首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human activities in the Arctic are often mentioned as recipients of climate-change impacts. In this paper we consider the more complicated but more likely possibility that human activities themselves can interact with climate or environmental change in ways that either mitigate or exacerbate the human impacts. Although human activities in the Arctic are generally assumed to be modest, our analysis suggests that those activities may have larger influences on the arctic system than previously thought. Moreover, human influences could increase substantially in the near future. First, we illustrate how past human activities in the Arctic have combined with climatic variations to alter biophysical systems upon which fisheries and livestock depend. Second, we describe how current and future human activities could precipitate or affect the timing of major transitions in the arctic system. Past and future analyses both point to ways in which human activities in the Arctic can substantially influence the trajectory of arctic system change.  相似文献   

2.
The effects of terrestrial ecosystems on the climate system have received most attention in the tropics, where extensive deforestation and burning has altered atmospheric chemistry and land surface climatology. In this paper we examine the biophysical and biogeochemical effects of boreal forest and tundra ecosystems on atmospheric processes. Boreal forests and tundra have an important role in the global budgets of atmospheric CO2 and CH4. However, these biogeochemical interactions are climatically important only at long temporal scales, when terrestrial vegetation undergoes large geographic redistribution in response to climate change. In contrast, by masking the high albedo of snow and through the partitioning of net radiation into sensible and latent heat, boreal forests have a significant impact on the seasonal and annual climatology of much of the Northern Hemisphere. Experiments with the LSX land surface model and the GENESIS climate model show that the boreal forest decreases land surface albedo in the winter, warms surface air temperatures at all times of the year, and increases latent heat flux and atmospheric moisture at all times of the year compared to simulations in which the boreal forest is replaced with bare ground or tundra. These effects are greatest in arctic and sub-arctic regions, but extend to the tropics. This paper shows that land-atmosphere interactions are especially important in arctic and sub-arctic regions, resulting in a coupled system in which the geographic distribution of vegetation affects climate and vice versa. This coupling is most important over long time periods, when changes in the abundance and distribution of boreal forest and tundra ecosystems in response to climatic change influence climate through their carbon storage, albedo, and hydrologic feedbacks.  相似文献   

3.
Arctic environments are generally believed to be highly sensitive to human-induced climatic change. In this paper, we explore the impacts on the hydrological system of the sub-arctic Tana Basin in Northernmost Finland and Norway. In contrast with previous studies, attention is not only given to river discharge, but also to the spatial patterns in snow coverage and evapotranspiration. We used a distributed water balance model that was coupled to a regional climate model in order to calculate a scenario of climate change by the end of this century. Three different model experiments were performed, adopting different approaches to using the climate model output in the hydrological model runs. The results were largely consistent, indicating a much shorter snow season and, accordingly, decreased sublimation, an increase in evapotranspiration, and a shift in the annual runoff peak. As the snow-free season is extended, the amount of solar radiation that is received during this period increases significantly. The results also show important local differences in the hydrological response to climate change. For example, in the scenario runs, the snow season was more than 30 days shorter at higher elevations, but in some of the river valleys, this was up to 70 days.  相似文献   

4.
Summary The relationship between clouds and the surface radiative fluxes over the Arctic Ocean are explored by conducting a series of modelling experiments using a one-dimensional thermodynamic sea ice model. The sensitivity of radiative flux to perturbations in cloud fraction and cloud optical depth are determined. These experiments illustrate the substantial effect that clouds have on the state of the sea ice and on the surface radiative fluxes. The effect of clouds on the net flux of radiation at the surface is very complex over the Arctic Ocean particularly due to the presence of the underlying sea ice. Owing to changes in surface albedo and temperature associated with changing cloud properties, there is a strong non-linearity between cloud properties and surface radiative fluxes. The model results are evaluated in three different contexts: 1) the sensitivity of the arctic surface radiation balance to uncertainties in cloud properties; 2) the impact of interannual variability in cloud characteristics on surface radiation fluxes and sea ice surface characteristics; and 3) the impact of climate change and the resulting changes in cloud properties on the surface radiation fluxes and sea ice characteristics.With 11 Figures  相似文献   

5.
Despite improvements in understanding biophysical response to climate change, a better understanding of how such changes will affect societies is still needed. We evaluated effects of climate change on the coupled human-environmental system of the McKenzie River watershed in the Oregon Cascades in order to assess its vulnerability. Published empirical and modeling results indicate that climate change will alter both the timing and quantity of streamflow, but understanding how these changes will impact different water users is essential to facilitate adaptation to changing conditions. In order to better understand the vulnerability of four water use sectors to changing streamflow, we conducted a series of semi-structured interviews with representatives of each sector, in which we presented projected changes in streamflow and asked respondents to assess how changing water availability would impact their activities. In the McKenzie River watershed, there are distinct spatial and temporal patterns associated with sensitivity of water resources to climate change. This research illustrates that the implications of changing streamflow vary substantially among different water users, with vulnerabilities being determined in part by the spatial scale and timing of water use and the flexibility of those uses in time and space. Furthermore, institutions within some sectors were found to be better positioned to effectively respond to changes in water resources associated with climate change, while others have substantial barriers to the flexibility needed to manage for new conditions. A clearer understanding of these opportunities and constraints across water use sectors can provide a basis for improving response capacity and potentially reducing vulnerability to changing water resources in the region.  相似文献   

6.
This paper explores the nature of critical thresholds in the natural and managed water environment, and examines the effect of thresholds on the shape of system response to change. The hydrological system is characterized by the presence of many critical thresholds, where processes change, and climate change will alter the frequency with which these thresholds are passed. The snow/rain threshold is particularly important, and examples in the paper show how the presence of this threshold can lead to very non-linear responses to incremental climate change. The water management system is also characterized by critical thresholds, but in most cases these are expressed in risk terms (a design standard typically has an associated risk of failure). In this context, climate change will alter the risk that design standards are exceeded, and the management threshold relates to the tolerable change in risk. In practice, this will be difficult to define, as changes in risk are difficult to determine because risk estimates are very uncertain. The paper concludes by outlining a risk-based procedure, using multiple scenarios, for estimating the risk of a threshold being crossed, and also indicates how defined critical thresholds can be used to implement an impact-oriented approach to climate change assessment. This approach focuses on the likelihood of encountering challenging circumstances.  相似文献   

7.
Recently much concern has been expressed regarding the impact of an increased atmospheric CO2 concentration on climate. Unfortunately, present understanding and models of the climate system are not good enough for reliable prediction of such impacts. This paper presents an analysis of recent climate data in order to illustrate the nature of regional temperature and rainfall changes in different seasons and to provide some guidance with regard to points which might be borne in mind when scenarios of future climate (especially those taking into account human impacts) are being formulated.Since it is believed that an increased atmospheric CO2 concentration will cause a warming and models and data suggest that the Arctic is more sensitive to climatic change than other latitudes, anomalies associated with warm Arctic seasons have been studied.The regional temperature, precipitation and pressure anomalies in the northern hemisphere for the 10 warmest Arctic winters and 10 warmest Arctic summers during the last 70 years have been investigated. Even when the Arctic area is warm, there are circulation changes such that large coherent anomalies occur elsewhere, with some regions warming and some cooling. The 10 warmest Arctic winters were characterised by larger amplitude anomalies, in the Arctic and elsewhere, than the 10 warmest summers, illustrating the difference in response between seasons. The precipitation differences for the 10 warmest Arctic winters and summers show for North America large coherent areas of increase or decrease, which again differ according to season. However, in winter the differences are not statistically significant, while the differences in two areas are significant in summer.  相似文献   

8.
极地气象考察与全球变化研究   总被引:1,自引:0,他引:1  
南极和北极是地球上的气候敏感地区,也是多个国际计划研究全球气候变化的关键地区。极地包含了大气、海洋、陆地、冰雪和生物等多圈层相互作用的全部过程,在全球气候的形成和变化中有重要的作用。极地大气科学考察与研究是极地科学研究的重要组成部分。到2006年底,中国自主组织了23次南极考察,2次北冰洋考察和3次北极站考察;建成了南极长城站、中山站和北极黄河站,并在南极冰盖设置了3个无人自动气象站;开展了有关极地大气科学与全球变化的研究。在南北极地区,进一步加强国际合作,继续监测包括近地面温度在内的大气要素的变化,提高极地气象业务水平;拓展极地气象业务和大气科学考察研究领域,积极获取气候代用资料;进一步量化和认识极地在全球变化中的作用,及其对中国天气气候和国民经济可持续发展的影响;建立完善极地大气科学研究体系,提高极地大气科学研究水平,仍是中国极地大气科学与全球变化研究的重要内容之一。  相似文献   

9.
Scenario-neutral response surfaces illustrate the sensitivity of a simulated natural system, represented by a specific impact variable, to systematic perturbations of climatic parameters. This type of approach has recently been developed as an alternative to top-down approaches for the assessment of climate change impacts. A major limitation of this approach is the underrepresentation of changes in the temporal structure of the climate input data (i.e., the seasonal and day-to-day variability) since this is not altered by the perturbation. This paper presents a framework that aims to examine this limitation by perturbing both observed and projected climate data time series for a future period, which both serve as input into a hydrological model (the HBV model). The resulting multiple response surfaces are compared at a common domain, the standardized runoff response surface (SRRS). We apply this approach in a case study catchment in Norway to (i) analyze possible changes in mean and extreme runoff and (ii) quantify the influence of changes in the temporal structure represented by 17 different climate input sets using linear mixed-effect models. Results suggest that climate change induced increases in mean and peak flow runoff and only small changes in low flow. They further suggest that the effect of the different temporal structures of the climate input data considerably affects low flows and floods (at least 21% influence), while it is negligible for mean runoff.  相似文献   

10.
M. Bonell 《Climatic change》1998,39(2-3):215-272
The paper initially outlines selected uncertainties influencing climate change and their linkages with hydrology which have led to only a small section of the hydrological community (divided into 2 groups) being pro-active. Due to the foregoing uncertainties, the strategy adopted in this paper will be to focus on the principal conclusions from controlled experimental catchment studies and related process hydrology connected with land-use change arising from anthropogenic influences. The underlying philosophy is that even major natural disruptions to climate cause ecohydrological shifts in the response of landscapes and such changes may be indicated from recent hydrology research evaluating man-made impacts. The paper assesses the existing conclusions from hydrological work undertaken in both the closed forests of the humid tropics and the open forests of the tropical semi-arid regions based mostly from experimentation in headwater catchments. Such studies are concerned with the hydrological responses to the impacts of forest conversion on the change in total water yield and, in turn, the processes connected with dry weather flow (delayed flow) and storm runoff (quickflow). By taking the above approach, possible hydrological changes to climate change will be inferred, including some consideration given the outputs from atmospheric General Circulation Models (GCMs) using the Amazon basin as an example.  相似文献   

11.
Effective national and regional policy guidance on climate change adaptation relies on robust scientific evidence. This two-part series of papers develops and implements a novel scenario-neutral framework enabling an assessment of the vulnerability of flood flows in British catchments to climatic change, to underpin the development of guidance for the flood management community. In this first part, the sensitivity of the 20-year return period flood peak (RP20) to changes in precipitation (P), temperature (T) and potential evapotranspiration (PE) is systematically assessed for 154 catchments. A sensitivity domain of 4,200 scenarios is applied combining 525 and 8 sets of P and T/PE mean monthly changes, respectively, with seasonality incorporated using a single-phase harmonic function. Using the change factor method, the percentage change in RP20 associated with each scenario of the sensitivity domain is calculated, giving flood response surfaces for each catchment. Using a clustering procedure on the response surfaces, the 154 catchments are divided into nine groups: flood sensitivity types. These sensitivity types show that some catchments are (very) sensitive to changes in P but others buffer the response, while the location of catchments of the same type does not show any strong geographical pattern. These results reflect the range of hydrological processes found in Britain, and demonstrate the potential importance of catchment properties (physical and climatic) in the propagation of change in climate to change in floods, and so in characterising the sensitivity types (covered in the companion paper).  相似文献   

12.
As part of the Canadian contribution to the International Polar Year (IPY), several major international research programs have focused on offshore arctic marine ecosystems. The general goal of these projects was to improve our understanding of how the response of arctic marine ecosystems to climate warming will alter food web structure and ecosystem services provided to Northerners. At least four key findings from these projects relating to arctic heterotrophic food web, pelagic-benthic coupling and biodiversity have emerged: (1) Contrary to a long-standing paradigm of dormant ecosystems during the long arctic winter, major food web components showed relatively high level of winter activity, well before the spring release of ice algae and subsequent phytoplankton bloom. Such phenological plasticity among key secondary producers like zooplankton may thus narrow the risks of extreme mismatch between primary production and secondary production in an increasingly variable arctic environment. (2) Tight pelagic-benthic coupling and consequent recycling of nutrients at the seafloor characterize specific regions of the Canadian Arctic, such as the North Water polynya and Lancaster Sound. The latter constitute hot spots of benthic ecosystem functioning compared to regions where zooplankton-mediated processes weaken the pelagic-benthic coupling. (3) In contrast with another widely shared assumption of lower biodiversity, arctic marine biodiversity is comparable to that reported off Atlantic and Pacific coasts of Canada, albeit threatened by the potential colonization of subarctic species. (4) The rapid decrease of summer sea-ice cover allows increasing numbers of killer whales to use the Canadian High Arctic as a hunting ground. The stronger presence of this species, bound to become a new apex predator of arctic seas, will likely affect populations of endemic arctic marine mammals such as the narwhal, bowhead, and beluga whales.  相似文献   

13.
River discharge forms a major freshwater input into the Arctic Ocean, and as such it has the potential to influence the oceanic circulation. As the hydrology of Arctic river basins is dominated by cryospheric processes such as snow accumulation and snowmelt, it may also be highly sensitive to a change in climate. Estimating the water balance of these river basins is therefore important, but it is complicated by the sparseness of observations and the large uncertainties related to the measurement of snowfalls. This study aims at simulating the water balance of the Barents Sea drainage basin in Northern Europe under present and future climate conditions. We used a regional climate model to drive a large-scale hydrological model of the area. Using simulated precipitation derived from a climate model led to an overestimation of the annual discharge in most river basins, but not in all. Under the B2 scenario of climate change, the model simulated a 25% increase in freshwater runoff, which is proportionally larger than the projected precipitation increase. As the snow season is 30–50 day shorter, the spring discharge peak is shifted by about 2–3 weeks, but the hydrological regime of the rivers remains dominated by snowmelt.  相似文献   

14.
The past decade has seen a proliferation of community-scale climate change vulnerability assessments globally. Much of this work has employed frameworks informed by scholarship in the vulnerability field, which draws upon interviews with community members to identify and characterize climatic risks and adaptive responses. This scholarship has developed a baseline understanding of vulnerability in specific places and industries at particular times. However, given the dynamic nature of vulnerability new methodologies are needed to generate insights on how climate change is experienced and responded to over time. Longitudinal approaches have long been used in sociology and the health sciences to capture the dynamism of human processes, but their penetration into vulnerability research has been limited. In this article, we describe the application of two longitudinal approaches, cohort and trend studies, in climate change vulnerability assessment by analyzing three case studies from the Arctic where the authors applied these approaches. These case studies highlight how longitudinal approaches can be operationalized to capture the dynamism of vulnerability by identifying climate anomalies and trends, and how adaptations develop over time, including insights on themes such as social learning and adaptive pathways.  相似文献   

15.
甘肃省干旱气候变化及其对西部大开发的影响   总被引:22,自引:3,他引:19  
利用历史文献及有器测以来的甘肃省气象,水文.卫星遥感资料,对全省历史气候背景作了分析,特别是对近70年气候变化和2000年干旱气候特征进行了系统研究.在此基础上提出了干旱气候变化对西部大开发的影响,重点讨论了对甘肃农业、水资源的影响,进而指出需要思考的问题及相应的对策.  相似文献   

16.
Managing Arctic marine resources to be resilient to environmental changes requires knowledge of how climate change is affecting marine food webs and fisheries. Changes to fishery resources will have major implications for coastal Indigenous communities whose livelihoods, health, and cultures are strongly connected to fisheries. Understanding these broad social-ecological changes requires a transdisciplinary approach bringing together contrasting and complementary disciplines and ways of knowing. Here, we examine climatic proxies, ecological, and fishery indicators (stable isotopes, fish condition, and lipid content), and interviews with Inuit fishers to assess how marine ecosystem changes have influenced Arctic Char (Salvelinus alpinus) ecology and fisheries over a 30-year time period (1987–2016) in the Kitikmeot region of the Canadian Arctic. Inuit fishers reported several observations of environmental changes, including longer ice-free seasons, warmer ocean temperatures, and the arrival of new marine species. Biophysical data revealed important changes toward earlier dates of ice breakup (>12 days in some areas) and a shift in isotopic niche reflecting a changing Arctic Char diet, with increased contribution of pelagic carbon and higher trophic level prey. Fish condition was improved in years with earlier ice breakup, as observed by both Inuit fishers and biophysical indicators, while lipid content increased through time, suggesting that longer ice-free seasons may have a positive effect on Arctic Char quality as reflected by both fish condition and lipid content. Long-term impacts of continuing climate change, however, such as the northward expansion of boreal species and increasing ocean temperatures, could have negative effects on fisheries (e.g., physiological impairment in fish if temperatures exceed their thermal range). Continuous community-based monitoring that directly informs fisheries management could help communities and managers adaptively, and sustainably, manage in the face of multiple interacting changes in Arctic marine systems.  相似文献   

17.
全球变暖背景下的气候服务   总被引:2,自引:0,他引:2  
翟盘茂 《气象》2011,37(3):257-262
气候与人的关系密不可分.气候学本身就是人类认识自然、利用气候的科学.最近五十多年,地球气候明显地受到了人类活动的影响,而变化的气候又通过各种途径影响人类的生产和生活.21世纪人类必须高度重视并积极应对气候变化及与其相伴随的各种极端天气气候事件.通过进一步加强气候监测,加强气候科学研究和模式研发,迅速提升气候预测能力,并通过加强建立与用户之间的伙伴关系,建立气候服务系统,从而不断提高服务水平,以适应日趋严峻的气候变化.  相似文献   

18.
Analyzed are the structure and methodological base of effective monitoring of water bodies in the Arctic region. Due to the sparse observational network and the lack of hydrobiological observations, the monitoring system does not enable to carry out in full a comprehensive assessment of freshwater ecosystems. There are almost no observations of toxicological parameters enabling to assess the integral effects of pollutants on the biota. At the first stage of the formation of base national system for monitoring freshwater ecosystems, the authors proposed to apply a basin approach, to connect the observational system with hydrological and climate scenarios and climate change effects, and to separate a national sub-system for monitoring freshwater ecosystems in the Russian Arctic.  相似文献   

19.
Failure to account for non-climatic changes to water systems, such as design and operation, within climate change impact assessments leads to misconceptions because these activities buffer the human built enviroment from bio-physical impacts. Urban drainage in cold regions, which is dominated by snowmelt, is especially vulnerable to climate change and is investigated in this paper within the context of future rehabilitation of the sewer network. The objectives are to illustrate the relative response of urban drainage to changes in both the pipe network and climate and demonstrate the use of response surfaces for climate change studies. An incremental climate scenario approach is used to generate two sensitivity analyses for waste water inflows to the Lycksele waste water treatment plant in north-central Sweden. Air temperature and precipitation data (1984–1993) are altered incrementally between –5 and +15 °C and –10 and +40% respectively. These data are then used to drive a hydrological transformation model to obtain estimates of sewer infiltration from groundwater. The results are presented as winter and spring response surfaces – these are graphical representations of a response matrix where each point relates to a single model run. Climate scenario envelopes which summarise a series of GCM runs (ACACIA; Carter, 2002, pers. comm.) are overlaid to indicate the range of plausible waste water inflows. Estimates of natural multi-decadal variability are also included. The first sensitivity analysis assumes no change to the drainage system while the second simulates sewer renovation in which the system is fully separated and sewer infiltration is reduced. The main conclusions are that innovations in drainage network technology have a greater potential to alter waste water inflows than climate change and that, while the direction of climate change is fairly certain, there is great uncertainty surrounding magnitude of those changes and their impacts.  相似文献   

20.
Climate change is complicating the variables that Alaskans consider when planning for the future. Communities, agencies and other entities have begun to grapple with both the information that they need to adapt to a changing climate and how the processes and practices of science should change to make science more useful. We reviewed sixty-three documents that expressed practical research needs related to climate change in Alaska. Documents nearly unanimously expressed that science, as it is currently practiced, is inadequate to meet the challenges of climate change. They call for processes that are more transparent, collaborative, and accessible. They recommend changed practices including maintaining accessible data-sharing archives, building networks for knowledge sharing, and creating place-based long-term partnerships with communities. They advocate integrating local knowledge, but infrequently address the complexities of how this is best accomplished. They also suggest the need for improved training in interdisciplinary research and changes in the incentive structure of research institutions. This review complements the climate-change literature by providing concrete suggestions about how to increase the utility of science from a region that is experiencing some of the most dramatic climatic change on the planet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号