首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Differences in texture and discovery location prompted us to analyze 16 irons from Morasko; one from Seeläsgen, known to have a similar composition; and a new mass found at Jankowo Dolne. These were analyzed in duplicate by instrumental neutron‐activation analysis (INAA). The results show that all 18 samples have very similar compositions, distinct from all other IAB irons except Burgavli; we conclude that they are all from a single shower. Eight of the samples were from regions with large amounts of cohenite (but were largely free of inclusions) and six were from samples with very little cohenite; we could find no resolvable difference in composition between these sets, a fact that suggests that the C contents of the metal phases were similar in the two areas. Although Morasko has been classified into the IAB main group (IAB‐MG), its Ir plots well outside the main group field on an Ir‐Au diagram. We considered the possibility that the low Ir reflected contamination by a melt from a IAB region that ponded and experienced fractional crystallization; however, because Morasko has Pt, W, and Ga values that are the same as the highest values in IAB‐MG, we rejected this model. We therefore conclude that Morasko formed from a different melt than the IAB‐MG irons; the Morasko melt was produced by impact heating, but one or more of the main Ir carriers did not melt, leaving much of the Ir in the unmelted residue. Copper is the only element that shows resolvable differences among Morasko samples. Most (13 of 18) samples have 149 ± 4 μg g?1 Cu, but three have 213 ± 10 μg g?1; we interpret this to mean that the low‐Cu samples have equilibrated with a Cu‐rich phase, whereas there was none of the latter phase within a few diffusion lengths of the samples with high Cu contents.  相似文献   

2.
Abstract— The IIIAB group is the largest of the magmatic iron meteorite groups and consequently is commonly used to test models of asteroid core crystallization. Simple fractional crystallization calculations appear to reproduce the general shape of the elemental trends observed in the IIIAB group when these trends are plotted vs. Ni, as is traditionally done. However, when the elemental trends are examined vs. another element (such as Ge vs. Ir), simple fractional crystallization fails to match a significant portion of the trend, specifically meteorites formed during the final stages of crystallization. Our simple mixing model, which attempts to account for the possibility of inhomogeneities in the molten metallic core, is able to reproduce the entire IIIAB trend observed. This model is a variant of simple fractional crystallization and involves mixing between a zone of liquid involved in the crystallization process and a second zone too far from the crystallizing solid to be actively involved in crystallization. This model does not suggest one unique solution for the method by which an asteroidal core crystallizes; rather it demonstrates that including the effects of mixing in the molten core can account for the observed IIIAB elemental trends, particularly the late-stage crystallizing members, which other models have difficulty explaining.  相似文献   

3.
This study uses experimentally determined plagioclase‐melt D values to estimate the trace element concentrations of Sr, Hf, Ga, W, Mo, Ru, Pd, Au, Ni, and Co in a crystallizing lunar magma ocean at the point of plagioclase flotation. Similarly, experimentally determined metal‐silicate partition experiments combined with a composition model for the Moon are used to constrain the concentrations of W, Mo, Ru, Pd, Au, Ni, and Co in the lunar magma ocean at the time of core formation. The metal‐silicate derived lunar mantle estimates are generally consistent with previous estimates for the concentration of these elements in the lunar mantle. Plagioclase‐melt derived concentrations for Sr, Ga, Ru, Pd, Au, Ni, and Co are also consistent with prior estimates. Estimates for Hf, W, and Mo, however, are higher. These elements may be concentrated in the residual liquid during fractional crystallization due to their incompatibility. Alternatively, the apparent enrichment could reflect the inappropriate use of bulk anorthosite data, rather than data for plagioclase separates.  相似文献   

4.
Abstract— The petrography and mineral and bulk chemistries of silicate inclusions in Sombrerete, an ungrouped iron that is one of the most phosphate‐rich meteorites known, was studied using optical, scanning electron microscopy (SEM), electron microprobe analysis (EMPA), and secondary ion mass spectrometry (SIMS) techniques. Inclusions contain variable proportions of alkalic siliceous glass (?69 vol% of inclusions on average), aluminous orthopyroxene (?9%, Wo1–4Fs25–35, up to ?3 wt% Al), plagioclase (?8%, mainly An70–92), Cl‐apatite (?7%), chromite (?4%), yagiite (?1%), phosphate‐rich segregations (?1%), ilmenite, and merrillite. Ytterbium and Sm anomalies are sometimes present in various phases (positive anomalies for phosphates, negative for glass and orthopyroxene), which possibly reflect phosphate‐melt‐gas partitioning under transient, reducing conditions at high temperatures. Phosphate‐rich segregations and different alkalic glasses (K‐rich and Na‐rich) formed by two types of liquid immiscibility. Yagiite, a K‐Mg silicate previously found in the Colomera (IIE) iron, appears to have formed as a late‐stage crystallization product, possibly aided by Na‐K liquid unmixing. Trace‐element phase compositions reflect fractional crystallization of a single liquid composition that originated by low‐degree (?4–8%) equilibrium partial melting of a chondritic precursor. Compositional differences between inclusions appear to have originated as a result of a “filter‐press differentiation” process, in which liquidus crystals of Cl‐apatite and orthopyroxene were less able than silicate melt to flow through the metallic host between inclusions. This process enabled a phosphoran basaltic andesite precursor liquid to differentiate within the metallic host, yielding a dacite composition for some inclusions. Solidification was relatively rapid, but not so fast as to prevent flow and immiscibility phenomena. Sombrerete originated near a cooling surface in the parent body during rapid, probably impact‐induced, mixing of metallic and silicate liquids. We suggest that Sombrerete formed when a planetesimal undergoing endogenic differentiation was collisionally disrupted, possibly in a breakup and reassembly event. Simultaneous endogenic heating and impact processes may have widely affected silicate‐bearing irons and other solar system matter.  相似文献   

5.
Abstract— Nakhla contains crystallized melt inclusions that were trapped in augite and olivine when these phases originally formed on Mars. Our study involved rehomogenization (slow‐heating and fast‐heating) experiments on multiphase melt inclusions in Nakhla augite. We studied melt inclusions trapped in augite because this phase re‐equilibrated with the external melt to a lesser extent than olivine and results could be directly compared with previous Nakhla melt inclusion studies. Following heating and homogenization of encapsulated melt inclusions, single mineral grains were mounted and polished to expose inclusions. Major element chemistry was determined by electron microprobe. The most primitive melt inclusion analyzed in Nakhla NA03 is basaltic and closely matches previously reported nakhlite parent melt compositions. MELTS equilibrium and fractional crystallization models calculated for NA03 and previous Nakhla parent melt estimates at QFM and QFM‐1 produced phase assemblages and compositions that can be compared to Nakhla. Of these models, equilibrium crystallization of NA03 at QFM‐1 produced the best match to mineral phases and compositions in Nakhla. In all models, olivine and augite co‐crystallize, consistent with the hypothesis that olivine is not xenocrystic but has undergone subsolidus re‐equilibration. In addition, measured melt inclusion compositions plot along the MELTS‐calculated liquid line of descent and may represent pockets of melt trapped at various stages during crystallization. We attempt to resolve discrepancies between previous estimates of the Nakhla parental melt composition and to reinterpret the results of a previous study of rehomogenized melt inclusions in Nakhla. Melt inclusions demonstrate that Nakhla is an igneous rock whose parent melt composition and crystallization history reflect planetary igneous processes.  相似文献   

6.
Abstract— We analyzed the Steinbach IVA stony‐iron meteorite using scanning electron microscopy (SEM), electron microprobe analysis (EMPA), laser ablation inductively‐coupled‐plasma mass spectroscopy (LA‐ICP‐MS), and modeling techniques. Different and sometimes adjacent low‐Ca pyroxene grains have distinct compositions and evidently crystallized at different stages in a chemically evolving system prior to the solidification of metal and troilite. Early crystallizing pyroxene shows evidence for disequilibrium and formation under conditions of rapid cooling, producing clinobronzite and type 1 pyroxene rich in troilite and other inclusions. Subsequently, type 2 pyroxene crystallized over an extensive fractionation interval. Steinbach probably formed as a cumulate produced by extensive crystal fractionation (?60–70% fractional crystallization) from a high‐temperature (?1450–1490 °C) silicate‐metallic magma. The inferred composition of the precursor magma is best modeled as having formed by ≥30–50% silicate partial melting of a chondritic protolith. If this protolith was similar to an LL chondrite (as implied by O‐isotopic data), then olivine must have separated from the partial melt, and a substantial amount (?53–56%) of FeO must have been reduced in the silicate magma. A model of simultaneous endogenic heating and collisional disruption appears best able to explain the data for Steinbach and other IVA meteorites. Impact disruption occurred while the parent body was substantially molten, causing liquids to separate from solids and oxygen‐bearing gas to vent to space, leading to a molten metal‐rich body that was smaller than the original parent body and that solidified from the outside in. This model can simultaneously explain the characteristics of both stony‐iron and iron IVA meteorites, including the apparent correlation between metal composition and metallographic cooling rate observed for metal.  相似文献   

7.
Abstract— Thirteen phosphate minerals are found in IIIAB iron meteorites. Four of these (sarcopside, graftonite, johnsomervilleite, and galileiite) constitute the majority of occurrences. The IIIB iron meteorites are confined to occurrences of only these four phosphates. The IIIA iron meteorites may contain one or more of these four phases; they may also contain other rarer phosphates, and silica (in two instances) and a silicate rock (in one instance). Thus, the IIIA lithophile chemistry is more varied than that of the IIIB meteorites. Based on petrographic relations, sarcopside appears to be the first phosphate to form. Graftonite is probably formed by recrystallization of sarcopside. Johnsomervilleite and galileiite exsolved as enclaves in sarcopside or graftonite at lower temperatures, although some of these also nucleated as separate crystals. The IIIAB phosphates are carriers of a group of incompatible lithophile elements: Fe, Mn, Na, Ca, and K, and, rarely, Mg as well as Pb. These elements (and O) were concentrated in a residual, S-rich liquid during igneous fractional crystallization of the IIIAB core mass. The phosphates formed by oxidation of P as the core solidified and excluded O, which increased its partial pressure in the residual liquid. The trace siderophile trends in bulk IIIAB metal are paralleled by a mineralogical trend of the phosphate minerals that formed. For IIIAB meteorites with low-Ir contents in the metal, the phosphates are mainly Fe-Mn phases; at intermediate Ir values, more Na-bearing phosphates appear; at the highest Ir values, the rarer Na-, K-, Mg-, Cr-, and Pb-bearing phosphates appear. The absence of significant amounts of Mg, Si, Al, and Ti suggest depletion of these elements in the core by the overlying mantle.  相似文献   

8.
Several olivine‐phyric shergottites contain enough olivine that they could conceivably represent the products of closed‐system crystallization of primary melts derived from partial melting of the Martian mantle. Larkman Nunatak (LAR) 06319 has been suggested to represent a close approach to a Martian primary liquid composition based on approximate equilibrium between its olivine and groundmass. To better understand the olivine–melt relationship and the evolution of this meteorite, we report the results of new petrographic and chemical analyses. We find that olivine megacryst cores are generally not in equilibrium with the groundmass, but rather have been homogenized by diffusion to Mg# 72. We have identified two unique grain types: an olivine glomerocryst and an olivine grain preserving a primary magmatic boundary that constrains the time scale of eruption to be on the order of hours. We also report the presence of trace oxide phases and phosphate compositions that suggest that the melt contained approximately 1.1% H2O and lost volatiles during cooling, also associated with an increase in oxygen fugacity upon degassing. We additionally report in situ rare earth element measurements of the various mineral phases in LAR 06319. Based on these reported trace element abundances, we estimate the oxygen fugacity in the LAR 06319 parent melt early in its crystallization sequence (i.e., at the time of crystallization of the low‐Ca and high‐Ca pyroxenes), the rare earth element composition of the parent melt, and those of melts in equilibrium with later formed phases. We suggest that LAR 06319 represents the product of closed‐system crystallization within a shallow magma chamber, with additional olivine accumulated from a cumulate pile. We infer that the olivine megacrysts are antecrysts, derived from a single magma chamber, but not directly related to the host magma, and suggest that mixing of antecrysts within magma chambers may be a common process in Martian magmatic systems.  相似文献   

9.
Northwest Africa (NWA) 4898 is the only low‐Ti, high‐Al basaltic lunar meteorite yet recognized. It predominantly consists of pyroxene (53.8 vol%) and plagioclase (38.6 vol%). Pyroxene has a wide range of compositions (En12–62Fs25–62Wo11–36), which display a continuous trend from Mg‐rich cores toward Ca‐rich mantles and then to Fe‐rich rims. Plagioclase has relatively restricted compositions (An87–96Or0–1Ab4–13), and was transformed to maskelynite. The REE zoning of all silicate minerals was not significantly modified by shock metamorphism and weathering. Relatively large (up to 1 mm) olivine phenocrysts have homogenous inner parts with Fo ~74 and sharply decrease to 64 within the thin out rims (~30 μm in width). Four types of inclusions with a variety of textures and modal mineralogy were identified in olivine phenocrysts. The contrasting morphologies of these inclusions and the chemical zoning of olivine phenocrysts suggest NWA 4898 underwent at least two stages of crystallization. The aluminous chromite in NWA 4898 reveals that its high alumina character was inherited from the parental magma, rather than by fractional crystallization. The mineral chemistry and major element compositions of NWA 4898 are different from those of 12038 and Luna 16 basalts, but resemble those of Apollo 14 high‐Al basalts. However, the trace element compositions demonstrate that NWA 4898 and Apollo 14 high‐Al basalts could not have been derived from the same mantle source. REE compositions of its parental magma indicate that NWA 4898 probably originated from a unique depleted mantle source that has not been sampled yet. Unlike Apollo 14 high‐Al basalts, which assimilated KREEPy materials during their formation, NWA 4898 could have formed by closed‐system fractional crystallization.  相似文献   

10.
Abstract– We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on “carrot” and “bulbous” tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg‐rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O‐rich forsteritic grain that may have formed in a similar environment as Ca‐, Al‐rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron‐sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.  相似文献   

11.
Abstract— We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC‐ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non‐magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of ~0.4‰ amu?1. The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (~0.0 to ~0.3‰ amu?1) and chondrites (~0.0 to ~0.2‰ amu?1) are similar, whereas the range in pallasite metal (~–0.1 to 0.0‰ amu?1) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (~0.0 to ~0.3‰ amu?1) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by ~0.4‰ amu?1. In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe‐Ni alloy and the development of the Widmanstätten pattern.  相似文献   

12.
We have performed an experimental and modeling study of the partial melting behavior of the HED parent body and of the fractional crystallization of liquids derived from its mantle. We estimated the mantle composition by assuming chondritic ratios of refractory lithophile elements, adjusting the Mg# and core size to match the density and moment of inertia of Vesta, and the compositions of Mg‐rich olivines found in diogenites. The liquidus of a mantle with Mg# (=100*[Mg/(Mg+Fe)]) 80 is ~1625 °C and, under equilibrium conditions, the melt crystallizes olivine alone until it is joined by orthopyroxene at 1350 °C. We synthesized the melt from our 1350 °C experiment and simulated its fractional crystallization path. Orthopyroxene crystallizes until it is replaced by pigeonite at 1200 °C. Liquids become eucritic and crystal assemblages resemble diogenites below 1250 °C. MELTS correctly predicts the olivine liquidus but overestimates the orthopyroxene liquidus by ~70 °C. Predicted melt compositions are in reasonable agreement with those generated experimentally. We used MELTS to determine that the range of mantle compositions that can produce eucritic liquids and diogenitic solids in a magma ocean model is Mg# 75–80 (with chondritic ratios of refractory elements). A mantle with Mg# ~ 70 can produce eucrites and diogenites through sequential partial melting.  相似文献   

13.
Abstract– The single‐piece iron meteorite Javorje, with a mass of 4920 g, is the heaviest and largest meteorite found in the territory of Slovenia. The meteorite Javorje is a medium octahedrite with kamacite bandwidth of 0.85 ± 0.26 mm. The bulk composition of Ni (7.83 wt%), Co (0.48 wt%) and trace elements Ga (25 μg/g), Ge (47 μg/g), Ir (7.6 μg/g), As (5.8 μg/g), Au (0.47 μg/g), and Pt (13.4 μg/g) indicates that the meteorite Javorje belongs to the chemical group IIIAB. Mineral and bulk chemical compositions are consistent with other reported group IIIAB meteorites. The presence of numerous rhabdites, carlsbergite, sparse troilite, and chromite and abundance of daubréelites are in accordance with low‐Ni and low‐P IIIAB iron meteorites. The severely weathered surface and secondary weathering products in the interior of the meteorite suggest its high terrestrial age.  相似文献   

14.
Abstract— Our studies of the silicate-bearing inclusions in the IIICD iron meteorites Maltahöhe, Carlton and Dayton suggest that their mineralogy and mineral compositions are related to the composition of the metal in the host meteorites. An inclusion in the low-Ni Maltahöhe is similar in mineralogy to those in IAB irons, which contain olivine, pyroxene, plagioclase, graphite and troilite. With increasing Ni concentration of the metal, silicate inclusions become poorer in graphite, richer in phosphates, and the phosphate and silicate assemblages become more complex. Dayton contains pyroxene, plagioclase, SiO2, brianite, panethite and whitlockite, without graphite. In addition, mafic silicates become more FeO-rich with increasing Ni concentration of the hosts. In contrast, silicates in IAB irons show no such correlation with host Ni concentration, nor do they have the complex mineral assemblages of Dayton. These trends in inclusion composition and mineralogy in IIICD iron meteorites have been established by reactions between the S-rich metallic magma and the silicates, but the physical setting is uncertain. Of the two processes invoked by other authors to account for groups IAB and IIICD, fractional crystallization of S-rich cores and impact generation of melt pools, we prefer core crystallization. However, the absence of relationships between silicate inclusion mineralogy and metal compositions among IAB irons analogous to those that we have discovered in IIICD irons suggests that the IAB and IIICD cores/metallic magmas evolved in rather different ways. We suggest that the solidification of the IIICD core may have been very complex, involving fractional crystallization, nucleation effects and, possibly, liquid immiscibility.  相似文献   

15.
The Lonar crater is a ~0.57‐Myr‐old impact structure located in the Deccan Traps of the Indian peninsula. It probably represents the best‐preserved impact structure hosted in continental flood basalts, providing unique opportunities to study processes of impact cratering in basaltic targets. Here we present highly siderophile element (HSE) abundances and Sr‐Nd and Os isotope data for target basalts and impactites (impact glasses and impact melt rocks) from the Lonar area. These tools may enable us to better constrain the interplay of a variety of impact‐related processes such as mixing, volatilization, and contamination. Strontium and Nd isotopic compositions of impactites confirm and extend earlier suggestions about the incorporation of ancient basement rocks in Lonar impactites. In the Re‐Os isochron plot, target basalts exhibit considerable scatter around a 65.6 Myr Re‐Os reference isochron, most likely reflecting weathering and/or magma replenishment processes. Most impactites plot at distinctly lower 187Re/188Os and 187Os/188Os ratios compared to the target rocks and exhibit up to two orders of magnitude higher abundances of Ir, Os, and Ru. Moreover, the impactites show near‐chondritic interelement ratios of HSE. We interpret our results in terms of an addition of up to 0.03% of a chondritc component to most impact glasses and impact melt rocks. The magnitude of the admixture is significantly lower than the earlier reported 12–20 wt% of extraterrestrial component for Lonar impact spherules, reflecting the typical difference in the distribution of projectile component between impact glass spherules and bulk impactites.  相似文献   

16.
A sample of Campo del Cielo with any other name would have the same composition. During the last three decades, our instrumental neutron activation analyses (INAA) of many supposedly new iron meteorites have shown an anomalously large fraction to have compositions within the compositional field of the IAB‐MG iron Campo del Cielo. A plot of Ir versus Au provides the best discrimination; only two independent‐fall irons found after 1980 with good recovery documentation fall within the 90% contour ellipse around the centroid of this Campo field, and one of these is from Antarctica. Now (early 2018) a total of 36 other irons attributed to other geographical locations have compositions that cannot be resolved from the Campo compositional field. Because it is possible that some of these are actually independent falls, the Meteoritical Society Nomenclature Committee has chosen to assign about half these meteorites Nova XXX names used for meteorites whose discovery localities are not adequately documented. However, for Campo‐like irons with too little information (e.g., total weight not known) or for which no adequately large type specimens are available, the decision is to call them Campos with the working name used during the UCLA analysis. In the UCLA Meteorite Collection, they are cataloged together with the documented Campos.  相似文献   

17.
Abstract— Magmatic iron meteorites are generally agreed to represent metal that crystallized in asteroidal cores from a large pool of liquid. Estimates suggest that the metallic liquid contained significant amounts of S and P, both of which are incompatible and exert a strong effect on trace element partitioning. In tandem, S and P are also prone to cause immiscibility between sulfide liquid and P-rich metal liquid. The liquid immiscibility field occupies ~70% of the portion of the Fe-Ni-S-P system in which Fe is the first phase to crystallize. In spite of this, previous fractional crystallization models have taken into account only one liquid phase and have encountered significant discrepancies between the meteorite data and model values for the key elements Ni, Ir, Ga, Ge and Au at even moderate degrees of fractionation. For the first time, a model for trace element partitioning between immiscible liquids in the Fe-Ni-S-P system is presented in order to assess the effects on fractionation in magmatic iron meteorite groups. The onset of liquid immiscibility causes a significant change in the enrichment patterns of S and P in both liquids; so elements with contrasting partitioning behavior will show trends deviating clearly from one-liquid trends. A trend recorded in the solid metal will either be a smooth curve as long as equilibrium is maintained between the two liquids or the trend may diverge into a field limited by two extreme curves depending on the degree of disequilibrium. Bulk initial liquids for most magmatic groups have S/P (wt%) ratios well below 25. In these cases and due to the constitution of the Fe-Ni-S-P system, most of the metal will crystallize from the rapidly decreasing volume of metal liquid and only a subordinate amount from the sulfide liquid. Because of the strong extraction of P into the metal liquid, P will have a much larger influence on trace element partitioning than a low initial P content might suggest. My model calculations suggest that liquid immiscibility played a significant role during the solidification of the IIIAB parent body's core. The two-liquid model reproduces the IIIAB trends more closely than previous one-liquid models and can account for: (a) the general widening of the IIIAB trend with increasing Ni and decreasing Ir contents, (b) the occurrence of high-Ni members that are not strongly depleted in Ir, Ga and Ge; and (c) an upper limit at ~11 wt% Ni where the metal liquid was almost consumed.  相似文献   

18.
Abstract— Jones (1994) demonstrated that fractional crystallization of IIIAB iron meteorites may result in a log Au vs. log Ni plot of constant slope even though kAu and kNi change. Jones' example is a special case, however, and does not necessarily describe behavior by other elements or in other metallic magmas.  相似文献   

19.
We report the results of nominally anhydrous equilibrium and fractional crystallization experiments on a synthetic Yamato‐980459 (Y98) bulk composition at 0.5 GPa. These experiments allow us to test a suggested fractional crystallization model, calculated using MELTS by Symes et al. ( 2008 ), in which a Y98‐like initial liquid yielded a magma closely resembling the bulk composition of QUE 94201. Although the two meteorites cannot be cogenetic owing to their age difference, they are thought to represent bona fide magmatic liquids rather than products of crystal accumulation, as are most Martian basaltic meteorites. Hence, understanding possible petrogenetic links between these types of liquids could be revealing about processes of melting and crystallization that formed the range of Martian basalts. We find that Y98 can, in fact, generate a residual liquid closely resembling QUE, but only after a very different crystallization process, and different degree of crystallization, than that modeled using MELTS. In addition, both the identity and sequence of crystallizing phases are very different between model and experiments. Our fractional crystallization experiments do not produce a QUE‐like liquid, and the crystallizing phases are an even poorer match to the MELTS‐calculated compositions than in the equilibrium runs. However, residual liquids from our experiments define a liquid line of descent that encompasses bulk compositions of parental melts calculated for several Martian basaltic meteorites, suggesting that the known Martian basaltic meteorites had their ultimate origin from the same or very similar source lithologies. These are, in turn, similar to source rocks modeled by previous studies as products of extensive crystallization of an initial Martian magma ocean.  相似文献   

20.
Larkman Nunatak (LAR) 12095 and LAR 12240 are recent olivine‐phyric shergottite finds. We report the results of petrographic and chemical analyses of these two samples to understand their petrogenesis on Mars. Based on our analyses, we suggest that these samples are likely paired and are most similar to other depleted olivine‐phyric shergottites, particularly Dar al Gani (DaG) 476 and Sayh al Uhaymir (SaU) 005 (and samples paired with those). The olivine megacryst cores in LAR 12095 and LAR 12240 are not in equilibrium with the groundmass olivines. We infer that these megacrysts are phenocrysts and their major element compositions have been homogenized by diffusion (the cores of the olivine megacrysts have Mg# ~70, whereas megacryst rims and groundmass olivines typically have Mg# ~58–60). The rare earth element (REE) microdistributions in the various phases (olivine, low‐ and high‐Ca pyroxene, maskelynite, and merrillite) in both samples are similar and support the likelihood that these two shergottites are indeed paired. The calculated parent melt (i.e., in equilibrium with the low‐Ca pyroxene, which is one of the earliest formed REE‐bearing minerals) has an REE pattern parallel to that of melt in equilibrium with merrillite (i.e., one of the last‐formed minerals). This suggests that the LAR 12095/12240 paired shergottites represent the product of closed‐system fractional crystallization following magma emplacement and crystal accumulation. Utilizing the europium oxybarometer, we estimate that the magmatic oxygen fugacity early in the crystallization sequence was ~IW. Finally, petrographic evidence indicates that LAR 12095/12240 experienced extensive shock prior to being ejected from Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号