu Dabbab area of the Eastern Desert, the second at the mouth of the Gulf of Suez near Gubal Island (Daggett et al., 1980). Both sites have been reported to be the epicenters of large earthquakes in 1955 and 1969, respectively. A few scattered earthquakes have also been located in the northern part of the Red Sea, some of which lie along its median axis (Daggett et al., 1986) adding to evidence for the medial opening of the northern Red Sea. After the occurrence of an earthquake (M = 5.5) in the Aswan region on 14 November 1981, continuous recording of the many aftershocks was carried out by EGSMA for about seven months from December 1981 to July 1982, when the temporary network was replaced by a network of telemetered seismographs installed and operated by Helwan Institute of Astronomy and Geophysics in cooperation with scientists from Lamont and Doherty Geological Observatory (LDGO). The majority of epicenters are concentrated in the vicinity of G. Marawa about 65 km upstream of Aswan Dam, along the E-W Kalabsha fault. The observed focal mechanism is consistent with a right-lateral strike-slip motion on the Kalabsha fault. Analysis of Aswan microearthquakes has been done by EGSMA in cooperation with scientists from California Division of Mines and Geology (CDMG).  相似文献   

17.
The main goal of our study is to investigate 3D topography of the Moho boundary for the area of the northern Red Sea including Gulf of Suez and Gulf of Aqaba. For potential field data inversion we apply a new method of local corrections. The method is efficient and does not require trial-and-error forward modeling. To separate sources of gravity and magnetic field in depth, a method is suggested, based on upward and downward continuation. Both new methods are applied to isolate the contribution of the Moho interface to the total field and to find its 3D topography. At the first stage, we separate near-surface and deeper sources. According to the obtained field of shallow sources a model of the horizontal layer above the depth of 7 km is suggested, which includes a density interface between light sediments and crystalline basement. Its depressions and uplifts correspond to known geological structures. At the next stage, we isolate the effect of very deep sources (below 100 km) and sources outside the area of investigation. After subtracting this field from the total effect of deeper sources, we obtain the contribution of the Moho interface. We make inversion separately for the area of rifts (Red Sea, Gulf of Suez and Gulf of Aqaba) and for the rest of the area. In the rift area we look for the upper boundary of low-density, heated anomalous upper mantle. In the rest of the area the field is satisfied by means of topography for the interface between lower crust and normal upper mantle. Both algorithms are applied also to the magnetic field. The magnetic model of the Moho boundary is in agreement with the gravitational one.  相似文献   

18.
谭皓原  王志 《地球物理学报》2018,61(12):4887-4900
菲律宾群岛受到欧亚板块、菲律宾海板块和印度-澳大利亚板块的碰撞作用,地质环境复杂,构造因素多样.尽管近几年来已经有了少数关于该区域层析成像的研究,但这些研究的区域主要集中在马尼拉海沟、吕宋岛及中菲律宾地区,而关于群岛周围其他海沟和南菲律宾地区的讨论相对较少.到目前为止,还没有同时获得过关于菲律宾群岛深部纵、横波速度结构的研究,本次研究通过反演155779条P波震相和59642条S波震相,同时获得了菲律宾群岛从地表至150 km深度的纵、横波速度结构.地震层析成像结果表明该地区的壳幔速度结构具有较强的不均一性,地壳内部存在着广泛的低速异常,而表征俯冲板块的高速异常则沿着群岛周边的海沟展布.南海块体在马尼拉海沟中段的俯冲角度和俯冲活动性比南段小;菲律宾海板块在东吕宋海槽南段微弱的俯冲作用很有可能同本哈姆海台的碰撞有关.菲律宾群岛大部分MW>6.0的强震沿着各个板块的边界发生,体现出菲律宾海板块同欧亚板块之间的强耦合作用,群岛西侧的南海块体在马尼拉海沟16°N-20°N之间呈现出的弱耦合状态可能跟北吕宋地区的拉张应力环境有关,南海块体在16°N以南的地区同上覆块体之间的耦合作用较强;群岛东侧的菲律宾海板块在14°N以北的地区没有强震发生,它与菲律宾群岛之间的耦合程度从北向南逐渐增强,在12°N以南的地区要强于12°N以北的地区;此外苏禄海盆和菲律宾构造带之间也存在着强耦合关系.  相似文献   

19.
中国南北地震带磁性层构造特征   总被引:3,自引:0,他引:3       下载免费PDF全文
吴刚  余钦范 《地震地质》1990,12(3):207-214
本文首先给出磁性层下界面反演的等效模型和其在球坐标系下变地磁倾角的二维反演方法,利用航磁资料研究了南北地震带的磁性层结构构造及其与地震活动性的关系为:1.磁性层南北两端厚,中间薄;2.下界面呈南北向的宽隆起带,北浅南深;3.磁性层所处的层位温压条件适于积累应力能量产生粘滑错动,地震多发生在磁性层内,往往位于磁性层由厚变薄的过渡处,并多伴有断裂、温泉、岩浆活动  相似文献   

20.
This work presents new seismological and Global Positioning System (GPS) results aimed at understanding the nature and rate of strain associated with the opening of the Suez rift that separates the Sinai sub-plate from the African plate. The Sinai sub-plate has played a significant role in the tectonic evolution of the northern Red Sea and the Eastern Mediterranean region. Most small, moderate and large earthquakes occur within belts associated with the geologically documented borders of this sub-plate including the Dead Sea fault (DSF) system in the east, the Cyprian arc (CA) in the north, and the Suez rift (SR) to the southwest. The DSF and CA are well defined; however, the SR is only partially defined. Earthquake foci distribution supports the idea that the SR is seismically active, and this earthquake activity cannot be ignored throughout the kinematics evaluation of northern Red Sea region. The earthquake activity is relatively higher in the southern part of the SR and gradually decreases northward. The high seismicity is mainly attributed to the presence of the Sinai triple junction. Earthquake focal mechanisms in the SR are dominated by oblique normal faulting with left-lateral strike-slip components on NW trending fault planes consistent with regional kinematics. The extensional semi-principal stress axes derived from fault plane solutions are oriented NNE-SSW in good agreement with the current stress field obtained from borehole breakouts along the SR as well as results from GPS surveying. Recent survey-mode GPS observations provide evidence for coherent northerly motion of the Sinai sub-plate that varies between 2 and 5 mm/yr. Moreover, strain analysis indicates that the southern SR is dominated by extension while its northern segment is characterized by constriction, inconsistent with earthquake focal mechanisms and regional tectonic models. The overall northward motion of the Sinai sub-plate indicates that slab-pull rather than ridge-push is the dominant force controlling regional kinematics. Based on the low rate of extension and lack of oceanic crust, the SR can be considered an incipient plate boundary between the Sinai sub-plate and the Nubian plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号