首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Knowledge of Martian igneous basaltic compositions is crucial for constraining mantle evolution, including early differentiation and mantle convection. Primitive magmas provide direct information about their mantle source regions, but most Martian meteorites either contain cumulate olivine or crystallized from fractionated melts. The recently discovered Martian meteorite Northwest Africa (NWA) 5789 is an olivine‐phyric shergottite. NWA 5789 has special significance among the Martian meteorites because it appears to represent one of the most magnesian Martian magmas known, other than Yamato (Y) 980459. Its most magnesian olivine cores (Fo85) are in Mg‐Fe equilibrium with a magma of the bulk rock composition, suggesting that the bulk represents a magma composition. Based on the Al/Ti ratio of its pyroxenes, we infer that the rock began to crystallize at a high pressure consistent with conditions in Mars’ lower crust/upper mantle. It continued and completed its crystallization closer to the surface, where cooling was rapid and produced a mesostasis of radiating sprays of plagioclase and pyroxene. The mineralogy, petrology, mineral chemistry, and bulk rock composition of NWA 5789 are very similar to those of Y‐980459. The similarities between the two meteorites suggest that NWA 5789 (like Y‐980459) represents a primitive, mantle‐derived magma composition. They also suggest the possibility that NWA 5789 and Y‐980459 formed in the same lava flow. However, based on the mineralogy and texture of its mesostasis, NWA 5789 must have cooled more slowly than Y‐980459. NWA 5789 will help elucidate the igneous geology and geochemistry of Mars.  相似文献   

2.
Abstract— The Martian meteorite Yamato (Y‐) 980459 is an olivine‐phyric shergottite. It has a very primitive character and may be a primary melt of the Martian mantle. We have conducted crystallization experiments on a synthetic Y‐980459 composition at Martian upper mantle conditions in order to test the primary mantle melt hypothesis. Results of these experiments indicate that the cores of the olivine megacrysts in Y‐980459 are in equilibrium with a melt of bulk rock composition, suggesting that these megacrysts are in fact phenocrysts that grew from a magma of the bulk rock composition. Multiple saturation of the melt with olivine and a low‐calcium pyroxene occurs at approximately 12 ± 0.5 kbar and 1540 ± 10°C, suggesting that the meteorite represents a primary melt that separated from its mantle source at a depth of ?100 km. Several lines of evidence suggest that the Y‐980459 source underwent extensive melting prior to and/or during the magmatic event that produced the Y‐980459 parent magma. When factored into convective models of the Martian interior, the high temperature indicated for the upper Martian mantle and possibly high melt fraction for the Y‐980459 magmatic event suggests a significantly higher temperature at the core‐mantle boundary than previously estimated.  相似文献   

3.
Abstract— The Yamato nakhlites, Y‐000593, Y‐000749, and Y‐000802, were recovered in 2000 from the bare icefield around the Yamato mountains in Antarctica, consisting of three independent specimens with black fusion crusts. They are paired cumulate clinopyroxenites. We obtained the intercumulus melt composition of the Yamato nakhlites and here call it the Yamato intercumulus melt (YIM). The YIM crystallized to form the augite rims, the olivine rims and the mesostasis phases in the cumulates. The augite rims consist of two layers: inner and outer. The crystallization of the inner rim drove the interstitial melt into the plagioclase liquidus field. Subsequently, the residual melt crystallized pigeonites and plagioclase to form the outer rims and the mesostasis. Three types of inclusions were identified in olivine phenocrysts: rounded vitrophyric, angular vitrophyric, and monomineralic augite inclusions. The monomineralic augite inclusions are common and may have been captured by growing olivine phenocrysts. The rounded vitrophyric inclusions are rare and may represent the composition of middle‐stage melts, whereas the angular vitrophyric inclusions seem to have been derived from fractionated late‐stage melts. Glass inclusions occur in close association with titanomagnetite and ferroan augite halo in phenocryst core augites and the assemblages may be magmatic inclusions in augites. We compared the YIM with compositions of magmatic inclusions in olivine and augite. The composition of magmatic inclusions in augite is similar to the YIM. Phenocrystic olivines contain exsolution lamellae, augite‐magnetite aggregates, and symplectites in the cores. The symplectites often occur at the boundaries between olivine and augite grains. The aggregates, symplectite and lamellae formed by exsolution from the host olivine at magmatic temperatures. We present a formational scenario for nakhlites as follows: (1) accumulation of augite, olivine, and titanomagnetite phenocrysts took place on the floor of a magma chamber; (2) olivine exsolved augite and magnetite as augite‐magnetite aggregates, symplectites and lamellae; (3) the overgrowth on olivine phenocrysts formed their rims, and the inner rims crystallized on augite phenocryst cores; and finally, (4) the outer rim formed surrounding the inner rims of augite phenocrysts, and plagioclase and minor minerals crystallized to form mesostasis under a rapid cooling condition, probably in a lava flow or a sill.  相似文献   

4.
Tissint, a new unaltered piece of Martian volcanic materials, is the most silica‐poor and Mg‐Fe‐rich igneous rock among the “depleted” olivine‐phyric shergottites. Fe‐Mg zoning of olivine suggests equilibrium growth (<0.1 °C h?1) in the range of Fo80–56 and olivine overgrowth (Fo55–18) through a process of rapid disequilibrium (~1.0–5.0 °C h?1). The spatially extended (up to 600 μm) flat‐top Fe‐Mg profiles of olivine indicates that the early‐stage cooling rate of Tissint was slower than the other shergottites. The chemically metastable outer rim of olivine (55) consists of oscillatory phosphorus zoning at the impact‐induced melt domains and grew rapidly compared to the early to intermediate‐stage crystallization of the Tissint bulk. High‐Ca pyroxene to low‐Ca pyroxene and high‐Ca pyroxene to plagioclase ratios of Tissint are more comparable to the enriched basaltic and enriched olivine‐phyric shergottites. Dominance of augite over plagioclase induced augite to control the Ca‐buffer in the residual melt suppressing the plagioclase crystallization, which also caused a profound effect on the Al‐content in the late‐crystallized pyroxenes. Mineral chemical stability, phase‐assemblage saturation, and pressure–temperature path of evolution indicates that the parent magma entered the solidus and left the liquidus field at a depth of 40–80 km in the upper mantle. Petrogenesis of Tissint appears to be similar to LAR 06319, an enriched olivine‐phyric shergottite, during the early to intermediate stage of crystallization. A severe shock‐induced deformation resulted in remelting (10–15 vol%), recrystallization (most Fe‐rich phases), and exhumation of Tissint in a time scale of 1–8 yr. Tissint possesses some distinct characteristics, e.g., impact‐induced melting and deformation, forming phosphorus‐rich recrystallization rims of olivine, and shock‐induced melt domains without relative enrichment of LREEs compared to the bulk; and shared characteristics, e.g., modal composition and magmatic evolution with the enriched basaltic shergottites, evidently reflecting unique mantle source in comparison to the clan of the depleted members.  相似文献   

5.
Abstract— Dynamic crystallization experiments performed on Fe‐rich, Al‐poor basalt are employed as a textural calibration set to quantify the late‐stage igneous history of nakhlite Miller Range (MIL) 03346. The ratio of crystal‐melt surface area to volume typifying morphologically distinct populations of Ca‐pyroxene has been shown to vary as a strong function of cooling rate (Hammer 2006). Furthermore, a texture of phenocrysts surrounded by finer‐grained groundmass crystals arises by sequential nucleation events during constant‐rate cooling, but multiple populations nucleate only if the cooling rate is 72 °C h?1. Textural analysis of meteorite MIL 03346 reveals at least two distinct populations. The Ca‐pyroxene phenocryst and microphenocryst three dimensional (3D) aspect ratios are 112 ± 8.3 and 1530 ± 160 mm?1, respectively. By comparison with the calibration set, the range of cooling rates consistent with 3D aspect ratios of both populations in MIL 03346 is ?20 °C h?1An additional experiment was performed approximating a conductive heat transfer profile in order to interpret and apply results of constant‐rate cooling experiments to the natural cooling of magma. Results suggest that the textures of constant‐rate experiments parallel the initial period of rapid cooling in natural magma. Initial cooling rates of ?20 °C h?1in the lava hosting MIL 03346 occur in conductively solidifying lava at depths of?0.4 m, constraining the minimum total thickness to 0.8 m. Crystal accumulation beginning in a subsurface reservoir and continuing after lava emplacement as an inflated pahoehoe sheet satisfies all textural constraints on the late‐stage igneous history of MIL 03346.  相似文献   

6.
Abstract— We petrologically examined the Miller Range (MIL) 03346 nakhlite. The main‐phase modal abundances are 67.7 vol% augite, 0.8 vol% olivine, and 31.5 vol% mesostasis. Among all known nakhlites, MIL 03346's modal abundance of olivine is the smallest and of mesostasis is the largest. Augite occurs as cumulus phenocrysts having a homogeneous core composition (En36–38Fs24–22Wo40), which is identical with other nakhlites. They accompany thin ferroan rims divided into inner and outer rims with a compositional gap at the boundary between the two rims. Olivine grains have magnesian cores (Fa ≥ 55) and show normal zoning toward ferroan rims (Fa ≤ 84). Mesostasis consists mostly of glass (26.0 vol%) with minor skeletal fayalites, skeletal titanomagnetites, acicular phosphate, massive cristobalite, and sulfides. We conclude that MIL 03346 is the most rapidly cooled nakhlite among all known nakhlites based on the petrography. We obtain the intercumulus melt composition for MIL 03346 from the mass balance calculation using the modal abundances and discuss the crystallization sequence of MIL 03346 in comparison with that of Yamato (Y‐) 000593. Although magnesian olivines of Y‐000593 are phenocrystic, magnesian olivine grains of MIL 03346 seem to have texturally crystallized from the intercumulus melt. After the MIL 03346 magma intruded upward to the Martian surficial zone, the magnesian olivine crystallized, and then the ferroan inner rim formed on phenocrystic core augite. The outer rim of phenocrystic augites formed after the crystallization of skeletal fayalites and skeletal titanomagnetites, resulting in a compositional gap between the inner and outer rims. Finally, glassy mesostasis formed from the residual melt. This crystallization sequence of MIL 03346 is different from those of other nakhlites, including Y‐000593.  相似文献   

7.
Northwest Africa (NWA) 5790 is the most recently discovered member of the nakhlite group. Its mineralogy differs from the other nakhlites with a high abundance mesostasis (38.1 ± 3.6 vol%) and scarcity of olivine (4.0 ± 2.2 vol%). Furthermore, zoning of augite phenocrysts, and other petrographic and chemical characteristics suggest that NWA 5790 samples the chilled margin of its parent lava flow/sill. NWA 5790 contains calcite and rare clay minerals that are evidence for its exposure to liquid water. The calcite forms a cement to coatings of dust on the outer surface of the find and extends into the interior of the meteorite within veins. The presence of microbial remains within the coating confirms that the dust and its carbonate cement are terrestrial in origin, consistent with the carbon and oxygen isotope composition of the calcite. The clay minerals are finely crystalline and comprise ~0.003 vol% of the meteorite. δD values of the clay minerals range from ?212 ± 109‰ to ?96 ± 132‰, and cannot be used to distinguish between a terrestrial or Martian origin. As petrographic results are also not definitive, we conclude that secondary minerals produced by Martian groundwaters are at best very rare within NWA 5790. The meteorite has therefore sampled a region of the lava flow/sill with little or no exposure to the aqueous solutions that altered other nakhlites. This isolation could relate to the scarcity of olivine in NWA 5790 because dissolution of olivine in other nakhlites by Martian groundwaters enhanced their porosity and permeability, and provided solutes for secondary minerals.  相似文献   

8.
Caleta el Cobre (CeC) 022 is a Martian meteorite of the nakhlite group, showing an unbrecciated cumulate texture, composed mainly of clinopyroxene and olivine. Augite shows irregular core zoning, euhedral rims, and thin overgrowths enriched in Fe relative to the core. Low‐Ca pyroxene is found adjacent to olivine. Phenocrysts of Fe‐Ti oxides are titanomagnetite with exsolutions of ilmenite/ulvöspinel. Intercumulus material consists of both coarse plagioclase and fine‐grained mesostasis, comprising K‐feldspars, pyroxene, apatite, ilmenite, Fe‐Ti oxides, and silica. CeC 022 shows a high proportion of Martian aqueous alteration products (iddingsite) in olivine (45.1 vol% of olivine) and mesostasis. This meteorite is the youngest nakhlite with a distinct Sm/Nd crystallization age of 1.215 ± 0.067 Ga. Its ejection age of 11.8 ± 1.8 Ma is similar to other nakhlites. CeC 022 reveals contrasted cooling rates with similarities with faster cooled nakhlites, such as Northwest Africa (NWA) 817, NWA 5790, or Miller Range 03346 nakhlites: augite irregular cores, Fe‐rich overgrowths, fine‐grained K‐feldspars, quenched oxides, and high rare earth element content. CeC 022 also shares similarities with slower cooled nakhlites, including Nakhla and NWA 10153: pyroxene modal abundance, pyroxenes crystal size distribution, average pyroxene size, phenocryst mineral compositions, unzoned olivine, and abundant coarse plagioclase. Moreover, CeC 022 is the most magnetic nakhlite and represents an analog source lithology for the strong magnetization of the Martian crust. With its particular features, CeC 022 must originate from a previously unsampled sill or flow in the same volcanic system as the other nakhlites, increasing Martian sample diversity and our knowledge of nakhlites.  相似文献   

9.
The Jezersko meteorite is a newly confirmed stony meteorite found in 1992 in the Karavanke mountains, Slovenia. The meteorite is moderately weathered (W2), indicating short terrestrial residence time. Chondrules in partially recrystallized matrix are clearly discernible but often fragmented and have mean diameter of 0.73 mm. The meteorite consists of homogeneous olivine (Fa19.4) and low‐Ca pyroxenes (Fs16.7Wo1.2), of which 34% are monoclinic, and minor plagioclase (Ab83An11Or6) and Ca‐pyroxene (Fs6Wo45.8). Troilite, kamacite, zoned taenite, tetrataenite, chromite, and metallic copper comprise about 16.5 vol% of the meteorite. Phosphates are represented by merrillite and minor chlorapatite. Undulatory extinction in some olivine grains and other shock indicators suggests weak shock metamorphism between stages S2 and S3. The bulk chemical composition generally corresponds to the mean H chondrite composition. Low siderophile element contents indicate the oxidized character of the Jezersko parent body. The temperatures recorded by two‐pyroxene, olivine‐chromite, and olivine‐orthopyroxene geothermometers are 854 °C, 737–787 °C, and 750 °C, respectively. Mg concentration profiles across orthopyroxenes and clinopyroxenes indicate relatively fast cooling at temperatures above 700 °C. A low cooling rate of 10 °C Myr?1 was obtained from metallographic data. Considering physical, chemical, and mineralogical properties, meteorite Jezersko was classified as an H4 S2(3) ordinary chondrite.  相似文献   

10.
The Martian meteorites comprise mantle‐derived mafic to ultramafic rocks that formed in shallow intrusions and/or lava flows. This study reports the first in situ platinum‐group element data on chromite and ulvöspinel from a series of dunitic chassignites and olivine‐phyric shergottites, determined using laser‐ablation ICP‐MS. As recent studies have shown that Ru has strongly contrasting affinities for coexisting sulfide and spinel phases, the precise in situ analysis of this element in spinel can provide important insights into the sulfide saturation history of Martian mantle‐derived melts. The new data reveal distinctive differences between the two meteorite groups. Chromite from the chassignites Northwest Africa 2737 (NWA 2737) and Chassigny contained detectable concentrations of Ru (up to ~160 ppb Ru) in solid solution, whereas chromite and ulvöspinel from the olivine‐phyric shergottites Yamato‐980459 (Y‐980459), Tissint, and Dhofar 019 displayed Ru concentrations consistently below detection limit (<42 ppb). The relatively elevated Ru signatures of chromite from the chassignites suggest a Ru‐rich (~1–4 ppb) parental melt for this meteorite group, which presumably did not experience segregation of immiscible sulfide liquids over the interval of mantle melting, melt ascent, and chromite crystallization. The relatively Ru‐depleted signature of chromite and ulvöspinel from the olivine‐phyric shergottites may be the consequence of relatively lower Ru contents (<1 ppb) in the parental melts, and/or the presence of sulfides during the crystallization of the spinel phases. The results of this study illustrate the significance of platinum‐group element in situ analysis on spinel phases to decipher the sulfide saturation history of magmatic systems.  相似文献   

11.
Abstract— Antarctic meteorite Miller Range (MIL) 03346 is a nakhlite composed of 79% clinopyroxene, ?1% olivine, and 20% vitrophyric intercumulus material. We have performed a petrological and geochemical study of MIL 03346, demonstrating a petrogenetic history similar to previously discovered nakhlites. Quantitative textural study of MIL 03346 indicates long (>1 × 101 yr) residence times for the cumulus augite, whereas the skeletal Fe‐Ti oxide, fayalite, and sulfide in the vitrophyric intercumulus matrix suggest rapid cooling, probably as a lava flow. From the relatively high forsterite contents of olivine (up to Fo43) compared with other nakhlites and compositions of augite cores (Wo38–42En35–40Fs22–28) and their hedenbergite rims, we suggest that MIL 03346 is part of the same or a similar Martian cumulate‐rich lava flow as other nakhlites. However, MIL 03346 has experienced less equilibration and faster cooling than other nakhlites discovered to date. Calculated trace element concentrations based upon modal abundances of MIL 03346 and its constituent minerals are identical to whole rock trace element abundances. Parental melts for augite have REE patterns that are approximately parallel with whole rock and intercumulus melt using experimentally defined partition coefficients. This parallelism reflects closed‐system crystallization for MIL 03346, where the only significant petrogenetic process between formation of augite and eruption and emplacement of the nakhlite flow has been fractional crystallization. A model for the petrogenesis of MIL 03346 and the nakhlites (Nakhla, Governador Valadares, Lafayette, Yamato‐000593, Northwest Africa (NWA) 817, NWA 998) would include: 1) partial melting and ascent of melt generated from a long‐term LREE depleted mantle source, 2) crystallization of cumulus augite (± olivine, ± magnetite) in a shallow‐level Martian magma chamber, 3) eruption of the crystal‐laden nakhlite magma onto the surface of Mars, 4) cooling, crystal settling, overgrowth, and partial equilibration to different extents within the flow, 5) secondary alteration through hydrothermal processes, possibly immediately succeeding or during emplacement of the flow. This model might apply to single—or multiple—flow models for the nakhlites. Ultimately, MIL 03346 and the other nakhlites preserve a record of magmatic processes in volcanic rocks on Mars with analogous petrogenetic histories to pyroxene‐rich terrestrial lava flows and to komatiites.  相似文献   

12.
Abstract— SA-1, an unusual basaltic plagioclase-olivine inclusion (POI) in Allende, has concentric textural and mineralogic zones, a fine-grained, 100μm outer border and a coarse-grained interior with subophitic texture. Fassaite, diopside and olivine from the exterior border and interior of SA-1 have uniform intrinsic mass fractionation with isotopically heavy Mg (FMg = 3.6 ± 1.8‰/amu). In contrast, spinels from the spinel-rich regions adjacent to the fine-grained border have normal Mg isotopic composition (FMg = 0.1 ± 1.5‰/amu). The cores of large calcic (An90,99) plagioclase have no excess 26Mg, corresponding to 26Mg*/ 27Al < 3.7 × 10?6. The Mg isotopic heterogeneity in SA-1 requires initial cooling rates of spinel-rich regions adjacent to the fine-grained border to be greater than ~75 °C/hr. In contrast, the subophitic texture of the interior suggests cooling rates of 5–20 °C/ hr. The minerals in SA-1 exhibit a wide range of REE abundances. Lanthanum concentrations vary from 1 × chondritic (ch) in early crystallizing diopside to 100 × ch in late crystallizing fassaite. Nepheline has 18–20 × ch LREE and 11–25 × ch HREE and iron-rich mesostasis is highly enriched in the REE with 270–400 × ch LREE and 230–280 × ch HREE. The complementary REE patterns of clinopyroxene and plagioclase and the enrichment of incompatible trace elements in the mesostasis and late crystallizing phases is consistent with closed system crystallization. The REE data for nepheline and the iron-rich mesostasis indicate these phases are in equilibrium and that nepheline crystallized from a melt. Influx of alkalies, minor Fe and halogens must have occurred during the last stages of crystallization or the inclusion must have been partially molten during Na influx as both anorthite (An99) and nepheline are present in this inclusion. The preservation of isotopic heterogeneity in an inclusion that crystallized from a melt implies that melting was incomplete, allowing for survival of the relict spinels. The major and trace element abundances in SA-1 are inconsistent with formation as a mixture of nebular materials and suggest that SA-1 contains a chemically fractionated component produced by igneous differentiation.  相似文献   

13.
The petrogenesis of the Northwest Africa (NWA) 7635 Martian meteorite involved the entrainment of xenocrystic olivine grains into a relatively magnesian and oxidized melt, followed by a redox-dependent reaction between olivine and melt that resulted in the crystallization of orthopyroxene and magnetite. Subsequent crystallization of the melt began with augite, plagioclase, and magnetite phenocrysts, and was followed by crystallization of augite, plagioclase, magnetite, ilmenite, and pyrrhotite in the groundmass, which took place under more rapid conditions of cooling, as reflected in the groundmass grain size. The petrogenetic history of NWA 7635 is similar in many ways to that of NWA 8159; this observation, coupled with similarities in geochemical and isotopic characteristics from other studies, suggests that the parent melts of the two rocks—as represented by all minerals except the xenocrystic olivine—were one and the same. The main distinctions between the two rocks are that their parent melts entrained xenocrystic olivine of different composition, and the cooling rate of the groundmass of NWA 7635 was more rapid than that of NWA 8159. The conclusion that the redox reaction took place between olivine and melt is in contrast to other work that suggests the reaction took place in the subsolidus, and has implications for the nature of the reaction in both NWA 7635 and NWA 8159.  相似文献   

14.
The Tissint meteorite is a geochemically depleted, olivine‐phyric shergottite. Olivine megacrysts contain 300–600 μm cores with uniform Mg# (~80 ± 1) followed by concentric zones of Fe‐enrichment toward the rims. We applied a number of tests to distinguish the relationship of these megacrysts to the host rock. Major and trace element compositions of the Mg‐rich core in olivine are in equilibrium with the bulk rock, within uncertainty, and rare earth element abundances of melt inclusions in Mg‐rich olivines reported in the literature are similar to those of the bulk rock. Moreover, the P Kα intensity maps of two large olivine grains show no resorption between the uniform core and the rim. Taken together, these lines of evidence suggest the olivine megacrysts are phenocrysts. Among depleted olivine‐phyric shergottites, Tissint is the first one that acts mostly as a closed system with olivine megacrysts being the phenocrysts. The texture and mineral chemistry of Tissint indicate a crystallization sequence of: olivine (Mg# 80 ± 1) → olivine (Mg# 76) + chromite → olivine (Mg# 74) + Ti‐chromite → olivine (Mg# 74–63) + pyroxene (Mg# 76–65) + Cr‐ulvöspinel → olivine (Mg# 63–35) + pyroxene (Mg# 65–60) + plagioclase, followed by late‐stage ilmenite and phosphate. The crystallization of the Tissint meteorite likely occurred in two stages: uniform olivine cores likely crystallized under equilibrium conditions; and a fractional crystallization sequence that formed the rest of the rock. The two‐stage crystallization without crystal settling is simulated using MELTS and the Tissint bulk composition, and can broadly reproduce the crystallization sequence and mineral chemistry measured in the Tissint samples. The transition between equilibrium and fractional crystallization is associated with a dramatic increase in cooling rate and might have been driven by an acceleration in the ascent rate or by encounter with a steep thermal gradient in the Martian crust.  相似文献   

15.
Abstract– Petrological and geochemical analyses of Miller Range (MIL) 03346 indicate that this meteorite originated from the same augitic cumulate layer(s) as the nakhlite Martian meteorites, but underwent rapid cooling prior to complete crystallization. As with the other nakhlites, MIL 03346 contains a secondary alteration assemblage, in this case consisting of iddingsite‐like alteration veins in olivine phenocrysts, Fe‐oxide alteration veins associated with the mesostasis, and Ca‐ and K,Fe‐sulfate veins. We compared the textural and mineralogical compositions of MIL 090030, 090032, and 090136 with MIL 03346, focusing on the composition and Raman spectra of the alteration assemblages. These observations indicate that the meteorites are paired, and that the preterrestrial olivine‐bound alteration assemblages were produced by weakly acidic brine. Although these alteration assemblages resemble similar assemblages in Nakhla, the absence of siderite and halite in the Miller Range nakhlites indicates that the parental alteration brine was comparatively HCO3? depleted, and less concentrated, than that which altered Nakhla. This indicates that the Miller Range nakhlite alteration brine experienced a separate evolutionary pathway to that which altered Nakhla, and therefore represents a separate branch of the Lafayette‐Nakhla evaporation sequence. Thin‐sections cut from the internal portions of these meteorites (away from any fusion crust or terrestrially exposed edge), contain little Ca‐sulfate (identified as gypsum), and no jarosite, whereas thin‐sections with terrestrially exposed edges have much higher sulfate abundances. These observations suggest that at least the majority of sulfate within the Miller Range nakhlites is terrestrially derived.  相似文献   

16.
We present a geochemical study of recently discovered Martian meteorite Northwest Africa (NWA) 5790 and use our results to constrain its origin and relationship with the other nakhlites. This nakhlite is a clinopyroxene cumulate composed of phenocrysts of augite, olivine, and rare oxides surrounded by a mesostasis composed of vitrophyric glass, feldspars, oxides, phosphates, and fine‐grained olivines and augite. Petrography, and major and trace element compositions of the phases present are consistent with derivation of NWA 5790 from a parental magma common to all the nakhlites. Olivine cores grew from a distinct, incompatible‐element enriched magma and are surrounded by rims containing augite inclusions that grew from the nakhlite parental liquid, supporting previous arguments for xenocrystic olivine cores in nakhlites. Rare earth element microdistributions suggest derivation of NWA 5790 augites from an evolved, relatively oxidized magma, produced by augite fractionation from the common nakhlite parental liquid. Augite grain shapes and CSD patterns are consistent with rapid cooling and derivation near the top of the nakhlite cumulate pile, but patterns are distinct from other nakhlites thought to have formed near the stratigraphic top. The high mesostasis abundance (~44 vol%) indicates solidification near the top of the nakhlite pile close to locations suggested for nakhlites NWA 817 and Miller Range (MIL) 03346. However, the geochemical and petrographic characteristics of these three samples do not permit their placement in a simple stratigraphic order as would occur in a single lava flow. This lack of simple ordering suggests that the nakhlite lava flow split into multiple sections as would occur during breakouts from a single lava flow. Finally we note that NWA 5790 is unique among currently available nakhlites in having phenocryst abundances low enough to allow it to flow.  相似文献   

17.
We found a large (~2 mm) compound object in the primitive Yamato 793408 (H3.2‐an) chondrite. It consists mostly of microcrystalline material, similar to chondrule mesostasis, that hosts an intact barred olivine (BO) chondrule. The object contains euhedral pyroxene and large individual olivine grains. Some olivine cores are indicative of refractory forsterites with very low Fe‐ and high Ca, Al‐concentrations, although no 16O enrichment. The entire object is most likely a new and unique type, as no similar compound object has been described so far. We propose that it represents an intermediate stage between compound chondrules and macrochondrules, and formed from the collision between chondrules at low velocities (below 1 m s?1) at high temperatures (around 1550 °C). The macrochondrule also trapped and preserved a smaller BO chondrule. This object appears to be the first direct evidence for a genetic link between compound chondrules and macrochondrules. In accordance with previous suggestions and studies, compound chondrules and macrochondrules likely formed by the same mechanism of chondrule collisions, and each represents different formation conditions, such as ambient temperature and collision speed.  相似文献   

18.
Abstract— Plagioclase in the Martian lherzolitic shergottite Grove Mountains (GRV) 99027 was shocked, melted, and recrystallized. The recrystallized plagioclase contains lamellae of pyroxene, olivine, and minor ilmenite (<1 μm wide). Both the pyroxene and the olivine inclusions enclosed in plagioclase and grains neighboring the plagioclase were partially melted into plagioclase melt pools. The formation of these lamellar inclusions in plagioclase is attributed to exsolution from recrystallizing melt. Distinct from other Martian meteorites, GRV 99027 contains no maskelynite but does contain recrystallized plagioclase. This shows that the meteorite experienced a slower cooling than maskelynite‐bearing meteorites. We suggest that the parent rock of GRV 99027 could have been embedded in hot rocks, which facilitated a more protracted cooling history.  相似文献   

19.
Petrology of Martian meteorite Northwest Africa 998   总被引:1,自引:0,他引:1  
Abstract— Nakhlite Northwest Africa (NWA) 998 is an augite-rich cumulate igneous rock with mineral compositions and oxygen isotopic composition consistent with an origin on Mars. This 456-gram, partially fusion-crusted meteorite consists of (by volume) ∼75% augite (core composition Wo39En39Fs22), ∼9% olivine (Fo35), ∼7% plagioclase (Ab61An35) as anhedra among augite and olivine, ∼3.5% low-calcium pyroxenes (pigeonite and orthopyroxene) replacing or forming overgrowths on olivine and augite, ∼1% titanomagnetite, and other phases including potassium feldspar, apatite, pyrrhotite, chalcopyrite, ilmenite, and fine-grained mesostasis material. Minor secondary alteration materials include “iddingsite” associated with olivine (probably Martian), calcite crack fillings, and iron oxide/hydroxide staining (both probably terrestrial). Shock effects are limited to minor cataclasis and twinning in augite. In comparison to other nakhlites, NWA 998 contains more low-calcium pyroxenes and its plagioclase crystals are blockier. The large size of the intercumulus feldspars and the chemical homogeneity of the olivine imply relatively slow cooling and chemical equilibration in the late- and post-igneous history of this specimen, and mineral thermometers give subsolidus temperatures near 730 °C. Oxidation state was near that of the QFM buffer, from about QFM-2 in earliest crystallization to near QFM in late crystallization, and to about QFM + 1.5 in some magmatic inclusions. The replacement or overgrowth of olivine by pigeonite and orthopyroxene (with or without titanomagnetite), and the marginal replacement of augite by pigeonite, are interpreted to result from late-stage reactions with residual melts (consistent with experimental phase equilibrium relationships). Apatite is concentrated in planar zones separating apatite-free domains, which suggests that residual magma (rich in P and REE) was concentrated in planar (fracture?) zones and possibly migrated through them. Loss of late magma through these zones is consistent with the low bulk REE content of NWA 998 compared with the calculated REE content of its parent magma.  相似文献   

20.
Abstract– We report trace element analyses from mineral phases in chondrules from carbonaceous chondrites (Vigarano, Renazzo, and Acfer 187), carried out by laser ablation inductively coupled plasma‐mass spectrometry. Results are similar in all three meteorites. Mesostasis has rare earth element (REE) concentrations of 10–20 × CI. Low‐Ca pyroxene has light REE (LREE) concentrations near 0.1 × CI and heavy REE (HREE) near 1 × CI, respectively. Olivine has HREE concentrations at 0.1–1 × CI and LREE around 10?2 × CI. The coarsest olivine crystals tend to have the most fractionated REE patterns, indicative of equilibrium partitioning. Low‐Ca pyroxene in the most pyroxene‐rich chondrules tends to have the lowest REE concentrations. Type I chondrules seem to have undergone a significant degree of batch crystallization (as opposed to fractional crystallization), which requires cooling rates slower than 1–100 K h?1. This would fill the gap between igneous calcium‐aluminum‐rich inclusions (CAIs) and type II chondrules. The anticorrelation between REE abundances and pyroxene mode may be understood as due to dilution by addition of silica to the chondrule melt, as in the gas‐melt interaction scenario of Libourel et al. (2006). The rapid cooling rate (of the order of 1000 K h?1) which seems recorded by low‐Ca pyroxene, contrasted with the more diverse record of olivine, may point to a nonlinear cooling history or suggest that formation of pyroxene‐rich chondrule margins was an event distinct from the crystallization of the interior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号