首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Normark  Piper  & Hiscott 《Sedimentology》1998,45(1):53-70
Hueneme and Dume submarine fans in Santa Monica Basin consist of sandy channel and muddy levee facies on the upper fan, lenticular sand sheets on the middle fan, and thinly bedded turbidite and hemipelagic facies elsewhere. Fifteen widely correlatable key seismic reflections in high-resolution airgun and deep-towed boomer profiles subdivide the fan and basin deposits into time-slices that show different thickness and seismic-facies distributions, inferred to result from changes in Quaternary sea level and sediment supply. At times of low sea level, highly efficient turbidity currents generated by hyperpycnal flows or sediment failures at river deltas carry sand well out onto the middle-fan area. Thick, muddy flows formed rapidly prograding high levees mainly on the western (right-hand) side of three valleys that fed Hueneme fan at different times; the most recently active of the lowstand fan valleys, Hueneme fan valley, now heads in Hueneme Canyon. At times of high sea level, fans receive sand from submarine canyons that intercept littoral-drift cells and mixed sediment from earthquake-triggered slumps. Turbidity currents are confined to ‘underfit’ talweg channels in fan valleys and to steep, small, basin-margin fans like Dume fan. Mud is effectively separated from sand at high sea level and moves basinward across the shelf in plumes and in storm-generated lutite flows, contributing to a basin-floor blanket that is locally thicker than contemporary fan deposits and that onlaps older fans at the basin margin. The infilling of Santa Monica Basin has involved both fan and basin-floor aggradation accompanied by landward and basinward facies shifts. Progradation was restricted to the downslope growth of high muddy levees and the periodic basinward advance of the toe of the steeper and sandier Dume fan. Although the region is tectonically active, major sedimentation changes can be related to eustatic sea-level changes. The primary controls on facies shifts and fan growth appear to be an interplay of texture of source sediment, the efficiency with which turbidity currents transport sand, and the effects of delta distributary switching, all of which reflect sea-level changes.  相似文献   

2.
Small turbidite systems offshore from southern California provide an opportunity to track sediment from river source through the turbidity‐current initiation process to ultimate deposition, and to evaluate the impact of changing sea level and tectonics. The Santa Monica Basin is almost a closed system for terrigenous sediment input, and is supplied principally from the Santa Clara River. The Hueneme fan is supplied directly by the river, whereas the smaller Mugu and Dume fans are nourished by southward longshore drift. This study of the Late Quaternary turbidite fill of the Santa Monica Basin uses a dense grid of high‐resolution seismic‐reflection profiles tied to new radiocarbon ages for Ocean Drilling Program (ODP) Site 1015 back to 32 ka. Over the last glacial cycle, sedimentation rates in the distal part of Santa Monica Basin averaged 2–3 mm yr?1, with increases at times of extreme relative sea‐level lowstand. Coarser‐grained mid‐fan lobes prograded into the basin from the Hueneme, Mugu and Dume fans at times of rapid sea‐level fall. These pulses of coarse‐grained sediment resulted from river channel incision and delta cannibalization. During the extreme lowstand of the last glacial maximum, sediment delivery was concentrated on the Hueneme Fan, with mean depositional rates of up to 13 mm yr?1 on the mid‐ and upper fan. During the marine isotope stage (MIS) 2 transgression, enhanced rates of sedimentation of > 4 mm yr?1 occurred on the Mugu and Dume fans, as a result of distributary switching and southward littoral drift providing nourishment to these fan systems. Longer‐term sediment delivery to Santa Monica Basin was controlled by tectonics. Prior to MIS 10, the Anacapa ridge blocked the southward discharge of the Santa Clara River into the Santa Monica Basin. The pattern and distribution of turbidite sedimentation was strongly controlled by sea level through the rate of supply of coarse sediment and the style of initiation of turbidity currents. These two factors appear to have been more important than the absolute position of sea level.  相似文献   

3.
The late Pleistocene and Holocene stratigraphy of Navy Fan is mapped in detail from more than 100 cores. Thirteen 14C dates of plant detritus and of organic-rich mud beds show that a marked change in sediment supply from sandy to muddy turbidites occurred between 9000 and 12,000 years ago. They also confirm the correlation of several individual depositional units. The sediment dispersal pattern is primarily controlled by basin configuration and fan morphology, particularly the geometry of distributary channels, which show abrupt 60° bends related to the Pleistocene history of lobe progradation. The Holocene turbidity currents are depositing on, and modifying only slightly, a relict Pleistocene morphology. The uppermost turbidite is a thin sand to mud bed on the upper-fan valley levées and on parts of the mid-fan. Most of its sediment volume is in a mud bed on the lower fan and basin plain downslope from a sharp bend in the mid-fan distributary system. Little sediment occurs farther downstream within this distributary system. It appears that most of the turbidity current overtopped the levée at the channel bend, a process referred to as flow stripping. The muddy upper part of the flow continued straight down to the basin plain. The residual more sandy base of the flow in the distributary channel was not thick enough to maintain itself as gradient decreased and the channel opened out on to the mid-fan lobe. Flow stripping may occur in any turbidity current that is thick relative to channel depth and that flows in a channel with sharp bends. Where thick sandy currents are stripped, levée and mid-fan erosion may occur, but the residual current in the channel will lose much of its power and deposit rapidly. In thick muddy currents, progressive overflow of mud will cause less declaration of the residual channelised current. Thus both size and sand-to-mud ratio of turbidity currents feeding a fan are important factors controlling morphologic features and depositional areas on fans. The size-frequency variation for different types of turbidity currents is estimated from the literature and related to the evolution of fan morphology.  相似文献   

4.
The deep-tow instrument package of Scripps Institution of Oceanography provides a unique opportunity to delineate small-scale features of a size comparable to those features usually described from ancient deep-sea fan deposits. On Navy Fan, the deep-tow side-scanning sonar readily detected steep channel walls and steps and terraces within channels. The most striking features observed in side-scan are large crescentic depressions commonly occurring in groups. These appear to be large scours or flutes carved by turbidity currents. Four distinct acoustic facies were mapped on the basis of qualitative assessment of reflectivity of 4 kHz reflection profiles. There is a distinct increase in depth of acoustic penetration, number of sub-bottom reflectors, and reflector continuity from the upper fan-valley to the lower fan. These changes are accompanied by a decrease in surface relief. Navy Fan is made up of three active sectors. The active upper fan is dominated by a single channel with prominent levees that decrease in height downstream. The active mid-fan region or suprafan is where sand is deposited. Well defined distributary channels with steps, terraces, and other mesotopography terminate in depositional lobes. Interchannel areas are rough, containing giant scours as well as other relief. The active lower fan accumulates mud and silt and is without resolvable surface morphology. The morphological features seen on Navy Fan other than levees, interchannel areas, and lobes are principally erosional. The distributary channels are up to 0.5 km wide and 5–15 m deep. Such features, because of their large size and low relief, are rarely completely exposed or easily detectable in ancient rock sequences. Some flute-shaped scours are larger than channels in cross section but many are 5-30 m across and 1-2 m deep. If observed in ancient rocks transverse to palaeo-current direction, they would perhaps be indistinguishable from channels. Surface sediment distribution combined with fan morphology can be used to relate modern sediments to facies models for ancient fan sediments. Gravel and sand occur in the upper valley, massive sand beds in the mid-fan distributary channels, classical complete Bouma sequences on depositional lobes, incomplete Bouma sequences (lacking division a) on the lower mid-fan, and Bouma sequence with lenticular shape or other limited extent on mid-fan interchannel areas and on levees.  相似文献   

5.
The Petit-Rhône Fan Valley (north-western Mediterranean) is a broad, sinuous, filled valley that is deeply incised by a narrow, sinuous thalweg. The valley fill is differentiated into three seismic subunits on high-resolution seismic-reflection profiles. The lower chaotic subunit probably consists of channel lag deposits that seem to be in lateral continuity with high-amplitude reflections representing levee facies. The intermediate transparent subunit, which has an erosional base and clearly truncates levee deposits, is interpreted to be mass-flow deposits resulting from the disintegration of the fan-valley flanks. The upper bedded subunit shows an overall lens-shaped geometry and the seismic reflections onlap either onto the top of the underlying transparent subunit or onto the Rhône levees. Piston core data show that the upper few meters of this upper subunit consist of thin turbidites, probably deposited by overflow processes. The few available 14C ages suggest that the upper stratified subunit filled the Petit-Rhône Fan Valley between 21 and 11 kyr BP. The upper bedded subunit is deposited within the Petit-Rhône Fan Valley downslope of a major decrease in slope gradient. This upper subunit and the thalweg are genetically related and represent a small channel/levee system confined within the fan valley. Previous studies interpreted this thalweg to be an erosional feature resulting from a recent avulsion of the major channel course. Our interpretation implies that the thalweg is not a purely erosional feature but a depositional/erosional channel. This small channel/levee system is superimposed on a large muddy channel/levee system after the sediment supply changed from thick muddy flows during the main phase of aggradation of the Rhône Fan levees, to thin, mixed (sand and mud) flows at the end of Isotope Stage 2 (~16–18 ka BP). The pre-existing morphology of the Petit-Rhône Fan Valley played a determinant role in the sediment dispersal leading to the creation of this small and confined channel/levee system. These mixed flows have undergone flow stripping resulting from the changes in the slope gradient along the thalweg course. The finer sediment overflowed from the thalweg and were deposited in the Petit-Rhône Fan Valley. Coarser channelled sediment remaining in the thalweg were deposited as a ‘sandy’lobe (Neofan). As indicated by 14C dating, sedimentation on this lobe continued until very recently, suggesting a further evolution of the turbidity flows from small mixed flows to small sandy flows. the deposition of this study lobe and the sedimentary fill of the Petit-Rhône Fan Valley may be related to widespread shelf edge and canyon wall failures with a resulting downslope evolution of failed sediment into turbidity currents.  相似文献   

6.
The 3·2 km long Rose Creek fan delta of west‐central Nevada is prograding from an active rift margin into the 32 m deep Walker Lake. A case study of the forms, processes and facies of this fan delta reveals that the proximal and medial zones mainly are of sub‐aerial origin, and the distal zone is of lacustrine origin. Pebbly to bouldery rock‐avalanche mounds >100 m thick (Facies A) and muddy to bouldery debris flow levées 0·5 to 2·0 m thick (Facies B) dominate the proximal zone, whereas mostly matrix‐supported cobbly pebbly debris flow lobes 0·1 to 1·0 m thick (Facies C) typify the medial zone. Surficial pebble lags and gully fills (Facies D) are widespread in both zones but, in exposures, comprise only partings or lenticles between debris flow units. The distal fan delta mainly consists of lakeshore to lake‐bottom tracts formed by extensive wave reworking of debris flow facies. Nearshore deposits include erosional cobbly boulder lag beaches (Facies E), pebbly constructional beaches attached at headcuts or on barrier spits (Facies F), pebbly upper shoreface (Facies G) and sandy lower shoreface (Facies H) tracts positioned lakeward of the beach, and pebbly landward‐dipping foresets (Facies I) and backshore‐pond sand and mud (Facies J) present landward of the spits. Erosional lag beaches fringe the windward north side of the fan‐delta front, attached constructional beaches characterize the central zone, and southward‐elongating barrier spits typify the leeward south side, extending from the zone of greatest projection of the fan delta into the lake. Shoreline facies asymmetry results from largely unidirectional longshore drift caused by high fetch to the north and minimal fetch to the south, combined with the arcuate shape of the fan‐delta front. The spits overlie a platform deposited below common wave base consisting of south‐east‐trending cones of pebbly Gilbert foresets (Facies K) and sandy toesets (Facies L). Typically slumped silt and mud (Facies M) fringe both this platform and lower shoreface sand in deeper water. This case demonstrates facies types and patterns that are inconsistent with the widely promoted fan‐delta facies model having a front consisting of an apron of radially directed Gilbert foresets deposited where sub‐aerial flows enter the lake. The Rose Creek fan‐delta front instead features a sharp contact between sub‐aerial and lakeshore facies formed where waves erode, sort and redistribute heterogeneous debris flow sediment into the various shallow‐to‐deep lake facies. Gilbert foresets are present only in the lee of the fan delta where sediment moving by longshore drift reaches the brink of the spit front. This facies scenario results from the infrequency of fan‐building events versus nearly constant wind‐induced waves, a scenario that, in contrast to the popular Gilbert model, probably is the norm for fan deltas. The level of Walker Lake, and thus the position of wave reworking on the Rose Creek fan delta, fluctuated over a range of ~157 m during the last 18 kyr, producing complex interfingering between sub‐aerial and lakeshore facies across a 1700 m wide radial belt, typifying a wave‐modified, freestand lacustrine fan delta.  相似文献   

7.
Most of the Quaternary sediments of the Mozambique Fan have been derived from Africa-Madagascar and deposited by turbidity currents in Pleistocene time. Currents caused by movement of the Antarctic Bottom Water also played a significant role in reworking and redepositing sediments along the marginal areas of the fan. The inner or upper Mozambique Fan is characterized by a single, leveed valley. Due to the effects of the Coriolis force, the natural levees to the east of the valley (left, looking downstream) are higher and contain more terrigenous sediments than those to the west of the valley. The sea floor to the west of the valley returns regular hyperbolic echoes as seen on 3·5 kHz echograms, whereas to the east of the valley, the sea floor is relatively smooth. The sediments on the valley floor are coarse-grained (with median grain up to 2 mm) and poorly sorted, and occur often as massive turbidites, interbedded with hemipelagic sediments. Away from the valley, both to the east and the west, the terrigenous sediments are relatively fine-grained and have been deposited as overbank turbidite sequences. We estimate the maximum velocities of the channelized turbidity currents in the upper fan to have been 8–32 ms?1. The middle fan has several distributary channels with no levees and has a relatively flat sea floor, characterized by lack of acoustic penetration. Thick, sheet-like, turbidite sand beds, deposited primarily by unchannelized turbidity currents, characterize the middle fan. The middle fan grades, towards the margins, into the outer (lower) fan which is relatively free of channels, has good acoustic penetration and contains hemipelagic and pelagic sediments, and thin, fine-sand turbidite and/or contourite beds. A wide zone of sediment waves, formed from the reworking of the turbidity current-fed sediments by the Antarctic Bottom Water, forms part of the outer fan.  相似文献   

8.
基于海洋区域地质调查获取的1 438个粒度数据,利用Folk分类方法将中国东部海域表层沉积物划分为砂质粉砂、粉砂质砂、粉砂、砂、砂质泥、泥质砂、泥7种沉积物类型,阐述了不同沉积物类型的粒度组成和参数特征.其中,砂质粉砂、粉砂质砂和粉砂是3种最主要的沉积物类型,分别占样品总数的34.70%、24.20%和15.51%.粉砂质砂呈条带状分布在研究区的南部且向北延伸.粉砂主要分布在长江口-浙闽沿岸、渤海西部和南黄海中北部.砂主要分布在东海外陆架、扬子浅滩和苏北浅滩、朝鲜湾等海区,其中在东海外陆架海区分布最广.影响沉积物分布的主要因素有物源、水动力环境以及水深、地形、地貌等.晚第四纪冰期旋回中海平面变化和海洋环流控制陆源沉积物的入海通量和陆架沉积体系的发育过程.综合沉积物物源供给、海洋环流、冰后期海平面变化过程,基于Folk分类的动力学属性和表层沉积物类型分布,将中国东部海域表层沉积物分布划分为河口沉积、陆架泥质沉积、潮流沉积以及残留沉积等分区.不同沉积分区的形成机制和影响因素差异显著,反映出在中国东部陆架的特殊地形影响下,不同海平面时期陆源碎屑物质的运移过程.   相似文献   

9.
The Late Quaternary Amazon deep-sea fan provides a modern analogue to ancient fan systems containing coarse-grained hydrocarbon reservoirs. Sand lenses deposited within the Amazon Fan, due to abrupt shifts in channel pathways called avulsion events, were drilled as part of ODP Leg 155. The hemipelagic sediment directly on top of the avulsion sands was dated using primarily AMS radio carbon dating. This dating shows that these large sand lobes (1 km3) are triggered by relatively small, millennial scale changes in marine transgression and regression (±5–10 m). Relative sea level also controls the architecture of the Channel–levee distributive systems within the Amazon Fan. For example prior to 22 k calendar years BP there is a tripartite channel system. After 22 ka there is only one active Channel–levee system. Transitions between the multi-channel and single channel configurations are related to variations in the volume of sediment supply resulting in aggradation or erosion of channel floor and levee growth in the canyon-channel transition area. The sensitivity of the Amazon deep-sea Fan sedimentation to relatively small changes in sea level supports one of the central assumptions of the theory of Sequence Stratigraphy. In addition this study demonstrates how traps for hydrocarbons may have been formed in ancient fan systems.  相似文献   

10.
The Gulf of Tonkin coastline migrated at an average rate of ca 60 m year?1 landward during Holocene sea‐level rise (20 to 8 ka). Due to a combination of rapid coastline migration and undersupply of sand, neither coastal barriers nor tidal sand bars developed at the mouth of the Red River incised valley. Only a 30 to 80 cm thick sandy interval formed at the base of full‐marine deposits. Thus, the river mouth represented a mud‐dominated open funnel‐shaped estuary during transgression. At the base of the valley fill, a thin fluvial lag deposit marks a period of lowered sea‐level when the river did not reach geomorphic equilibrium and was thus prone to erosion. The onset of base‐level rise is documented by non‐bioturbated to sparsely bioturbated mud that occasionally contains pyrite indicating short‐term seawater incursions. Siderite in overlying deposits points to low‐salinity estuarine conditions. The open funnel‐shaped river mouth favoured upstream incursion of seawater that varied inversely to the seasonal strongly fluctuating discharge: several centimetres to a few tens of centimetres thick intervals showing marine or freshwater dominance alternate, as indicated by bioturbational and physical sedimentary structures, and by the presence of Fe sulphides or siderite, respectively. Recurrent short‐term seawater incursions stressed the burrowing fauna. The degree of bioturbation increases upward corresponding to increasing marine influence. The uppermost estuarine sediments are completely bioturbated. The estuarine deposits aggraded on average rapidly, up to several metres kyr?1. Siphonichnidal burrows produced by bivalves, however, document recurrent episodes of enhanced deposition (>0·5 m) and pronounced erosion (<1 m) that are otherwise not recorded. The slope of the incised valley affected the sedimentary facies. In steep valley segments, the marine transgressive surface (equivalent to the onset of full‐marine conditions) is accentuated by the Glossifungites ichnofacies, whereas in gently sloped valley segments the marine transgressive surface is gradational and bioturbated. Marine deposits are completely bioturbated.  相似文献   

11.
利用典型钻孔P5孔沉积物的岩性、测年、孢粉和有孔虫的分析结果,探讨了末次冰消期以来长江三角洲东南部古河谷区记录的气候波动和海平面阶段性上升过程及其控制下的古河谷沉积模式。研究发现本区古河谷末次冰消期(15~10 ka BP)以淡水湖沼相沉积为主,4 m厚的泥炭可能是新仙女木事件的反映。10~9 ka BP 发育滨海相粉细砂、粉砂沉积,反映此时海平面较为稳定。9~8 ka BP发育溺谷相泥质粉砂、粉砂质泥沉积,厚达11 m,反映海平面快速上升作用下的高速率充填。至全新世大暖期,古河谷区沉积顶界已和长江三角洲平原的第一硬土层埋深大致相同,反映古河谷已基本被填平。  相似文献   

12.
The main sediment depocenter along the Oman margin is the Al Batha turbidite system that develops in the Gulf of Oman basin. It is directly connected to the wadi Al Batha, and forms a typical sand and mud rich point source system that acts as regional sediment conduit and feeds a ~ 1000 km2 sandy lobe.The Al Batha lobe depositional architecture has been investigated in detail using very high-resolution seismic, multibeam echosounder data and sediment cores. Several scales of depositional architecture can be observed. The Al Batha lobe is composed of several depositional units, made of stacked elementary sediment bodies (thinner than 5 m) that are each related to a single flow event. The lobe is connected to the feeder system through a channel-lobe transition zone (CLTZ) that extends on more than 25 km. The lobe can be divided into proximal, middle and distal lobe areas. The proximal lobe is an area of erosion and by-pass with small axial feeder channels that rapidly splay into several small distributaries. They disappear in the mid-lobe area where deposits consist of vertically stacked tabular to lens-shaped sediment bodies, with a lateral continuity that can exceed 10 km. The distal lobe fringe shows a classical facies transition towards thin-bedded basin plain deposits.Sub-surface deposits consist of sandy turbidites and hyperpycnites, interbedded with fine-grained deposits (thin turbidites, hyperpycnites, or hemipelagites). Although these distal deposits are mainly related to flow transformations and concentration evolution, they highlight the importance of flooding of the wadi Al Batha on the sediment transfer to the deep basin. The thick sandy hyperpycnites recovered in such a distal area are also possibly related to the initial properties of gravity flows, in relation to the flooding characteristics of mountainous desert streams.Finally, the Al Batha lobe depositional architecture is typical of sand-rich lobes found within “small”, sand and mud rich turbidite systems fed by mountainous “dirty” rivers. Turbidite sedimentation in the Al Batha system appears to be primarily controlled by the strong climatic and geomorphic forcing parameters (i.e. semi-arid environment with ephemeral, mountainous rivers subjected to flash-flooding).  相似文献   

13.
14.
近年来,在浙江省北部钱塘江河口湾地区发现并开发了大量的晚第四纪浅层生物气藏。末次盛冰期,全球海平面的下降使河流梯度增加,下切作用增强,导致钱塘江下切河谷的形成。下切河谷内的沉积序列从下到上可划分为4种沉积相类型,分别为河床相、河漫滩-河口湾相、河口湾-浅海相和河口湾砂坝相。 所有的商业浅气田和气藏都分布于太湖下切河谷和钱塘江下切河谷及其支谷的河漫滩-河口湾相砂体中。钱塘江下切河谷的河漫滩-河口湾砂体埋深30~80 m,厚3~7 m,被非渗透的黏土包围,可能代表了下切河谷内分布的潮流沙脊。快速堆积的河口湾-浅海相沉积物为生物气藏的形成提供了充足的源岩和良好的保存条件。 河漫滩-河口湾相的黏土层为研究区浅层生物气藏的直接盖层,主要分布在下切河谷内,其埋深、残留地层厚度和孔隙度范围分别为30~80 m、10~30 m和42.2%~62.6%。河口湾-浅海相的淤泥层为间接盖层,覆盖了整个下切河谷,其埋深、残留地层厚度和孔隙度范围分别为5~35 m、10~20 m和50.6% ~53.9%。黏土层和淤泥层的孔隙水压力远大于下伏砂体的孔隙水压力,其差值可达0.48 MPa。在储集层和盖层分界面即浅气藏的顶部,孔隙水压力值达到最大。黏土层和淤泥层的孔隙水压力可以超过砂质储集层中气体压力和孔隙水压力之和。黏土和淤泥盖层的高孔隙水压力可能是浅层生物气被完全封闭住的最重要因素。直接盖层的封闭能力比间接盖层要好。黏土层和淤泥层的孔隙水压力消散时间很长,有时候很难达到稳定状态,这表明黏土层和淤泥层的渗透性差、封闭性好。随着埋深的增加,其压实程度和封闭性能增加。与黏土层和淤泥层相比,砂层的孔隙水压力消散较快,很容易达到稳定状态,而且消散时间与埋深无关,表明砂层渗透性好、封闭性差。气体一旦进入砂层,孔隙水就不能有效释放,导致砂层的孔隙水压力消散时间比黏土层和淤泥层的要长,这可能与生物气在孔隙水压力释放后的快速补充有关。  相似文献   

15.
Eighteen stratigraphic sections, 200 m thick on average, were logged in basin plain deposits of the Marnoso-arenacea Formation (Miocene, northern Apennines) over an area of 123 × 27 km. Turbidites form 80–90% of the facies association, hemipelagites the remainder. Thin and thick-bedded turbidites are separated by an approximate statistical boundary at 40 cm; most prominent beds (> 1 m thick) are qualified as megaturbidites. With reference to the main supply-dispersal system (NW to SE), the basin plain can be axially subdivided into proximal, intermediate and distal segments by means of the following parameters: bulk sand content, sand/shale ratio in turbidites, mean thickness of individual layers and component beds, and frequency of thick layers. Almost 40% of thick-bedded turbidites can be traced over the whole study area. These basin-wide deposits form the bulk of the basin fill. Geometrical reconstruction shows that some sandstone beds taper downcurrent from the proximal plain or the adjacent fan area while others thin upcurrent suggesting sand by pass of the fan. Mudstone beds in general thicken towards the end and the margins of the plain indicating that turbidite mud, besides bypassing the fan as a rule, was affected by ponding in the plain. Thin-bedded turbidites have a low sand/shale ratio or are completely muddy representing either tails of sandier turbidites of the outer fan (lobe and fringe deposits) or sheets extending to a great part of or to the whole plain. Sandstone lobes advanced from fans into the plain for 40–50 km gradually thinning and shaling out over a transitional zone of 10–20 km. Their internal geometry shows simple and complex growth patterns: end members are defined as progradational and aggradational. Estimates of original length, width and volume of individual turbidites strongly suggest that flows were usually confined and deflected by basin slopes regardless of source location. Basinal deposits are thus characterized by great thickness and volume, abundance of mud and fine sand, extremely low lateral gradients of thickness and grain size (but rapid wedging near the sides). The basin plain developed as a part of an elongated, oversupplied basin with a ‘highly efficient’, probably delta-fed, dispersal system.  相似文献   

16.
Glacimarine sediment deposited in the fjord adjacent to Muir Glacier in south-eastern Alaska consists of rhythmically laminated muds, stratified sandy mud, sand and gravelly mud facies. Cyclicity is recorded by gravelly mud facies deposited during winter by ice-rafting, black mud laminae formed by spring plankton blooms and variations in tidal rhythmite thickness and texture produced by the interaction of meltwater discharges and tidal currents in the macrotidal fjord. Regular cyclicity in laminae thickness is tested statistically by Fourier transform and can be attributed to a lunar tidal cycle control in the five cores collected up to 6 km from the sediment source. Cores close to the source can have additional laminae as a result of discharge fluctuations, and distal cores may lack full cycles because of variability in the plume path and attenuation with distance. Cyclic variations in sediment texture are recorded in magnetic susceptibility (MS) profiles of the cores. High MS values are produced by turbidite sand beds or by stratified sandy mud deposited by overflow plumes during peak summer meltwater discharge. Low values reflect muddy intervals deposited during periods of low meltwater discharge, such as during autumn and winter. Sediment accumulation rates measured by 210Pb dating range from 82 cm year–1, 2 km from the sediment source at the head of the fjord, to 16 cm year–1, 6 km away. These rates are within the same range as average sediment accumulation rates determined from cyclic seasonal markers within the cores. These data show that, with careful documentation, annual cycles of glacimarine sediment accumulation can be detected within marine cores. Cores collected from the distal portion of the basin were deposited during the transition of Muir Glacier from a tidewater terminus ending in deep water to a terrestrial glacier with an ice-contact delta deposited in front of the terminus. This transition is recorded by a coarsening-upward sedimentary sequence formed by turbidite sands originating from the prograding delta above fine-grained, laminated basin fill deposited by turbid overflow plumes.  相似文献   

17.
ABSTRACT The Moroccan Turbidite System (MTS) on the north‐west African margin extends 1500 km from the head of the Agadir Canyon to the Madeira Abyssal Plain, making it one of the longest turbidite systems in the world. The MTS consists of three interconnected deep‐water basins, the Seine Abyssal Plain (SAP), the Agadir Basin and the Madeira Abyssal Plain (MAP), connected by a network of distributary channels. Excellent core control has enabled individual turbidites to be correlated between all three basins, giving a detailed insight into the turbidite depositional architecture of a system with multiple source areas and complex morphology. Large‐volume (> 100 km3) turbidites, sourced from the Morocco Shelf, show a relatively simple architecture in the Madeira and Seine Abyssal Plains. Sandy bases form distinct lobes or wedges that thin rapidly away from the basin margin and are overlain by ponded basin‐wide muds. However, in the Agadir Basin, the turbidite fill is more complex owing to a combination of multiple source areas and large variations in turbidite volume. A single, very large turbidity current (200–300 km3 of sediment) deposited most of its sandy load within the Agadir Basin, but still had sufficient energy to carry most of the mud fraction 500 km further downslope to the MAP. Large turbidity currents (100–150 km3 of sediment) deposit most of their sand and mud fraction within the Agadir Basin, but also transport some of their load westwards to the MAP. Small turbidity currents (< 35 km3 of sediment) are wholly confined within the Agadir Basin, and their deposits pinch out on the basin floor. Turbidity currents flowing beyond the Agadir Basin pass through a large distributary channel system. Individual turbidites correlated across this channel system show major variations in the mineralogy of the sand fraction, whereas the geochemistry and micropalaeontology of the mud fraction remain very similar. This is interpreted as evidence for separation of the flow, with a sand‐rich, erosive, basal layer confined within the channel system, overlain by an unconfined layer of suspended mud. Large‐volume turbidites within the MTS were deposited at oxygen isotope stage boundaries, during periods of rapid sea‐level change and do not appear to be specifically connected to sea‐level lowstands or highstands. This contrasts with the classic fan model, which suggests that most turbidites are deposited during lowstands of sea level. In addition, the three largest turbidites on the MAP were deposited during the largest fluctuations in sea level, suggesting a link between the volume of sediment input and the magnitude of sea‐level change.  相似文献   

18.
Holocene deposits of the Hawkesbury River estuary, located immediately north of Sydney on the New South Wales coast, record the complex interplay between sediment supply and relative sea-level rise within a deeply incised bedrock-confined valley system. The present day Hawkesbury River is interpreted as a wave-dominated estuarine complex, divisible into two broad facies zones: (i) an outer marine-dominated zone extending 6 km upstream from the estuary mouth that is characterized by a large, subtidal sandy flood-tidal delta. Ocean wave energy is partially dissipated by this flood-tidal delta, so that tidal level fluctuations are the predominant marine mechanism operating further landward; (ii) a river-dominated zone that is 103 km long and characterized by a well developed progradational bayhead delta that includes distributary channels, levees, and overbank deposits. This reach of the Hawkesbury River undergoes minor tidal level fluctuations and low fluvial runoff during baseflow conditions, but experiences strong flood flows during major runoff events. Fluvial deposits of the Hawkesbury River occur upstream of this zone. The focus of this paper is the Hawkesbury River bayhead delta. History of deposition within this delta over the last c. 12 ka is interpreted from six continuous cores located along the upper reaches of the Hawkesbury River. Detailed sedimentological analysis of facies, whole-core X-ray analysis of burrow traces and a chronostratigraphic framework derived from 10 C-14 dates reveal four stages of incised-valley infilling in the study area: (1) before 17 ka BP, a 0–1 m thick deposit of coarse-grained fluvial sand and silt was laid down under falling-to-lowstand sea level conditions; (2) from 17 to 6·5 ka BP, a 5–10 m thick deposit composed of fine-grained fluvial sand and silt, muddy bayhead delta and muddy central-basin deposits developed as the incised valley was flooded during eustatic sea-level rise; (3) during early highstand, between 6·5 and 3 ka BP, a 3–8 m thick bed of interbedded muddy central-basin deposits and sandy river flood deposits, formed in association with maximum flooding and progradation of sandy distributary mouth-bar deposits commenced; (4) since 3 ka BP, fluvial deposits have prograded toward the estuary mouth in distributary mouth-bar, interdistributary-bay and bayhead-delta plain environments to produce a 5–15 m thick progradational to aggradational bayhead-delta deposit. At the mouth of the Hawkesbury estuary subaqueous fluvial sands interfinger with and overlie marine sands. The Hawkesbury River bayhead-delta depositional succession provides an example of the potential for significant variation of facies within the estuarine to fluvial segment of incised-valley systems.  相似文献   

19.
Deglacial sequences typically include backstepping grounding zone wedges and prevailing glaciomarine depositional facies. However, in coastal domains, deglacial sequences are dominated by depositional systems ranging from turbiditic to fluvial facies. Such deglacial sequences are strongly impacted by glacio‐isostatic rebound, the rate and amplitude of which commonly outpaces those of post‐glacial eustatic sea‐level rise. This results in a sustained relative sea‐level fall covering the entire depositional time interval. This paper examines a Late Quaternary, forced regressive, deglacial sequence located on the North Shore of the St. Lawrence Estuary (Portneuf Peninsula, Québec, Canada) and aims to decipher the main controls that governed its stratigraphic architecture. The forced regressive deglacial sequence forms a thick (>100 m) and extensive (>100 km2) multiphased deltaic complex emplaced after the retreat of the Laurentide Ice Sheet margin from the study area ca 12 500 years ago. The sedimentary succession is composed of ice‐contact, glaciomarine, turbiditic, deltaic, fluvial and coastal depositional units. A four‐stage development is recognized: (i) an early ice‐contact stage (esker, glaciomarine mud and outwash fan); (ii) an in‐valley progradational stage (fjord head or moraine‐dammed lacustrine deltas) fed by glacigenics; (iii) an open‐coast deltaic progradation, when proglacial depositional systems expanded beyond the valley outlets and merged together; and (iv) a final stage of river entrenchment and shallow marine reworking that affected the previously emplaced deltaic complex. Most of the sedimentary volume (10 to 15 km3) was emplaced during the three‐first stages over a ca 2 kyr interval. In spite of sustained high rates of relative sea‐level fall (50 to 30 mm·year?1), delta plain accretion occurred up to the end of the proglacial open‐coast progradational stage. River entrenchment only occurred later, after a significant decrease in the relative sea‐level fall rates (<30 mm·year?1), and was concurrent with the formation and preservation of extensive coastal deposits (raised beaches, spit platform and barrier sands). The turnaround from delta plain accretion to river entrenchment and coastal erosion is interpreted to be a consequence of the retreat of the ice margin from the river drainage basins that led to the drastic drop of sediment supply and the abrupt decrease in progradation rates. The main internal stratigraphic discontinuity within the forced regressive deglacial sequence does not reflect changes in relative sea‐level variations.  相似文献   

20.
Mass transport deposits, up to 3·9 m thick, have been identified from piston cores collected from canyon floors and inter-canyon ridges on the central Scotian Slope. These deposits are characterized by four distinct mass-transport facies – folded mud, dipping stratified mud, various types of mud-clast conglomerate, and diamicton. Commonly, the folded and stratified mud facies are overlain by mud-clast conglomerate, followed by diamicton and then by turbidity current deposits of well-sorted sand. Stratified and folded mud facies were sourced from canyon walls. Overconsolidation in clasts in some mud-clast conglomerates indicates that the source sediment was buried 12–33 m, much deeper than the present cored depth, implying a source in canyon heads and canyon walls. The known stratigraphic framework for the region and new radiocarbon dating suggests that there were four or five episodes of sediment failure within the past 17 ka, most of which are found in more than one canyon system. The most likely mechanism for triggering occasional, synchronous failures in separate canyons is seismic ground shaking. The facies sequence is interpreted as resulting from local slides being overlain by mud-clast conglomerate deposits derived from failures farther upslope and finally by coarser-grained deposits resulting from retrogressive failure re-mobilizing upper slope sediments to form debrisflows and turbidity currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号