首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation of the Martian polar cap winds and their response to a variety of factors is carried out by a series of numerical experiments based on a zonally symmetric primitive equation model. These factors are the seasonal thermal forcing, mass exchange between polar caps and atmosphere, large-scale topography, and polar cap size. The thermal forcing sets up a circulation whose surface winds adjust to achieve angular momentum balance, with low-latitude easterlies and high-latitude westerlies. The maximum westerlies occur roughly where the horizontal temperature gradients are largest. This pattern changes when cap and atmosphere exchange mass. Corriolis forces acting on the net outflow or inflow produce easterlies at the surface during spring (outflow) and westerlies during winter (inflow). Topography appears to have a small effect, but cap size does play a role, the circulation intensity increasing with cap size. Peak surface winds occur when outflow or inflow is a maximum and are 20 m sec?1 during spring and 30 m sec?1 during winter for the northern hemisphere. The model results show that surface winds near the edge of a retreating polar cap are substantially enhanced, a result which is consistent with the Viking observations of local dust storm activity near the edge of the south polar cap during spring. The results also indicate that the surficial wind indicators near the south pole are formed during spring and those near the north pole during winter. The implication is that the high-latitude dune fields in the northern hemisphere are formed at a time when the terrain is being covered with frost. It is therefore suggested that the saltating particles are “snowflakes” which have formed by the mechanism proposed by Pollack etal. The model results for the winter simulation, which have formed by the mechanism transport by large-scale eddies, compare favorably with general circulation model (GCM) calculations. This suggests that the eddy transports may be less important than those associated with the net mass flow, and that 2-D climate modeling may be more succesful for Mars than Earth.  相似文献   

2.
Observations of vertical and horizontal thermospheric winds, using the OI (3P-1D) 630 nm emission line, by ground-based Fabry-Perot interferometers in Northern Scandinavia and in Svalbard (Spitzbergen) have identified sources of strong vertical winds in the high latitude thermosphere. Observations from Svalbard (78.2N 15.6E) indicate a systematic diurnal pattern of strong downward winds in the period 06.00 U.T. to about 18.00 U.T., with strong upward winds between 20.00 U.T. and 05.00 U.T. Typical velocities of 30 m s?1 downward and 50 m s?1 upward occur, and there is day to day variability in the magnitude (30–80 m s?1) and phase (+/- 3 h) in the basically diurnal variation. Strong and persistent downward winds may also occur for periods of several hours in the afternoon and evening parts of the auroral oval, associated with the eastward auroral electrojet (northward electric fields and westward ion drifts and winds), during periods of strong geomagnetic disturbances. Average downward values of 30–50 m s?1 have been observed for periods of 4–6 h at times of large and long-lasting positive bay disturbances in this region. It would appear that the strong vertical winds of the polar cap and disturbed dusk auroral oval are not in the main associated with propagating wave-like features of the wind field. A further identified source is strongly time-dependent and generates very rapid upward vertical motions for periods of 15–30 min as a result of intense local heating in the magnetic midnight region of the auroral oval during the expansion phase of geomagnetic disturbances, and accompanying intense magnetic and auroral disturbances. In the last events, the height-integrated vertical wind (associated with a mean altitude of about 240 km) may exceed 100–150 m s?1. These disturbances also invariably cause major time-dependent changes of the horizontal wind field with, for example, horizontal wind changes exceeding 500 m s?1 within 30 min. The changes of vertical winds and the horizontal wind field are highly correlated, and respond directly to the local geomagnetic energy input. In contrast to the behaviour observed in the polar cap or in the disturbed afternoon auroral oval, the ‘expansion phase’ source, which corresponds to the classical ‘auroral substorm’, generates strong time-dependent wind features which may propagate globally. This source thus directly generates one class of thermospheric gravity waves. In this first paper we will consider the experimental evidence for vertical winds. In a second paper we will use a three-dimensional time-dependent model to identify the respective roles of geomagnetic energy and momentum in the creation of both classes of vertical wind sources, and consider their propagation and effects on global thermospheric dynamics.  相似文献   

3.
A.W. Ward  K.B. Doyle 《Icarus》1983,55(3):420-431
Dunes in the Martian north polar erg show two dominant orientations. When seen at frost cap minimum, dunes north of 80°N record east winds, dunes south of 80°N record west winds. Many of the transverse dunes are considered to be reversing dunes. Dunes in two fields may have reversed at least once during the lifetime of the Viking Orbiters. Poor agreement exists among published predictive models of north polar winds and the interpretations derived from the major published map of the north polar dunes. We propose that the average polar winds are: (1) strong, off-pole northwest winds in fall; (2) moderate west winds in winter; (3) latitude-dependent weak to strong off-pole northeast winds in spring; and (4) weak west winds in summer. Viking images of near-polar clouds confirm much of the hypothesis. Images discussed in other studies can be given alternative interpretations that support this hypothesis also. Over millenia, the combination of reversing west and east winds could produce the binodal distributions of dune orientations observed at the north pole.  相似文献   

4.
We report on new retrievals of water vapor column abundances from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data. The new retrievals are from the TES nadir data taken above the ‘cold’ surface areas in the North polar region (Tsurf < 220 K, including seasonal frost and permanent ice cap) during spring and summer seasons, where retrievals were not performed initially. Retrievals are possible (with some modifications to the original algorithm) over cold surfaces overlaid by sufficiently warm atmosphere. The retrieved water vapor column abundances are compared to the column abundances observed by other spacecrafts in the Northern polar region during spring and summer and good agreement is found. We detect an annulus of water vapor growing above the edge of the retreating seasonal cap during spring. The formation of the vapor annulus is consistent with the previously proposed mechanism for water cycling in the polar region, according to which vapor released by frost sublimation during spring re-condenses on the retreating seasonal CO2 cap. The source of the vapor in the vapor annulus, according to this model, is the water frost on the surface of the CO2 at the retreating edge of the cap and the frost on the ground that is exposed by the retreating cap. Small contribution from regolith sources is possible too, but cannot be quantified based on the TES vapor data alone. Water vapor annulus exhibits interannual variability, which we attribute to variations in the atmospheric temperature. We propose that during spring and summer the water ice sublimation is retarded by high relative humidity of the local atmosphere, and that higher atmospheric temperatures lead to higher vapor column abundances by increasing the water holding capacity of the atmosphere. Since the atmospheric temperatures are strongly influenced by the atmospheric dust content, local dust storms may be controlling the release of vapor into the polar atmosphere. Water vapor abundances above the residual polar cap also exhibit noticeable interannual variability. In some years abundances above the cap are lower than the abundances outside of the cap, consistent with previous observations, while in the other years the abundances above the cap are higher or similar to abundances outside of the cap. We speculate that the differences may be due to weaker off-cap transport in the latter case, keeping more vapor closer to the source at the surface of the residual cap. Despite the large observed variability in water vapor column abundances in the Northern polar region during spring and summer, the latitudinal distribution of the vapor mass in the atmosphere is very similar during the summer season. If the variability in vapor abundances is caused by the variability of vapor sources across the residual cap then this would mean that they annually contribute relatively little vapor mass to significantly affect the vapor mass budget. Alternatively this may suggest that the vapor variability is caused by the variability of the polar atmospheric circulation. The new water vapor retrievals should be useful in tuning the Global Circulation Models of the martian water cycle.  相似文献   

5.
Takeshi Imamura  Yuko Ito 《Icarus》2011,211(1):498-503
A Hovmöller diagram analysis of the dust optical depth measured by the Mars Global Surveyor Thermal Emission Spectrometer shows the occurrence of quasi-periodic westwardly-propagating disturbances with timescales of 10-20 sols during summer in the south polar region of Mars. Dust clouds emerge repeatedly around the region with a latitude of around 70-80°S and a longitude of 240-300°E, move westward at speeds of 3-6 m s−1, reach the region with a longitude of 60-120°E, and finally disappear. This longitude range coincides with elevated terrains in the south polar region, and in this region an increase of dust optical depth encircling the south pole is also observed. This implies that the quasi-periodic dust events will contribute to the enhancement of the atmospheric dust loading in this region. These dust events might be related to baroclinic instability caused by the thermal contrast across the CO2 cap edge, or the horizontal advection or vertical convection with radiative-dynamical feedback. The westward movement of the dust clouds suggests steady westward winds blowing in the near-surface layer, where the quasi-periodic dust lifting is expected to occur. Such a westward cap-edge flow will be created by the Coriolis force acting on the flow from the ice side to the regolith side.  相似文献   

6.
Huiqun Wang  Jenny A. Fisher 《Icarus》2009,204(1):103-113
The complete archive of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Mars Daily Global Maps (MDGM) are used to study north polar clouds and dust storms that exhibit frontal structures during the spring and summer (Ls 0-180°). Results show that frontal events generally follow the edge of the polar cap during spring and mid/late summer with a gap in the distribution in early summer. The exact duration and timing of the gap vary from year to year. Ten to twenty percent of spring and summer time frontal events exhibit complex morphologies. Distinct temperature signatures are associated with features observed in images in many but not all cases. The general travel paths of the frontal events are eastward around the polar cap. Westward paths exist only at the edge of the polar cap in late spring/early summer. Occasionally, the paths curve toward or away from the polar cap in certain longitude sectors.  相似文献   

7.
《Planetary and Space Science》1999,47(8-9):951-970
Towards the end of southern hemisphere winter (Ls ≈ 180°) the Martian southern polar cap extends equatorward to 40°S and covers at least, the southern slopes of the Hellas and Argyre impact basins. Subsequently, during retreat of the seasonal ice cap, varying configurations of ice coverage on these slopes occur. Since both sloping topography and ice-edge effects can independently drive mesoscale circulations, the superposition of these two processes may then generate interesting wind patterns. A set of numerical experiments has been performed with the University of Helsinki 2-D Mars Mesoscale Circulation Model (MMCM) in order to study the characteristics of circulations driven by these combined forcings. A model-centre latitude of 57°S and a slope angle of 0.6°, both representative of Hellas southern slope, are used. When compared with the winds arising in the ice-free slope case, ice coverage in the upper extent of the slope results in diminished upslope (daytime) winds, while the down-slope (nighttime) flow is enhanced. Ice coverage in the lower section of the slope in turn causes enhanced upslope (daytime) and attenuated downslope (nocturnal) flows. This arises due to the daytime off-ice near-surface flow induced by the thermal contrast at the ice cap edge. The surface winds are persistently downslope over a fully ice-covered slope. Inclusion of atmospheric dust (τ = 0.3) reduces the ice-edge forcing. In comparison with the dust-free situation, the resulting circulation is almost unchanged in the case of ice-covered upper part of the slope, in the opposite case the daytime flow is attenuated and the nocturnal downslope flow enhanced. When the entire slope is ice-covered, the flow is amplified due to the increased direct atmospheric heating. Inclusion of a large scale circulation component (7 m⧸s southerly wind) in conjunction with an ice-covered slope top results in the generation of a downslope windstorm (föhn, or bora-type of event) with near surface winds exceeding 30 m⧸s. Winds of this magnitude, not realised in any of the other experiments, approach speeds deemed capable of lifting dust from the surface.  相似文献   

8.
We present the first 3-dimensional self-consistent calculations of the response of Saturn's global thermosphere to different sources of external heating, giving local time and latitudinal changes of temperatures, winds and composition at equinox and solstice. Our calculations confirm the well-known finding that solar EUV heating alone is insufficient to produce Saturn's observed low latitude thermospheric temperatures of 420 K. We therefore carry out a sensitivity study to investigate the thermosphere's response to two additional external sources of energy, (1) auroral Joule heating and (2) empirical wave heating in the lower thermosphere. Solar EUV heating alone produces horizontal temperature variations of below 20 K, which drive horizontal winds of less than 20 m/s and negligible horizontal changes in composition. In contrast, Joule heating produces a strong dynamical response with westward winds comparable to the sound speed on Saturn. Joule heating alone, at a total rate of 9.8 TW, raises polar temperatures to around 1200 K, but values equatorward of 30° latitude, where observations were made, remain below 200 K due to inefficient meridional energy transport in a fast rotating atmosphere. The primarily zonal wind flow driven by strong Coriolis forces implies that energy from high latitudes is transported equatorward mainly by vertical winds through adiabatic processes, and an additional 0.29-0.44 mW/m2 thermal energy are needed at low latitudes to obtain the observed temperature values. Strong upwelling increases the H2 abundances at high latitudes, which in turn affects the H+3 densities. Downwelling at low latitudes helps increase atomic hydrogen abundances there.  相似文献   

9.
Using an electron transport model, we calculate the electron density of the electron impact-produced nighttime ionosphere of Mars and its spatial structure. As input we use Mars Global Surveyor electron measurements, including an interval when accelerated electrons were observed. Our calculations show that regions of enhanced ionization are localized and occur near magnetic cusps. Horizontal gradients in the calculated ionospheric electron density on the night side of Mars can exceed 104 cm−3 over a distance of a few tens of km; the largest gradients produced by the model are over 600 cm−3 km−1. Such large gradients in the plasma density have several important consequences. These large pressure gradients will lead to localized plasma transport perpendicular to the ambient magnetic field which will generate horizontal currents and electric fields. We calculate the magnitude of these currents to be up to 10 nA/m2. Additionally, transport of ionospheric plasma by neutral winds, which vary in strength and direction as a function of local time and season, can generate large (up to 1000 nA/m2) and spatially structured horizontal currents where the ions are collisionally coupled to the neutral atmosphere while electrons are not. These currents may contribute to localized Joule heating. In addition, closure of the horizontal currents and electric fields may require the presence of vertical, field-aligned currents and fields which may play a role in high altitude acceleration processes.  相似文献   

10.
A previous comparison of experimental measurements of thermospheric winds with simulations using a global self-consistent three-dimensional time-dependent model confirmed a necessity for a high latitude source of energy and momentum acting in addition to solar u.v. and e.u.v. heating. During quiet geomagnetic conditions, the convective electric field over the polar cap and auroral oval seemed able to provide adequate momentum input to explain the thermospheric wind distribution observed in these locations. However, it seems unable to provide adequate heating, by the Joule mechanism, to complete the energy budget of the thermosphere and, more importantly, unable to provide the high latitude input required to explain mean meridional winds at mid-latitudes. In this paper we examine the effects of low energy particle precipitation on thermospheric dynamics and energy budget. Modest fluxes over the polar cap and auroral oval, of the order of 0.4 erg cm −2/s, are consistent with satellite observations of the particles themselves and with photometer observations of the OI and OII airglow emissions. Such particle fluxes, originating in the dayside magnetosheath cusp region and in the nightside central plasma sheet, heat the thermosphere and modify mean meridional winds at mid-latitudes without enhancing the OI 557.7 line, or the ionization of the lower thermosphere (and thus enhancing the auroral electrojets), neither of which would be consistent with observations during quiet geomagnetic conditions.  相似文献   

11.
It is uncertain whether the residual (perennial) south polar cap on Mars is a transitory or a permanent feature in the current Martian climate. While there is no firm evidence for complete disappearance of the cap in the past, clearly observable changes have been documented. Observations suggest that the perennial cap lost more CO2 material in the spring/summer season prior to the Mariner 9 mission than in those same seasons monitored by Viking and Mars Global Surveyor. In this paper we examine one process that may contribute to these changes—the radiative effects of a planet encircling dust storm that starts during late Martian southern spring on the stability of the perennial south polar cap. To approach this, we model the radiative transfer through a dusty planetary atmosphere bounded by a sublimating CO2 surface.A critical parameter for this modeling is the surface albedo spectrum from the near-UV to the thermal-IR, which was determined from both space-craft and Earth-based observations covering multiple wavelength regimes. Such a multi-wavelength approach is highly desirable since one spectral band by itself cannot tightly constrain the three-parameter space for polar surface albedo models, namely photon “scattering length” in the CO2 ice and the amounts of intermixed water and dust.Our results suggest that a planet-encircling dust storm with onset near solstice can affect the perennial cap's stability, leading to advanced sublimation in a “dusty” year. Since the total amount of solid CO2 removed by a single storm may be less than the total CO2 thickness, a series of dust storms would be required to remove the entire residual CO2 ice layer from the south perennial cap.  相似文献   

12.
13.
All-sky camera observations from two stations in the inner (northern) polar cap and an auroral zone station are combined with photometer records from the polar cap station Nord in a study of the brilliant auroral display following the ssc of the storm of 7 November 1970. This display is the large, poleward expanding bulge of a substorm triggered by the ssc. It is composed of brilliant discrete forms embedded in low-intensity diffuse electron and proton aurora. The poleward edge of the diffuse electron aurora is 5° north of the discrete auroras and 3° north of the proton aurora. The intensity of the discrete aurora varies as the strength of the auroral electrojet as shown by magnetograms from auroral zone stations. Succeeding the retreating display a subvisible low-energy electron precipitation, which may be identified as the polar squall (Winningham and Heikkila, 1974) is observed over the polar cap during the main phase of the storm.In the early morning sector already existing diffuse auroras broaden towards the equator from the time of the ssc and at least during the following half hour.Ssc-triggered displays have been found (Feldstein, 1959) to withdraw from the inner polar cap as the initial (positive H) phase of the storm ends. A comparison of the records from seven low-latitude stations shows that during this particular storm the positive phase appears to be composed by two overlapping disturbances, i.e. the proper initial phase, which is generally thought to be due to compression of the inner magnetosphere and a series of positive bays accompanying the negative bays in auroral latitudes. These positive bays are observable over a great range of longitudes with a maximum of amplitude near midnight. As judged from the dayside magnetograms the initial (compression) phase ends at an early stage of the substorm. The observed coincidence between the withdrawal of the display and the cessation of the positive H phase of the storm is a consequence of the fact that the second component—the positive bays—and the auroral display over the polar cap are both signatures of the substorm activity.  相似文献   

14.
《Planetary and Space Science》2007,55(10):1319-1327
The advance and retreat of the polar caps were one of the first observations that indicated Mars had seasons. Because a large portion of the atmosphere is cycled in and out of the seasonal caps during the year, the frost deposits play a significant role in regional and global atmospheric circulation. Understanding the nature of the seasonal polar caps is imperative if we are to understand the current Martian climate. In this study, we track the seasonal cap edges as a function of season and longitude for the fall and winter seasons (MY27), using data from the Planetary Fourier Spectrometer (PFS) onboard the Mars Express (MEX) ESA mission. Making use of the rapid rise (decrease) in surface temperature that occurs when CO2 ice is removed (deposited), in a first approach, we defined the advancing cap edge to be where the surface temperature drops below 150 K, and the retreating cap edge where the surface temperature rises above 160 K. In this case, starting from Ls∼50°, the edge progression speed start to be longitude dependent. In the hemisphere that extends form the eastern limit of the Hellas basin to the western limit of the Argyrae basin (and containing the two) the edges progression speed is about a half than that of the other hemisphere; the cap is thus asymmetric and, unexpectedly, no CO2 ice seems to be present inside the basins. This is because the above mentioned surface temperatures used in this approach to detect the cap edges are not adequate (too low) for the high-pressure regions inside the basins where, following the Clausius–Clapeyron's law, the CO2 condensation temperature can be several degrees higher than that of the adjacent lower-pressure regions. In the second, final approach, special attention has been given to this aspect and the advancing and retreating cap edges are defined where, respectively, the surface temperatures drop below and rise above the CO2 condensation temperature for the actual surface pressure values. Now, the results show an opposite situation than the previous one, with the progression speed being higher and the cap more extended (up to −30° latitude) in the hemisphere containing the two major Martian basins. During the fall season, up to Ls∼50° the South Martian polar cap consists of CO2 frost deposits that advance towards lower latitudes at a constant speed of 10° of latitude per 15 degrees of Ls. The maximum extension (−40° latitude) of the South polar cap occurs somewhere in the 80°–90° Ls range. At the winter solstice, when the edges of the polar night start moving poleward, the cap recession has already started, in response to seasonal changes in insolation. The CO2 ice South polar cap will recede with a constant speed of ∼5° of latitude every 25° degrees of Ls during the whole winter. The longitudinal asymmetries reduce during the cap retreat and completely disappear around Ls=145°.  相似文献   

15.
Mark A. Wieczorek 《Icarus》2008,196(2):506-517
The polar caps of Mars have long been acknowledged to be composed of unknown proportions of water ice, solid CO2 (dry ice), and dust. Gravity and topography data are here analyzed over the southern cap to place constraints on its density, and hence composition. Using a localized spectral analysis combined with a lithospheric flexure model of ice cap loading, the best fit density of the volatile-rich south polar layered deposits is found to be 1271 kg m−3 with 1-σ limits of 1166 and 1391 kg m−3. The best fit elastic thickness of this geologically young deposit is 140 km, though any value greater than 102 km can fit the observations. The best fit density implies that about 55% dry ice by volume could be sequestered in these deposits if they were completely dust free. Alternatively, if these deposits were completely free of solid CO2, the dust content would be constrained to lie between about 14 and 28% by volume. The bulk thermal conductivity of the polar cap is not significantly affected by these maximum allowable concentrations of dust. However, even if a moderate quantity of solid CO2 were present as horizontal layers, the bulk thermal conductivity of the polar cap would be significantly reduced. Reasonable estimates of the present day heat flow of Mars predict that dry ice beneath the thicker portions of the south polar cap would have melted. Depending on the quantity of solid CO2 in these deposits today, it is even possible that water ice could melt where the cap is thickest. If independent estimates for either the dust or CO2 content of the south polar cap could be obtained, and if radar sounding data could determine whether this polar cap is presently experiencing basal melting or not, it would be possible to use these observations to place tight constraints on the present day heat flow of Mars.  相似文献   

16.
A detailed examination of the location and orientation of sand dunes and other aeolian features within the north polar chasmata indicates that steep scarps strongly influence the direction and intensity of prevailing winds. These steep scarps are present at the heads and along the margins of the north polar chasmata. Topographic profiles of the arcuate head scarps and equator-facing wall of Chasma Boreale reveal unusually steep polar slopes ranging from ∼6°-30°. The relatively steep-sloped (∼8°), sinuous scarp at the head of two smaller chasmata, located west of Chasma Boreale, exhibits an obvious resistant cap-forming unit. Scarp retreat is occurring in places where the cap unit is actively being undercut by descending slope winds. Low-albedo surfaces lacking sand dunes or dust mantles are present at the base of the polar scarps. A ∼100-300 m deep moat, located at the base of the scarps, corresponds with these surfaces and indicates an area of active aeolian scour from descending katabatic winds. Small local dust storms observed along the equator-facing wall of Chasma Boreale imply that slope wind velocities in Chasma Boreale are sufficient to mobilize dust and sand-sized particles in the Polar Layered Deposits (PLD). Two amphitheater forms, located above the cap-forming unit of the sinuous scarp and west of Chasma Boreale, may represent an early stage of polar scarp and chasma formation. These two forms are developing within a younger section of polar layered materials. The unusually steep scarps associated with the polar chasmata have developed where resistant layers are present in the PLD, offering resistance during the headward erosion and poleward retreat of the scarps. Steep slopes that formed under these circumstances enhance the flow of down-scarp katabatic winds. On the basis of these observations, we reject the fluvial outflood hypothesis for the origin of the north polar chasmata and embrace a wind erosion model for their long-term development. In the aeolian model, off-pole katabatic winds progressively remove materials from the steep slopes below chasmata scarps, undermining resistant layers at the tops of scarps and causing retreat by headward erosion. Assuming a minimum age for the onset of formation of Chasma Boreale (105 yr) results in a maximum volumetric erosion rate of . Removal of this volume of material from the equator-facing wall and head scarps of chasma would require a rate for scarp retreat of .  相似文献   

17.
A general circulation model is used to evaluate changes to the circulation and dust transport in the martian atmosphere for a range of past orbital conditions. A dust transport scheme, including parameterized dust lifting, is incorporated within the model to enable passive or radiatively active dust transport. The focus is on changes which relate to surface features, as these may potentially be verified by observations. Obliquity variations have the largest impact, as they affect the latitudinal distribution of solar heating. At low obliquities permanent CO2 ice caps form at both poles, lowering mean surface pressures. At higher obliquities, solar insolation peaks at higher summer latitudes near solstice, producing a stronger, broader meridional circulation and a larger seasonal CO2 ice cap in winter. Near-surface winds associated with the main meridional circulation intensify and extend polewards, with changes in cap edge position also affecting the flow. Hence the model predicts significant changes in surface wind directions as well as magnitudes. Dust lifting by wind stress increases with obliquity as the meridional circulation and associated near-surface winds strengthen. If active dust transport is used, then lifting rates increase further in response to the larger atmospheric dust opacities (hence circulation) produced. Dust lifting by dust devils increases more gradually with obliquity, having a weaker link to the meridional circulation. The primary effect of varying eccentricity is to change the impact of varying the areocentric longitude of perihelion, l, which determines when the solar forcing is strongest. The atmospheric circulation is stronger when l aligns with solstice rather than equinox, and there is also a bias from the martian topography, resulting in the strongest circulations when perihelion is at northern winter solstice. Net dust accumulation depends on both lifting and deposition. Dust which has been well mixed within the atmosphere is deposited preferentially over high topography. For wind stress lifting, the combination produces peak net removal within western boundary currents and southern midlatitude bands, and net accumulation concentrated in Arabia and Tharsis. In active dust transport experiments, dust is also scoured from northern midlatitudes during winter, further confining peak accumulation to equatorial regions. As obliquity increases, polar accumulation rates increase for wind stress lifting and are largest for high eccentricities when perihelion occurs during northern winter. For dust devil lifting, polar accumulation rates increase (though less rapidly) with obliquity above o=25°, but increase with decreasing obliquity below this, thus polar dust accumulation at low obliquities may be increasingly due to dust lifted by dust devils. For all cases discussed, the pole receiving most dust shifts from north to south as obliquity is increased.  相似文献   

18.
Recent observations of strong vertical thermospheric winds and the associated horizontal wind structures, using the 01(3P-1D)nm emission line, by ground-based Fabry-Perot interferometers in Northern Scandinavia have been described in an accompanying paper (Paper I). The high latitude thermosphere at a height of 200–300 km displays strong vertical winds (30–50m ms?1)of a persistent nature in the vicinity of the auroral oval even during relatively quiet geomagnetic conditions. During an auroral substorm, the vertical (upward) wind in the active region, including that invaded by a Westward Travelling Surge, may briefly(10–30 min)exceed 150 m s?1. Very large and rapid changes of horizontal wind structure (up to 500 m?1 in 30 min) usually accompany such large impulsive vertical winds. Magnetospheric energy and momentum sources generate large vertical winds of both a quasi-steady nature and of a strongly time-dependent nature. The thermospheric effects of these sources can be evaluated using the UCL three-dimensional, time-dependent thermospheric model. The auroral oval is, under average geomagnetic conditions, a stationary source of significant vertical winds (10–40 m s?1). In large convective events (directly driven by a strong momentum coupling from the solar wind) the magnitude may increase considerably. Auroral substorms and Westward Travelling Surges appear to be associated with total energy disposition rates of several tens to more than 100 erg cm?2s?1, over regions of a few hours local time, and typically 2–5° of geomagnetic latitude (approximately centred on magnetic midnight). Such deposition rates are needed to drive observed time-dependent vertical (upward) winds of the order of 100–200m s?1.The response of the vertical winds to significant energy inputs is very rapid, and initially the vertical lifting of the atmosphere absorbs a large fraction (30% or more) of the total substorm input. Regions of strong upward winds tend to be accompanied in space (and time) by regions of rather lower downward winds, and the equatorward propagation of thermospheric waves launched by auroral substorms is extremely complex.  相似文献   

19.
The time evolution of atmospheric dust at high southern latitudes on Mars has been determined using observations of the south seasonal cap acquired in the near infrared (1-2.65 μm) by OMEGA/Mars Express in 2005. Observations at different solar zenith angles and one EPF sequence demonstrate that the reflectance in the 2.64 μm saturated absorption band of the surface CO2 ice is mainly due to the light scattered by aerosols above most places of the seasonal cap. We have mapped the total optical depth of dust aerosols in the near-IR above the south seasonal cap of Mars from mid-spring to early summer with a time resolution ranging from one day to one week and a spatial resolution of a few kilometers. The optical depth above the south perennial cap is determined on a longer time range covering southern spring and summer. A constant set of optical properties of dust aerosols is consistent with OMEGA observations during the analyzed period. Strong variations of the optical depth are observed over small horizontal and temporal scales, corresponding in part to moving dust clouds. The late summer peak in dust opacity observed by Opportunity in 2005 propagated to the south pole contrarily to that observed in mid spring. This may be linked to evidence for dust scavenging by water ice-rich clouds circulating at high southern latitudes at this season.  相似文献   

20.
High latitude magnetic field data from 16 northern observatories are averaged during periods of magnetic disturbance level Kp = 2? to 3+. Within this disturbance level, variations between interplanetary magnetic field sector (toward and away from the Sun) and geomagnetic season (dipole latitude of the Sun: > 10° = summer, < ? 10° = winter) are delineated. Variations between seasons are: (1) The positive bay and polar cap disturbance is a maximum in summer and a minimum in winter for both sectors. (2) The negative bay disturbance is a maximum in summer and a minimum in winter when the interplanetary field is toward the Sun and vice versa during away sectors. Variations between sectors are: (1) During summer and equinox the negative bay disturbance is greater for toward sectors than for away sectors. The reverse occurs during winter. (2) The positive bay disturbance is greater during toward sectors than during away sectors for all seasons. (3) All diiferences in disturbance level are greater at sunlit local times than in darkness. (4) Angular differences in the direction of the horizontal disturbance of up to 75° occur between sectors in the polar cap and dayside during all seasons. (5) The polar cap-auroral belt boundary location is different for the two sectors. Compared to data from away sectors, this boundary for toward sectors is shifted northward near dawn (5–8h) and southward between 10 and 22h. (6) Accompanying this boundary difference there is a change in the direction of the vertical disturbance in the region between 9 and 14h at geomagnetic latitudes 77–88°. ΔZ in this region is negative during away sectors and positive during toward sectors. Differences between sectors are attributed to changes in the ionospheric electric field configuration and in the distribution of magnetic field aligned currents.Features unrelated to sector or season also occur: (1) A significant Y component is present in both the positive and negative bays. (2) The vertical disturbance (¦ΔZ¦) to the north of the auroral belt is much larger than that to the south. (3) Two distinct regions of maximum activity are present in the ΔZ accompanying the positive bay disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号