首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the influence of ground water injection on the initial movement of non-cohesive sediment particles on a riverbank slope analytically and experimentally.By including the hydrauli...  相似文献   

2.
Effect of seepage on initiation of cohesionless sediment transport   总被引:2,自引:1,他引:1  
This paper presents theoretical analyses and experimental results of seepage effects, especially downward seepage, on the initiation of cohesionless sediment particles. The theoretical analysis examines how the additional seepage force acts to modify the critical shear stress for sediment entrainment. Laboratory experiments were conducted using medium sand with diameter of 0.9 mm with downward seepage to quantitatively show suction effects on sediment entrainment. The critical shear stresses with different suction rates were calculated using the experimental results. The measured data together with published results provide an overall view on seepage effects on the initiation of cohesionless sediment transport. Depending on whether seepage is in the form of injection or suction, it will either increase or decrease the critical shear stress. The result reveals that the ratio of drag force at the threshold condition with seepage to that without seepage is dependent on the ratio of the hydraulic gradient with seepage to its value at the quick condition.  相似文献   

3.
Seepage chambers have been used to characterize the flux of water across the water-sediment interface in a variety of settings. In this work, an electronic seepage chamber was developed specifically for long-term use in a large river where hydraulic gradient reversals occur frequently with river-stage variations. A bidirectional electronic flowmeter coupled with a seepage chamber was used to measure temporal changes in the magnitude and direction of water flux across the water-sediment interface over an 8-week period. The specific discharge measured from the seepage chamber compared favorably with measurements of vertical hydraulic gradient and previous specific discharge calculations. This, as well as other supporting data, demonstrates the effectiveness of the electronic seepage chamber to accurately quantify water flux in two directions over a multimonth period in this setting. The ability to conduct multimonth measurements of water flux at a subhourly frequency in a river system is a critical capability for a seepage chamber in a system where hydraulic gradients change on a daily and seasonal basis.  相似文献   

4.
Seepage rate and direction measured with a seepage metre modified for use in flowing water were greatly variable along a 300‐m reach of a shallow, gravel‐bed river and depended primarily on the local‐scale bed topography. The median value of seepage measured at 24 locations was 24 cm/day, but seepage measured at specific sites ranged from ?340 to +237 cm/day. Seepage also varied substantially over periods of hours to days and occasionally reversed direction in response to evolution of the sediment bed. Vertical hydraulic conductivity was related to seepage direction and was larger during upward seepage than during downward seepage; with differences ranging from 4 to 40% in areas of active sediment transport to more than an order of magnitude in areas where current was too slow to mobilize bed sediment. Seepage was poorly related to hydraulic gradient measured over vertical distances of 0·3 m and appeared to be opposite the hydraulic gradient at 18% of the locations where both parameters were measured. Results demonstrate the scale dependence of these measurements in coarse‐grained hyporheic settings and indicate that hydraulic gradients should be determined over a much shorter vertical increment if used to indicate exchange across the sediment–water interface. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

5.
Risk calculation of levee in the complex environment has significant theoretical values and practical meanings. As there still exists problems in present risk calculation models, a simple and efficient calculation model of the comprehensive levee risk is needed to be established. This paper studies the comprehensive risk calculation model of levee with multiple failure modes based on the analysis of levee instability and seepage failure. Firstly, coupling calculation of the seepage field and stress field is made using the finite element method, and safety factor of levee slope and critical failure hydraulic gradient of levee foundation are determined according to the strength reduction and piping theory. Then, particle swarm optimization is applied to conduct a comparative study on potential impact factors of levee stability and seepage, thus to determine explicit expressions for instability of levee body and seepage failure of levee foundation. Finally, Monte Carlo method is introduced to simulate the levee structure stochastically and calculated the comprehensive levee risk. Calculation results of the example show that the risk calculation method proposed in this paper has higher computational efficiency and can provide references for the decision of levee reinforcement.  相似文献   

6.
Internal erosion is one of the most common causes of failure in hydraulic engineering structures, such as embankments and levees. It also plays a vital role in the geohazards (such as landslides and sinkhole developments) and more importantly, the earth landscape evolution, which has a broad environmental and ecosystem impacts. The groundwater seepage is multi-directional, and its multi-dimensional nature could affect the initiation and the progression of internal erosion. With a newly developed apparatus, we carry out nine internal erosion experiments under five different seepage directions. The results reveal that the critical hydraulic gradient increases as the seepage direction varies from the horizontal to the vertical. After a global erosion is triggered, preferential erosion paths distribute randomly from the bottom to the top of the specimen. If the seepage direction is not vertical, small preferential erosion paths merge into a large erosion corridor, in which the loss of fine particles is significant but negligible outside. Results of experiments manifest that the erosion is heterogeneous and three-dimensional, even in the unidirectional seepage flow. The particles are rapidly eroded at the early stage of the erosion, indicating a high erosion rate. With the erosion time increasing, the particle loss slows down and even ceases if the time is long enough. The erosion rate increases if the seepage direction approaches a vertical direction. Overall, the erosion rate approximately decreases with erosion time exponentially. We proposed exponential equations to illustrate the variation of the erosion rate in the erosion process.  相似文献   

7.
We designed and evaluated a “tube seepage meter” for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy‐bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self‐purging groundwater‐sampling device.  相似文献   

8.
Hysteresis is a common feature exhibited in hydraulic properties of an unsaturated soil. The movement of wetting front and the hysteresis effect are important factors which impact the shear strength of the unsaturated soil and the mechanics of shallow landslides. These failures are mainly triggered by the deepening of the wetting front accompanied by a decrease in matric suction induced by infiltration. This research establishes a method for determining a stability analysis of unsaturated infinite soil slopes, integrating the influence of infiltration and the water retention curve hysteresis. Furthermore, the present stability analysis method including the infiltration model and the advanced Mohr–Coulomb failure criterion calculates the variations of the safety factor (FS) in accordance with different slope angle, depth and hydrological processes. The experimentally measured data on the effect of hysteresis are also carried out for comparison. Numerical analyses, employing both wetting and drying hydraulic behaviour of unsaturated soil, are performed to study the difference in soil‐water content as observed in the experiments. The simulating approximations also fully responded to the experimental data of sand box. The results suggest that the hysteresis behaviour affect the distribution of soil‐water content within the slope indeed. The hysteresis made the FS values a remarkable recovery during the period of non‐rainfall in a rainfall event. The appropriate hydraulic properties of soil (i.e. wetting or drying) should be used in accordance with the processes that unsaturated soil actually experience. This method will enable us to acquire more accurate matric suction head and the unsaturated soil‐shear strength as it changes with the hysteretic flow, in order to calculate into the stability analysis of shallow landslides. An advanced understanding of the process mechanism afforded by this method is critical to realizing a reliable and appropriate design for slope stabilization. It also offers some immediate reference information to the disaster reduction department of the government. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Seepage meters modified for use in flowing water were used to directly measure rates of exchange between surface and subsurface water in a gravel‐ and cobble bed river in western Pennsylvania, USA (Allegheny River, Qmean = 190 m3/s) and a sand‐ and gravel‐bed river in Colorado, USA (South Platte River, Qmean = 9·7 m3/s). Study reaches at the Allegheny River were located downstream from a dam. The bed was stable with moss, algae, and river grass present in many locations. Median seepage was + 0·28 m/d and seepage was highly variable among measurement locations. Upward and downward seepage greatly exceeded the median seepage rate, ranging from + 2·26 (upward) to ? 3·76 (downward) m/d. At the South Platte River site, substantial local‐scale bed topography as well as mobile bedforms resulted in spatial and temporal variability in seepage greatly in exceedence of the median groundwater discharge rate of 0·24 m/d. Both upward and downward seepage were recorded along every transect across the river with rates ranging from + 2·37 to ? 3·40 m/d. Despite a stable bed, which commonly facilitates clogging by fine‐grained or organic sediments, seepage rates at the Allegheny River were not reduced relative to those at the South Platte River. Seepage rate and direction depended primarily on measurement position relative to local‐ and meso‐scale bed topography at both rivers. Hydraulic gradients were small at nearly all seepage‐measurement locations and commonly were not a good indicator of seepage rate or direction. Therefore, measuring hydraulic gradient and hydraulic conductivity at in‐stream piezometers may be misleading if used to determine seepage flux across the sediment‐water interface. Such a method assumes that flow between the well screen and sediment‐water interface is vertical, which appears to be a poor assumption in coarse‐grained hyporheic settings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A model describing the three‐dimensional matrix flow along a slope with rock fragments or impermeable blocks was developed. The model was combined with modified Picard's iteration to ensure mass conservation in the unsaturated flow. We found that rock fragments obstruct water flow along the slope. The groundwater table must be raised to provide a sufficient pore water pressure gradient to facilitate water flow, but higher pore water pressure may induce slope failure. We also conducted a bench‐scale laboratory flume experiment to examine the effects of impermeable blocks on downstream seepage flow. In addition, a numerical experiment was conducted to examine how different arrangements of impermeable blocks affect downstream seepage flow and pore water pressure. This research demonstrated that the hydraulic phenomena were affected when impermeable blocks were present, and pore water pressure increased as the position of impermeable blocks was lowered. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Groundwater seepage can lead to the erosion and failure of streambanks and hillslopes. Two groundwater instability mechanisms include (i) tension failure due to the seepage force exceeding the soil shear strength or (ii) undercutting by seepage erosion and eventual mass failure. Previous research on these mechanisms has been limited to non‐cohesive and low cohesion soils. This study utilized a constant‐head, seepage soil box packed with more cohesive (6% and 15% clay) sandy loam soils at prescribed bulk densities (1.30 to 1.70 Mg m?3) and with a bank angle of 90° to investigate the controls on failure mechanisms due to seepage forces. A dimensionless seepage mechanism (SM) number was derived and evaluated based on the ratio of resistive cohesion forces to the driving forces leading to instability including seepage gradients with an assumed steady‐state seepage angle. Tension failures and undercutting were both observed dependent primarily on the saturated hydraulic conductivity, effective cohesion, and seepage gradient. Also, shapes of seepage undercuts for these more cohesive soils were wider and less deep compared to undercuts in sand and loamy sand soils. Direct shear tests were used to quantify the geotechnical properties of the soils packed at the various bulk densities. The SM number reasonably predicted the seepage failure mechanism (tension failure versus undercutting) based on the geotechnical properties and assumed steady‐state seepage gradients of the physical‐scale laboratory experiments, with some uncertainty due to measurement of geotechnical parameters, assumed seepage gradient direction, and the expected width of the failure block. It is hypothesized that the SM number can be used to evaluate seepage failure mechanisms when a streambank or hillslope experiences steady‐state seepage forces. When prevalent, seepage gradient forces should be considered when analyzing bank stability, and therefore should be incorporated into commonly used stability models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A series of 188 rainfall plot simulations was conducted on grass, shrub, oak savanna, and juniper sites in Arizona and Nevada. A total of 897 flow velocity measurements were obtained on 3.6% to 39.6% slopes with values ranging from 0.007 m s‐1 to 0.115 m s‐1. The experimental data showed that shallow flow velocity on rangelands was related to discharge and ground litter cover and was largely independent of slope gradient or soil characteristics. A power model was proposed to express this relationship. These findings support the slope–velocity equilibrium hypothesis. Namely, eroding soil surfaces evolve such that steeper areas develop greater hydraulic roughness. As a result overland flow velocity becomes independent of the slope gradient over time. Our findings have implications for soil erosion modeling suggesting that hydraulic friction is a dynamic, slope and discharge dependent property. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
Resistivity and self‐potential tomography can be used to investigate anomalous seepage inside heterogeneous earthen dams. The self‐potential (SP) signals provide a unique signature to groundwater flow because the source current density responsible for the SP signals is proportional to the Darcy velocity. The distribution of the SP signals is also influenced by the distribution of the resistivity; therefore, resistivity and SP need to be used in concert to elucidate groundwater flow pathways. In this study, a survey is conducted at a small earthen dam in Colorado where anomalous seepage is observed on the downstream face at the dam toe. The data reveal SP and direct current resistivity anomalies that are used to delineate three anomalous seepage zones within the dam and to estimate the source of the localized seepage discharge. The SP data are inverted in two dimensions using the resistivity distribution to determine the distribution of the Darcy velocity responsible for the observed seepage. The inverted Darcy velocity agrees with an estimation of the Darcy velocity from the hydraulic conductivity obtained from a slug test and the observed head gradient.  相似文献   

14.
Effects of measurement error on horizontal hydraulic gradient estimates   总被引:2,自引:0,他引:2  
During the design of a natural gradient tracer experiment, it was noticed that the hydraulic gradient was too small to measure reliably on an approximately 500-m(2) site. Additional wells were installed to increase the monitored area to 26,500 m(2), and wells were instrumented with pressure transducers. The resulting monitoring system was capable of measuring heads with a precision of +/-1.3 x 10(-2) m. This measurement error was incorporated into Monte Carlo calculations, in which only hydraulic head values were varied between realizations. The standard deviation in the estimated gradient and the flow direction angle from the x-axis (east direction) were calculated. The data yielded an average hydraulic gradient of 4.5 x 10(-4)+/-25% with a flow direction of 56 degrees southeast +/-18 degrees, with the variations representing 1 standard deviation. Further Monte Carlo calculations investigated the effects of number of wells, aspect ratio of the monitored area, and the size of the monitored area on the previously mentioned uncertainties. The exercise showed that monitored areas must exceed a size determined by the magnitude of the measurement error if meaningful gradient estimates and flow directions are to be obtained. The aspect ratio of the monitored zone should be as close to 1 as possible, although departures as great as 0.5 to 2 did not degrade the quality of the data unduly. Numbers of wells beyond three to five provided little advantage. These conclusions were supported for the general case with a preliminary theoretical analysis.  相似文献   

15.
如何提高煤层气渗透率是目前煤层气开采研究中的重要课题。基于煤层瓦斯渗流规律数学模型,利用COMSOL Multiphysics软件,对流-固-热耦合条件下的非等温煤层气解吸、渗流变化规律进行了数值模拟。结果表明,在注热条件下,煤层气渗流压力随着温度的增加而下降,且下降速度加剧,压力差越大,气体从高压区域流向低压区域的渗流速度越快。气体在煤层中径向流向井口,井口附近压力的梯度增大,气体渗流速度较快;在未受到加热影响的区域,煤层气不受外加热量影响,煤层气解吸速率保持不变;注热后煤层温度升高,可以加快煤层气渗流速度、提高渗透率、增加煤层气产量。研究成果可为煤层中注热开采煤层气的工程实践提供相应的理论依据。  相似文献   

16.
Water flow velocity is an important hydraulic variable in hydrological and soil erosion models, and is greatly affected by freezing and thawing of the surface soil layer in cold high-altitude regions. The accurate measurement of rill flow velocity when impacted by the thawing process is critical to simulate runoff and sediment transport processes. In this study, an electrolyte tracer modelling method was used to measure rill flow velocity along a meadow soil slope at different thaw depths under simulated rainfall. Rill flow velocity was measured using four thawed soil depths (0, 1, 2 and 10 cm), four slope gradients (5°, 10°, 15° and 20°) and four rainfall intensities (30, 60, 90 and 120 mm·h−1). The results showed that the increase in thawed soil depth caused a decrease in rill flow velocity, whereby the rate of this decrease was also diminishing. Whilst the rill flow velocity was positively correlated with slope gradient and rainfall intensity, the response of rill flow velocity to these influencing factors varied with thawed soil depth. The mechanism by which thawed soil depth influenced rill flow velocity was attributed to the consumption of runoff energy, slope surface roughness, and the headcut effect. Rill flow velocity was modelled by thawed soil depth, slope gradient and rainfall intensity using an empirical function. This function predicted values that were in good agreement with the measured data. These results provide the foundation for a better understanding of the effect of thawed soil depth on slope hydrology, erosion and the parameterization scheme for hydrological and soil erosion models.  相似文献   

17.
Using hydraulic parameters is essential for describing soil detachment and developing physically based erosion prediction models. Many hydraulic parameters have been used, but the one that performs the best for describing soil detachment on steep slopes when the lateral expansion (widening) of rills is not limited has not been identified. An indoor concentrated flow scouring experiment was performed on steep loessial slopes to investigate soil detachment rates for different flow rates and slope gradients. The experiments were conducted on a slope‐adjustable plot (5 m length, 1 m width, 0.5 m depth). Sixteen combinations of 4 flow rates (10, 15, 20, and 25 L/min) and 4 slope gradients (17.6%, 26.8%, 36.4%, and 46.6%) were investigated. The individual and combined effects of slope gradient and flow hydraulic parameters on soil detachment rate were analysed. The results indicated that soil detachment rate increased with flow rate and slope gradient. Soil detachment rate varied linearly and exponentially with flow rate and slope gradient, respectively. Multivariate, nonlinear regression analysis indicated that flow depth exerted the greatest influence on the soil detachment rate, followed by unit discharge per unit width, slope gradient, and flow rate in this study. Shear stress and stream power could efficiently describe the soil detachment rate using a power equation. However, the unit stream power and unit energy of the water‐carrying section changed linearly with soil detachment rate. Stream power was an optimal hydraulic parameter for describing soil detachment. These findings improve our understanding of concentrated flow erosion on steep loessial slopes.  相似文献   

18.
Tracer breakthrough curves provide valuable information about the traced media, especially in inherently heterogeneous karst aquifers. In order to study the effect of variations in hydraulic gradient and conduit systems on breakthrough curves, a bench scale karst model was constructed. The bench scale karst model contains both matrix and a conduit. Eight tracing tests were conducted under a wide range of hydraulic gradients from 1 to greater than 5 for branchwork and network-conduit systems. Sampling points at varying distances from the injection point were utilized. Results demonstrate that mean tracer velocities, tracer mass recovery and linear rising slope of the breakthrough curves were directly controlled by hydraulic gradient. As hydraulic gradient increased, both one half the time for peak concentration and one fifth the time for peak concentration decreased. The results demonstrate the variations in one half the time for peak concentration and one fifth the time for peak concentration of the descending limb for different sampling points under differing hydraulic gradients are mainly controlled by the interactions of advection with dispersion. The results are discussed from three perspectives: different conduit systems, different hydraulic-gradient conditions, and different sampling points. The research confirmed the undeniable role of hydrogeological setting (i.e., hydraulic gradient and conduit system) on the shape of the breakthrough curve. The extracted parameters (mobile-fluid velocity, tracer-mass recovery, linear rising limb, one half the time for peak concentration, and one fifth the time for peak concentration) allow for differentiating hydrogeological settings and enhance interpretations the tracing tests in karst aquifers.  相似文献   

19.
Hydrodynamic characteristics of rill flow on steep slopes   总被引:4,自引:0,他引:4       下载免费PDF全文
Rill erosion is a dominant sediment source on sloping lands. However, the amount of soil loss from rills on steep slopes is vastly more than that on gentle slopes because of differences in rill shape and hydraulic patterns. The aims of this paper are to determine the hydrodynamic characteristics of rills and the friction coefficients in steep slope conditions and to propose modifications of some hydraulic parameters used in soil loss prediction models. A series of inflow experiments was conducted on loess slopes. The results show that the geometric and hydraulic properties of rill on the steep loess slopes, which are characterized by the mean width of cross sections, mean velocity and mean depth of flow, are related to discharge and slope gradient in power functions. However, the related exponents to discharge are 0.26, 0.48 and 0.26, respectively, which are different from the exponents derived in previous studies, which were conducted on gentle slopes. The Manning roughness coefficient ranged from 0.035 to 0.071, with an average of 0.0536, and the Darcy–Weisbach friction coefficients varied from 0.4 to 1.9. The roughness coefficients are closely related to the Reynolds numbers and flow volumes; however, the correlations vary with slope gradient. The roughness coefficients are directly proportional to the Reynolds number and the flow volume on steep slopes, in contrast with the roughness coefficients found on gentle slopes, which decrease as the Reynolds number and flow volume increase. This difference is caused by the interactions among the hydraulics of the flow, the shape of the rills and the sediment concentrations on steep slopes. The results indicate that parameters used in models to predict rill erosion have to be modified according to slope gradient. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A. Altunkaynak  Z. Şen 《水文研究》2011,25(11):1778-1783
Darcian flow law in aquifers assumes that the aquifer hydraulic conductivity is constant and the groundwater movement is due only to the piezometric level changes through hydraulic gradient. In practice, after the well development the aquifer just around the well has comparatively larger hydraulic conductivity and gradient. Patchy aquifer solutions in the literature consider sudden hydraulic conductivity changes with distance for the steady state flow. The change of transmissivity is demonstrated by the application of slope‐matching procedure to actual field data. It is the main purpose of this paper to derive simple analytical expressions for aquifer parameter evaluations with steadily decreasing hydraulic conductivity around the well. Spatial nonlinear hydraulic conductivity changes around a large‐diameter well within the depression cone of a confined aquifer are considered as exponentially decreasing functions of the radial distance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号