首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
“一带一路”区域未来气候变化预估   总被引:1,自引:0,他引:1       下载免费PDF全文
利用耦合模式比较计划第5阶段(CMIP5)提供的18个全球气候模式的模拟结果,预估了3种典型浓度路径(RCP2.6、RCP4.5、RCP8.5)下“一带一路”地区平均气候和极端气候的未来变化趋势。结果表明:在温室气体持续排放情景下,“一带一路”地区年平均气温在未来将会持续上升,升温幅度随温室气体浓度的增加而加大。在高温室气体排放情景(RCP8.5)下,到21世纪末期,平均气温将普遍升高5℃以上,其中北亚地区升幅最大,南亚和东南亚地区升幅最小。对于降水的变化,预估该区域大部分地区的年降水量将增加,其中西亚和北亚增加最为明显,而且在21世纪中期,RCP2.6情景下的增幅要比RCP4.5和RCP8.5情景下的偏大,而在21世纪后期,RCP8.5情景下降水的增幅比RCP2.6和RCP4.5情景下的偏大。未来极端温度也将呈升高的趋势,增温幅度高纬度地区大于低纬度地区、高排放情景大于低排放情景。而且在高纬度区域,极端低温的增暖幅度要大于极端高温的增幅。连续干旱日数在北亚和东亚总体呈现减少趋势,而在其他地区则呈增加趋势。极端强降水在“一带一路”区域总体上将增强,增强最明显的地区位于南亚、东南亚和东亚。  相似文献   

2.
利用区域气候模式RegCM4的逐日气温和降水资料,预估1.5℃和2.0℃升温情景下,东北地区平均气候和极端气候事件的变化。结果表明:RCP4.5排放情景下,模式预计在2030年和2044年左右稳定达到1.5℃和2.0℃升温;两种升温情景下,东北地区气温、积温、生长季长度均呈增加趋势,且增幅随着升温阈值的升高而增加;1.5℃升温情景下,年平均气温增幅为1.19℃,年平均降水距平百分率增幅为5.78%,积温增加247.1℃·d,生长季长度延长7.0 d;2.0℃升温情景下气温、积温、生长季长度增幅较1.5℃升温情景下显著,但是年和四季降水普遍减少,年降水距平百分率减小1.96%。两种升温情景下,极端高温事件显著增加,极端低温事件显著减少,极端降水事件普遍增加。霜冻日数、结冰日数均呈显著减少趋势,热浪持续指数呈显著增加趋势;未来东北地区降水极端性增强,不仅单次降水过程的量级增大,极端降水过程的量级也明显增大,随着升温阈值的增大,极端降水的强度也逐渐增大。  相似文献   

3.
采用应用于跨行业影响模式比较计划(ISIMIP)的5个CMIP5全球气候模式模拟的历史和未来RCP排放情景下的逐日降水数据,在评估模式对汉江流域1961—2005年极端降水变化特征模拟能力的基础上,进一步计算了RCP2.6、RCP4.5和RCP8.5排放情景下汉江流域未来2016—2060年极端降水总量(R95p)、极端降水贡献率(PEP)、连续5 d最大降水(RX5d)和降水强度(SDII),结果表明:RCP4.5情景下的极端降水指数上升最明显,R95p和RX5d分别较基准期增加12.5%和8.2%,PEP增加3.2个百分点,SDII微弱上升。在不同排放情景下,PEP均有一定的增幅,以流域西北和东南部增幅较大;R95p在流域绝大部分区域表现出一定的增加,且流域东南部和北部是增幅高值区;RX5d在RCP2.6和RCP4.5情景下整体表现为增加的特征,但在RCP8.5情景下整体表现为减少的特征。对极端降水预估的不确定性中,SDII的不确定性最小,RX5d的不确定性最大;不确定性大值区主要位于流域东部、东南部和西北部部分区域。  相似文献   

4.
采用第五次耦合模式比较计划(Coupled Model Intercomparison Project Phase 5,CMIP5)高分辨率全球统计降尺度预估数据集,针对近期(2020—2039年)、中期(2040—2059年)和长期(2080—2099年),以及全球1.5℃和2℃温升阈值,预估了青藏高原地区平均气温和降水、极端气温和极端降水的变化,定量估算了预估结果的不确定性来源。结果表明:(1)在RCP4.5和RCP8.5情景下,21世纪青藏高原地区平均气温和降水、极端气温和极端降水强度均显著增加,最长连续干旱天气减少。高原气候变化幅度超全球平均,至21世纪末,模式集合预估的气候变化幅度介于全球平均的1.5~3倍。(2)青藏高原地区受0.5℃额外增温的显著影响,年均气温、极端高温和极端低温均显著升高,平均及极端强降水均显著增加。(3)排放情景的选择对近期气候预估影响小,但对长期影响大。在相同排放情景下,内部变率主导了近期高原平均气温预估的不确定性,但至长期其贡献降至10%以下。模式和内部变率的不确定性对降水预估均有贡献,且都随时间减小,最大不确定性中心位于西部和北部边缘,噪声与信号比大于6。  相似文献   

5.
基于5个全球气候系统模式结果驱动的高分辨率区域气候模式(RegCM4)模拟输出,系统评估了RegCM4模式对中国西南地区极端降水变化的模拟性能,并科学预估了中国西南地区极端降水的未来演变特征。结果表明,RegCM4模式能合理再现西南地区极端降水变化特征,但模拟的四川中部的湿偏差较大而四川盆地干偏差较大;进行偏差校正后,模拟性能有所提升,对西南地区极端降水模拟偏差有所减小。相较于当代气候(1986—2005年),就区域平均而言在21世纪(2021—2098年),有效降水总量(Prcptot)、强降水日数(R10 mm)、日最大降水量(Rx1day)和极端降水量(R95p)都明显增加;在RCP4.5和RCP8.5情景下,Rx1day和R95p在西南大部分地区增多,到21世纪末RCP4.5情景下增加幅度分别为16.0%和12.6%;Prcptot和R10 mm未来变化存在一定的区域差异,但Prcptot和R10 mm变化在空间上较为相似,在云南南部和四川盆地地区呈现减少趋势,其余地区增加明显;且RCP8.5高排放情景的变化幅度明显大于RCP4.5情景。  相似文献   

6.
基于国家气候中心中等分辨率模式BCC-CSM2-MR开展的第六次耦合模式比较计划(CMIP6)预估数据,采用双线性插值、趋势分析、偏差分析等方法,分析全球升温1.5℃和2.0℃辽河流域极端降水变化。结果表明:全球升温1.5℃辽河流域年平均降水量距平百分率增幅随排放情景的升高而增大,SSP5-8.5排放情景下增幅达5.82%。全球升温2.0℃辽河流域年和四季降水均为增加趋势,夏季降水增幅明显;SSP2-4.5和SSP5-8.5情景下降水量均为自西南向东北递减,辽宁西部地区降水增幅较为显著,超过15%。不同排放情景下辽河流域极端降水指数均为增加趋势,日降水强度、强降水日数、强降水比例增长显著;随排放情景升高,极端降水指数增长速率增大,SSP5-8.5情景下的增长速率为SSP2-4.5情景下的两倍以上。SSP5-8.5情景下,21世纪末降水强度、强降水日数、强降水比例、强降水阈值、最长连续湿日数、最大十日降水量将达11.66 mm/d、15.15 d、59.08%、32.94 mm、9.69 d、201.29 mm,较基准期增加5.58 mm/d、5.15 d、37.08%、10.15 mm...  相似文献   

7.
RegCM3 CORDEX东亚试验模拟和预估的中国夏季温度变化   总被引:1,自引:1,他引:0  
按照CORDEX (COordinated Regional Downscaling Experiment) 计划试验设计要求,利用中国科学院大气物理研究所全球模式FGOALS-g2的数据驱动区域气候模式RegCM3,针对1986~2005年历史气候和2010~2065年RCP8.5排放情景下气候预估,对东亚地区进行了50 km动力降尺度模拟。首先评估了RegCM3模式及驱动模式FGOALS-g2对1986~2005年夏季中国地表气温和极端高温事件的模拟能力,然后比较了两个模式在RCP8.5排放情景下对中国夏季地表气温和极端高温事件预估的变化,重点分析了动力降尺度结果的优势。结果表明,两个模式均能合理再现夏季中国地表气温和极端高温事件的大尺度气候态特征。相对于全球模式,区域模式由于水平分辨率较高,能在刻画地表气温分布的细节上体现出优势。在RCP8.5排放情景下,两个模式预估的三个地表气温指标均显著升高,到21世纪中期 (2046~2065年),两个模式预估的全国平均地表气温增幅相当,气温日较差变化均较小。在FGOALS-g2模式预估中,到21世纪中期,三个地表气温指标的增幅相当,气温日较差没有明显变化,东北和青藏高原的地表气温增幅最大。在RegCM3模式预估中,到21世纪中期,中国大部分地区日最高气温 (Tmax) 增幅大于日最低气温 (Tmin) 增幅,气温日较差增加;而在青藏高原西部,Tmax的增幅较Tmin偏低,气温日较差减小。在RCP8.5排放情景下,两个模式预估的极端高温事件到21世纪中期也显著增加,RegCM3模式预估的极端高温事件全国平均增幅略高于FGOALS-g2模式的预估。在两个模式的预估中,日最高气温最大值 (TXx)、暖昼指数 (TX90p) 和持续暖期指数 (WSDI) 变化的空间分布特征与Tmax相似;和当代相比TX90p增加了60%以上,而WSDI增加了一倍以上。  相似文献   

8.
1955—2014年杭州极端气温和降水指数变化特征   总被引:1,自引:0,他引:1  
根据杭州市1955—2014年降水量、气温逐日资料,采用国际通用的极端天气指数和线性倾向估计、M-K检验等方法,分析了杭州市近60 a极端气温和降水的变化特征。结果表明:1)杭州市近60 a的气温呈一致升高趋势,且变化显著,表现为极端高温阈值和极端低温阈值的升高及极端高温日数的增多;极端冷事件显著减少,暖事件显著增多。2)极端降水指数中只有强降水量的增加较明显,主要贡献为夏季和冬季强降水量的增强。3)冬季平均气温、极端低温阈值、霜冻日数等极端冷事件的突变发生于20世纪80年代初中期,夏季平均气温、极端高温阈值、高温日数等极端暖事件的突变发生于20世纪末21世纪初,与全国范围内的气候增暖进程基本一致。另外,降水强度、极端降水阈值等极端降水指数的突变时间在2008年左右,即2008年后气温升高和降水强度的增加突变期叠加,尤其在夏季和冬季表现更突出,可能诱发更多的异常天气。  相似文献   

9.
FGOALS-g2模式模拟和预估的全球季风区极端降水及其变化   总被引:2,自引:2,他引:2  
利用LASG/IAP(中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室)全球耦合模式FGOALS-g2,评估了其对全球季风区极端气候指标的模拟能力,并讨论了RCP8.5排放情景下21世纪季风区极端气候指标的变化特征。总体而言,模式对季风区总降水和极端气候指标1997~2014年气候态和年际变率的空间分布均具有一定的模拟能力。偏差主要表现在模式低估了亚洲季风强降水中心,低估了中雨(10~20 mm d-1)和大雨(20~50 mm d-1)的频率而高估了暴雨(>50 mm d-1)频率。在RCP8.5排放情景下,由于可降水量的增加,模式预估的全球季风区极端降水、降水总量和降水强度将持续增加。到2076~2095年,极端降水和降水强度在北美季风区增加最显著(约22%和17%),降水总量在澳大利亚增加最显著(约37%)。然而,FGOALS-g2对全球季风区平均的日降水量低于1 mm的连续最大天数(CDD)的预估变化不显著,这是由于预估的CDD在陆地季风区将增加,而在海洋季风区将减少。对各子季风区的分析显示,CDD在南美季风区变长最显著,达到30%,在澳洲季风区变短最显著,达到40%,这与两季风区日降水量低于1 mm的降水事件发生频率变化不同有关。  相似文献   

10.
利用泰勒图客观地评估了贵州省在参照时段1986—2005年8个CMIP5模式试验结果对气温的模拟能力,并采用在等权重系数条件下的集合平均结果计算了贵州省21世纪不同阶段不同情景下未来极端气温指数.研究表明:8个模式的集合平均的模拟效果能较好地模拟用于计算极端气温指数的基础数据,包括日平均气温、日最低气温和日最高气温.根据集合平均的结果,不同RCPs排放情景下21世纪贵州省相对于基准期大于25℃的高温日数(SU)、最低气温的最低值(TNN)和生长季长度(GSL)均表现为增加的趋势,而小于0℃的霜冻日数(FD)则呈现减少的趋势,排放越高,增加或减少的趋势越明显.RCP8.5、RCP4.5和RCP2.6情景下2006—2099年贵州省极端气温指数相对于1986—2005年SU、TNN、FD和GSL的变化速率分别为8.06~1.30 d/(10 a)、0.49~0.07℃/(10 a)、-4.99~-0.97 d/(10 a)和3.33~0.04 d/(10 a).  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
<正>The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth’s climate and environment.  相似文献   

13.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

16.
基于最新的GTAP8 (Global Trade Analysis Project)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。  相似文献   

17.
正ERRATUM to: Atmospheric and Oceanic Science Letters, 4(2011), 124-130 On page 126 of the printed edition (Issue 2, Volume 4), Fig. 2 was a wrong figure because the contact author made mistake giving the wrong one. The corrected edition has been updated on our website. The editorial office is sincerely sorry for any  相似文献   

18.
19.
Index to Vol.31     
正AN Junling;see LI Ying et al.;(5),1221—1232AN Junling;see QU Yu et al.;(4),787-800AN Junling;see WANG Feng et al.;(6),1331-1342Ania POLOMSKA-HARLICK;see Jieshun ZHU et al.;(4),743-754Baek-Min KIM;see Seong-Joong KIM et al.;(4),863-878BAI Tao;see LI Gang et al.;(1),66-84BAO Qing;see YANG Jing et al.;(5),1147—1156BEI Naifang;  相似文献   

20.
正Journal of Meteorological Research is an international academic journal in atmospheric sciences edited and published by Acta Meteorologica Sinica Press,sponsored by the Chinese Meteorological Society.It has been acting as a bridge of academic exchange between Chinese and foreign meteorologists and aiming at introduction of the current advancements in atmospheric sciences in China.The journal columns include Articles.Note and Correspondence,and research letters.Contributions from all over the world are welcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号