首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The Gao‐Guenie H5 chondrite that fell on Burkina Faso (March 1960) has portions that were impact‐melted on an H chondrite asteroid at ~300 Ma and, through later impact events in space, sent into an Earth‐crossing orbit. This article presents a petrographic and electron microprobe analysis of a representative sample of the Gao‐Guenie impact melt breccia consisting of a chondritic clast domain, quenched melt in contact with chondritic clasts, and an igneous‐textured impact melt domain. Olivine is predominantly Fo80–82. The clast domain contains low‐Ca pyroxene. Impact melt‐grown pyroxene is commonly zoned from low‐Ca pyroxene in cores to pigeonite and augite in rims. Metal–troilite orbs in the impact melt domain measure up to ~2 mm across. The cores of metal orbs in the impact melt domain contain ~7.9 wt% of Ni and are typically surrounded by taenite and Ni‐rich troilite. The metallography of metal–troilite droplets suggest a stage I cooling rate of order 10 °C s?1 for the superheated impact melt. The subsolidus stage II cooling rate for the impact melt breccia could not be determined directly, but was presumably fast. An analogy between the Ni rim gradients in metal of the Gao‐Guenie impact melt breccia and the impact‐melted H6 chondrite Orvinio suggests similar cooling rates, probably on the order of ~5000–40,000 °C yr?1. A simple model of conductive heat transfer shows that the Gao‐Guenie impact melt breccia may have formed in a melt injection dike ~0.5–5 m in width, generated during a sizeable impact event on the H chondrite parent asteroid.  相似文献   

2.
Abstract— 40Ar‐39Ar analyses of a total of 26 samples from eight shock‐darkened impact melt breccias of H‐chondrite affinity (Gao‐Guenie, LAP 02240, LAP 03922, LAP 031125, LAP 031173, LAP 031308, NWA 2058, and Ourique) are reported. These appear to record impacts ranging in time from 303 ± 56 Ma (Gao‐Guenie) to 4360 ± 120 Ma (Ourique) ago. Three record impacts 300–400 Ma ago, while two others record impacts 3900–4000 Ma ago. Combining these with other impact ages from H chondrites in the literature, it appears that H chondrites record impacts in the first 100 Ma of solar system history, during the era of the “lunar cataclysm” and shortly thereafter (3500–4000 Ma ago), one or more impacts ?300 Ma ago, and perhaps an impact ?500 Ma ago (near the time of the L chondrite parent body disruption). Records of impacts on the H chondrite parent body are rare or absent between the era of planetary accretion and the “lunar cataclysm” (4400‐4050 Ma), during the long stretch between heavy bombardment and recent breakup events (3500‐1000 Ma), or at the time of final breakup into meteorite‐sized bodies (<50 Ma).  相似文献   

3.
Abstract— We have studied the petrography, reflectance spectra, and Ar‐Ar systematics of the Orivinio meteorite. Orvinio is an H chondrite not an L chondrite as sometimes reported. The material in the meteorite was involved in several impact events. One impact event produced large swaths of impact melt from H chondrite material surrounding relict clasts of chondrule‐bearing material. Not only were portions of a bulk H chondrite planestesimal melted during the impact event, but shock redistribution of metal and sulfide phases in the meteorite dramatically altered its reflectance spectra. Both the melt and relict clasts are darker than unshocked H chondrite material, bearing spectral similarities to some C‐class asteroids. Such shock metamorphism, which lowers the albedo of an object without increasing its spectral slope, may partially explain some of the variation among S‐class asteroids and some of the trends seen on asteroid 433 Eros. Noble gases record the evidence of at least two, and perhaps three, impact events in the meteorite and its predecessor rocks. The most significant evidence is for an event that occurred 600 Ma ago or less, perhaps ?325 Ma ago or less. There is also a signature of 4.2 Ga in the Ar‐Ar systematics, which could either reflect complete degassing of the rock at that time or partial degassing of even the most retentive sites in the more recent event.  相似文献   

4.
Cover          下载免费PDF全文
Large image: A view toward the center of the eroded ~1.15 Ga Keurusselkä impact structure from the North (Hyyrynlahti). The photo was taken in September 2006, when the water level of Lake Keurusselkä was exceptionally low. Lower inset: N‐S‐striking autochthonous melt breccia vein temporarily exposed near Kirkkoranta (hammer for scale is ~1 m long). Melt breccia specimen (scale bar is 1 cm). Martin Schmieder et al. discuss the structure in their article on pp. 303‐322. Image credit: Jarmo Moilanen.  相似文献   

5.
Cover          下载免费PDF全文
X‐ray map of a thin section of a sample of the Chelyabinsk meteorite from the study of Righter et al. (pp. 1790–1819). Sample Chel‐102 contains roughly 50 modal% of a dark lithology that is shock‐darkened LL5 chondrite (left side of image). There is heavy veining of this portion, and very little original equilibrated chondritic texture remaining. The other 50% of Chel‐102 (right side of image) is a very fi ne‐grained melt breccia comprised of mesostasis (85%), metal‐troilite droplets (5%), and chondritic fragments of similar mineralogy to the light lithology of Chel‐101. Image produced by Eve. L. Berger.  相似文献   

6.
Abstract– Miller Range (MIL) 05029 is a slowly cooled melt rock with metal/sulfide depletion and an Ar‐Ar age of 4517 ± 11 Ma. Oxygen isotopes and mineral composition indicate that it is an L chondrite impact melt, and a well‐equilibrated igneous rock texture with a lack of clasts favors a melt pool over a melt dike as its probable depositional setting. A metallographic cooling rate of approximately 14 °C Ma?1 indicates that the impact occurred at least approximately 20 Ma before the Ar‐Ar closure age of 4517 Ma, possibly even shortly after accretion of its parent body. A metal grain with a Widmanstätten‐like pattern further substantiates slow cooling. The formation age of MIL 05029 is at least as old as the Ar‐Ar age of unshocked L and H chondrites, indicating that endogenous metamorphism on the parent asteroid was still ongoing at the time of impact. Its metallographic cooling rate of approximately 14 °C Ma?1 is similar to that typical for L6 chondrites, suggesting a collisional event on the L chondrite asteroid that produced impact melt at a minimum depth of 5–12 km. The inferred minimum crater diameter of 25–60 km may have shattered the 100–200 km diameter L chondrite asteroid. Therefore, MIL 05029 could record the timing and petrogenetic setting for the observed lack of correlation of cooling rates with metamorphic grades in many L chondrites.  相似文献   

7.
Abstract– Larkman Nunatak (LAR) 06299 is a vesicular LL chondrite impact melt breccia that cooled rapidly (0.1–0.3 °C s?1) during crystallization. Ar‐Ar data from the literature indicate that the impact event that formed this rock occurred approximately 1 Ga ago. About 30 vol% of the meteorite consists of a melt matrix containing faceted and intergrown mafic silicate grains (mainly 4–11 μm size olivine phenocrysts) partially to completely surrounded by 2–20 μm size patches of plagioclase. Suspended in the melt are 30–370 μm size ellipsoidal to spheroidal metal‐sulfide nodules (several hundred per thin section), many connected to 8–600 μm size ellipsoidal to spheroidal vesicles. Most of the metal‐sulfide nodules contain a large oblate metallic Fe‐Ni bleb at one end of the nodule. For approximately 90% of the nodules, the metal blebs are aligned on the same side of the nodules; for approximately 80% of the nodules that are adjacent to vesicles, the vesicles are attached to the opposite end of the nodules from the oblate metal blebs. Most of the oblate metal blebs themselves are flattened in a direction perpendicular to the long axis of the nodule/vesicle. These features result from alignment in the gravitational field on the LL parent asteroid, making LAR 06299 the first known chondrite to indicate gravitational direction. Using reasonable estimates of the cooling rate, viscosity of the metal‐sulfide melt, and asteroid density, as well as the observed sizes of constituent phases in LAR 06299, we obtain a lower limit of approximately 1.5 km for the radius of the LAR 06299 parent body. The body was probably substantially larger.  相似文献   

8.
Three‐dimensional X‐ray tomographic reconstructions and petrologic studies reveal voluminous accumulations of metal in Pu?tusk H chondrite. At the contact of these accumulations, the chondritic rock is enriched in troilite. The rock contains plagioclase‐rich bands, with textures suggesting crystallization from melt. Unusually large phosphates are associated with the plagioclase and consist of assemblages of merrillite, and fluorapatite and chlorapatite. The metal accumulations were formed by impact melting, rapid segregation of metal‐sulfide melt and the incorporation of this melt into the fractured crater basement. The impact most likely occurred in the early evolution of the H chondrite parent body, when post‐impact heat overlapped with radiogenic heat. This enabled slow cooling and separation of the metallic melt into metal‐rich and sulfide‐rich fractions. This led to recrystallization of chondritic rock in contact with the metal accumulations and the crystallization of shock melts. Phosphorus was liberated from the metal and subsumed by the silicate shock melt, owing to oxidative conditions upon slow cooling. The melt was also a host for volatiles. Upon further cooling, phosphorus reacted with silicates leading to the formation of merrillite, while volatiles partitioned into the residual halogen‐rich, dry fluid. In the late stages, the fluid altered merrillite to patchy Cl/F‐apatite. The above sequence of alterations demonstrates that impact during the early evolution of chondritic parent bodies might have contributed to local metal segregation and silicate melting. In addition, postshock conditions supported secondary processes: compositional/textural equilibration, redistribution of volatiles, and fluid alterations.  相似文献   

9.
Abstract— Platinum‐group element (PGE) concentrations and ratios obtained from samples of the Clearwater East impact melt have been used along with other siderophile element ratios to classify the impacting projectile as a carbonaceous chondrite. This is at odds with recent chromium isotope analyses that suggest ordinary chondrite‐type material is present. The present study reviews and reinterprets the available PGE data in the light of new PGE data from meteorites and concludes that the PGE ratios in the impact melt are most consistent with ordinary (possibly type‐L) chondrite source material, not carbonaceous chondrites. Therefore the structure was most probably formed by the impact of an asteroid composed of material similar to ordinary chondrites.  相似文献   

10.
Abstract— A large impact event 500 Ma ago shocked and melted portions of the L‐chondrite parent body. Chico is an impact melt breccia produced by this event. Sawn surfaces of this 105 kg meteorite reveal a dike of fine‐grained, clast‐poor impact melt cutting shocked host chondrite. Coarse (1–2 cm diameter) globules of FeNi metal + sulfide are concentrated along the axis of the dike from metal‐poor regions toward the margins. Refractory lithophile element abundance patterns in the melt rock are parallel to average L chondrites, demonstrating near‐total fusion of the L‐chondrite target by the impact and negligible crystal‐liquid fractionation during emplacement and cooling of the dike. Significant geochemical effects of the impact melting event include fractionation of siderophile and chalcophile elements with increasing metal‐silicate heterogeneity, and mobilization of moderately to highly volatile elements. Siderophile and chalcophile elements ratios such as Ni/Co, Cu/Ga, and Ir/Au vary systematically with decreasing metal content of the melt. Surprisingly small (?102) effective metal/silicate‐melt distribution coefficients for highly siderophile elements probably reflect inefficient segregation of metal despite the large degrees of melting. Moderately volatile lithophile elements such K and Rb were mobilized and heterogeneously distributed in the L‐chondrite impact breccias whereas highly volatile elements such as Cs and Pb were profoundly depleted in the region of the parent body sampled by Chico. Volatile element variations in Chico and other L chondrites are more consistent with a mechanism related to impact heating rather than condensation from a solar nebula. Impact processing can significantly alter the primary distributions of siderophile and volatile elements in chondritic planetesimals.  相似文献   

11.
The brecciation and shock classification of 2280 ordinary chondrites of the meteorite thin section collection at the Institut für Planetologie (Münster) has been determined. The shock degree of S3 is the most abundant shock stage for the H and LL chondrites (44% and 41%, respectively), while the L chondrites are on average more heavily shocked having more than 40% of rocks of shock stage S4. Among the H and LL chondrites, 40–50% are “unshocked” or “very weakly shocked.” Considering the petrologic types, in general, the shock degree is increasing with petrologic type. This is the case for all meteorite groups. The main criteria to define a rock as an S6 chondrite are the solid‐state recrystallization and staining of olivine and the melting of plagioclase often accompanied by the formation of high‐pressure phases like ringwoodite. These characteristics are typically restricted to local regions of a bulk chondrite in or near melt zones. In the past, the identification of high‐pressure minerals (e.g., ringwoodite) was often taken as an automatic and practical criterion for a S6 classification during chondrite bulk rock studies. The shock stage classification of many significantly shocked chondrites (>S3) revealed that most ringwoodite‐bearing rocks still contain more than 25% plagioclase (74%). Thus, these bulk chondrites do not even fulfill the S5 criterion (e.g., 75% of plagioclase has to be transformed into maskelynite) and have to be classified as S4. Studying chondrites on typically large thin sections (several cm2) and/or using samples from different areas of the meteorites, bulk chondrites of shock stage S6 should be extremely rare. In this respect, the paper will discuss the probability of the existence of bulk rocks of S6.  相似文献   

12.
Abstract— Here we present the results of a geochemical study of the projectile component in impactmelt rocks from the Lappajärvi impact structure, Finland. Main‐ and trace‐element analyses, including platinum group elements (PGEs), were carried out on twenty impact‐melt rock samples from different locations and on two shocked granite fragments. The results clearly illustrate that all the impact melt rocks are contaminated with an extraterrestrial component. An identification of the projectile type was performed by determining the projectile elemental ratios and comparing the corresponding element ratios in chondrites. The projectile elemental ratios suggest an H chondrite as the most likely projectile type for the Lappajärvi impact structure. The PGE composition of the highly diluted projectile component (?0.05 and 0.7 wt% in the impact‐melt rocks) is similar to the recent meteorite population of H chondrites reaching Earth. The relative abundance of ordinary chondrites, including H, L, and LL chondrites, as projectiles at terrestrial impact structures is most likely related to the position of their parent bodies relative to the main resonance positions. This relative abundance of ordinary chondrites suggests a strong bias of the impactor population toward inner Main Belt objects.  相似文献   

13.
Ancient, SiO2‐rich achondrites have previously been proposed to have formed by disequilibrium partial melting of chondrites. Here, we test the alternative hypothesis that these achondrites formed by fractional crystallization of impact melts of Rumuruti (R) chondrites. We identified two new melt clasts in R chondrites, one in Pecora Escarpment (PCA) 91241 and one in LaPaz Icefield (LAP) 031275. We analyzed major, minor, and trace element concentrations, as well as oxygen isotopes, of these two clasts and a third one that had been previously recognized (Bischoff et al. 2011) as an impact melt in Dar al Gani (DaG) 013. The melt clast in PCA 91241 is an R chondrite impact melt closely resembling the one previously recognized in DaG 013. The melt clast in LAP 031275 has an L chondrite provenance. We show that SiO2‐rich melts could form from the mesostases of R chondrite impact melts. However, their CI‐normalized rare earth element patterns are flat, whereas those of ancient SiO2‐rich achondrites (Day et al. 2012; Srinivasan et al. 2018) and those of disequilibrium partial melts of chondrites (Feldstein et al. 2001) have positive Eu anomalies from preferential melting of plagioclase. Thus, we conclude that ancient SiO2‐rich achondrites were probably formed by disequilibrium partial melting (due to an internal heat source on their parent bodies), rather than from impact melts.  相似文献   

14.
Abstract— The enstatite chondrite reckling peak (rkp) a80259 contains feldspathic glass, kamacite, troilite, and unusual sets of parallel fine‐grained enstatite prisms that formed by rapid cooling of shock melts. Metallic Fe,Ni and troilite occur as spherical inclusions in feldspathic glass, reflecting the immiscible Fe‐Ni‐S and feldspathic melts generated during the impact. The Fe‐Ni‐S and feldspathic liquids were injected into fractures in coarse‐grained enstatite and cooled rapidly, resulting in thin (≤ 10 μm) semicontinuous to discontinuous veins and inclusion trails in host enstatite. Whole‐rock melt veins characteristic of heavily shocked ordinary chondrites are conspicuously absent. Raman spectroscopy shows that the feldspathic material is a glass. Elevated MgO and SiO2 contents of the glass indicate that some enstatite and silica were incorporated in the feldspathic melt. Metallic Fe,Ni globules are enclosed by sulfide and exhibit Nienrichment along their margins characteristic of rapid crystallization from a Fe‐Ni‐S liquid. Metal enclosed by sulfide is higher in Si and P than metal in feldspathic glass and enstatite, possibly indicating lower O fugacities in metal/sulfide than in silicate domains. Fine‐grained, elongate enstatite prisms in troilite or feldspathic glass crystallized from local pyroxene melts that formed along precursor grain boundaries, but most of the enstatite in the target rock remained solid during the impact and occurs as deformed, coarsegrained crystals with lower CaO, Al2O3, and FeO than the fine‐grained enstatite. Reckling Peak A80259 represents an intermediate stage of shock melting between unmelted E chondrites and whole‐rock shock melts and melt breccias documented by previous workers. The shock petrogenesis of RKPA80259 reflects the extensive impact processing of the enstatite chondrite parent bodies relative to those of other chondrite types.  相似文献   

15.
Northwest Africa 757 is unique in the LL chondrite group because of its abundant shock‐induced melt and high‐pressure minerals. Olivine fragments entrained in the melt transform partially and completely into ringwoodite. Plagioclase and Ca‐phosphate transform to maskelynite, lingunite, and tuite. Two distinct shock‐melt crystallization assemblages were studied by FIB‐TEM analysis. The first melt assemblage, which includes majoritic garnet, ringwoodite plus magnetite‐magnesiowüstite, crystallized at pressures of 20–25 GPa. The other melt assemblage, which consists of clinopyroxene and wadsleyite, solidified at ~15 GPa, suggesting a second veining event under lower pressure conditions. These shock features are similar to those in S6 L chondrites and indicate that NWA 757 experienced an intense impact event, comparable to the impact event that disrupted the L chondrite parent body at 470 Ma.  相似文献   

16.
Saint‐Séverin and Elbert, two LL6 chondrite breccias, were systematically studied to evaluate multiple deformation effects on spatial scales ranging from thin section (mesoscale) to micron‐submicron (microscale) using optical microscopy, electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The different techniques provide consistent results but have complementary strengths, together providing a powerful approach to unravel even complex impact histories. Both meteorites have an S4 conventional shock stage, but interclast areas are more deformed, and clasts are more deformed in Elbert than in Saint‐Séverin. TEM and EBSD data provide compelling evidence that Saint‐Séverin experienced significant shock deformation while already hot, and cooled rapidly afterward, as a result of a major, possibly disruptive impact on the LL chondrite parent body ~4.4 Ga ago. In contrast, Elbert was shocked from a cold initial state but was heated significantly during shock, and cooled in a localized hot impact deposit on the LL asteroid. Both meteorites probably were shocked at least twice; data for Saint‐Séverin are best reconciled with a three‐impact model.  相似文献   

17.
Ordinary chondrites have previously been nondestructively characterized using bulk magnetic susceptibility, broadly reflecting their Fe-Ni alloy content. We seek to expand the information that can be recovered from magnetic susceptibility by using the University of Toronto Electromagnetic Induction Spectrometer (UTEMIS) to measure the complex magnetic susceptibility tensor of 20 ordinary chondrites samples in addition to 16 Gao–Guenie (H5) chondrites at 35 frequencies from 90 Hz to 64 kHz, at variable low applied field strengths <10 A m−1. Following removal of the field-dependent component of susceptibility, frequency dependence, in- and out-of-phase components, and bulk magnetic susceptibility were interpreted. Most meteorites showed no frequency-dependent in-phase responses, but had a frequency-dependent out-of-phase response attributed to eddy currents induced in conductive minerals. Greater in- and out-of-phase frequency dependence correlated with lower fayalite content in olivine and was, in turn, inversely proportional to Fe-Ni alloy content. The uncertainty in the UTEMIS measurements ranges from approximately 0.05% for low-frequency in-phase measurements to a maximum of 3% for low-frequency out-of-phase measurements. This uncertainty level was far lower than the intra-meteorite variability for the Gao–Guenie suite suggesting inhomogeneity at scales of approximately 10 g.  相似文献   

18.
Abstract— Six ordinary chondrite breccias from the Museo Nacional de Ciencias Naturales, Madrid (Spain), are described and classified as follows: the solar gas-rich regolith breccia Oviedo (H5); the pre-metamorphic fragmental breccias Cabezo de Mayo (type 6, L-LL), and Sevilla (LL4); the fragmental breccias Cañellas (H4) and Gerona (H5); and the impact melt breccia, Madrid (L6). We confirm that chondrites with typical light-dark structures and petrographic properties typical of regolith breccias may (Oviedo) or may not (Cañellas) be solar gas-rich. Cabezo de Mayo and Sevilla show convincing evidence that they were assembled prior to peak metamorphism and were equilibrated during subsequent reheating. These meteorites contain small melt rock clasts that were incorporated into the host chondrite while still molten and/or plastic and cooled rapidly and, yet, are totally equilibrated with their hosts. Compositions of olivine and low-Ca pyroxene in host chondrite and breccia clasts in Cabezo de Mayo are transitional between groups L and LL. It is suggested, based on mineralogic and oxygen isotopic compositions of host and clasts, that the rock formed on the L parent body by mixing, prior to peak metamorphism. This was followed by partial equilibration of two different materials: the indigenous L chondrite host and exotic LL melt rock clasts.  相似文献   

19.
Abstract— Portales Valley (PV) is an unusual metal‐veined meteorite that has been classified as an H6 chondrite. It has been regarded either as an annealed impact melt breccia, as a primitive achondrite, or as a meteorite with affinities to silicated iron meteorites. We studied the petrology of PV using a variety of geochemical‐mineralogical techniques. Our results suggest that PV is the first well‐documented metallic‐melt meteorite breccia. Mineral‐chemical and other data suggest that the protolith to PV was an H chondrite. The composition of FeNi metal in PV is somewhat fractionated compared to H chondrites and varies between coarse vein and silicate‐rich portions. It is best modeled as having formed by partial melting at temperatures of ?940–1150 °C, with incomplete separation of solid from liquid metal. Solid metal concentrated in the coarse vein areas and S‐bearing liquid metal concentrated in the silicate‐rich areas, possibly as a result of a surface energy effect. Both carbon and phosphorus must have been scavenged from large volumes and concentrated in metallic liquid. Graphite nodules formed by crystallization from this liquid, whereas phosphate formed by reaction between P‐bearing metal and clinopyroxene components, depleting clinopyroxene throughout much of the meteorite and growing coarse phosphate at metal‐silicate interfaces. Some phosphate probably crystallized from P‐bearing liquids, but most probably formed by solid‐state reaction at ?975‐725 °C. Phosphate‐forming and FeO‐reduction reactions were widespread in PV and entailed a change in the mineralogy of the stony portion on a large scale. Portales Valley experienced protracted annealing from supersolidus to subsolidus temperatures, probably by cooling at depth within its parent body, but the main differences between PV and H chondrites arose because maximum temperatures were higher in PV. A combination of a relatively weak shock event and elevated pre‐shock temperatures probably produced the vein‐and‐breccia texture, with endogenic heating being the main heat source for melting, and with stress waves from an impact event being an essential trigger for mobilizing metal. Portales Valley is best classified as an H7 metallic‐melt breccia of shock stage S1. The meteorite is transitional between more primitive (chondritic) and evolved (achondrite, iron) meteorite types and offers clues as to how differentiation could have occurred in some asteroidal bodies.  相似文献   

20.
Abstract– Northwest Africa 4859 (NWA 4859) is a meteorite of LL chondrite parentage that shows unusual igneous features and contains widely distributed pentlandite. The most obvious unusual feature is a high proportion of large (≤3 cm diameter) igneous‐textured enclaves (LITEs), interpreted as shock melts that were intruded into an LL chondrite host. One such LITE appears to have been produced by whole rock melting of LL chondrite, initial rapid partial crystallization, and subsequent slow cooling of the residual melt in the host to produce a differentiated object. Other unusual features include mm‐sized “overgrowth objects,” fine‐grained plagioclase‐rich bands, and coarse troilite (≤7 mm across) grains. All these features are interpreted as having crystallized from melts produced by a single transient shock event, followed by slow cooling. A subsequent shock event of moderate (S3) intensity produced veining and transformed some of the pyroxene into the clinoenstatite polytype. Pentlandite (together with associated troilite) in NWA 4859 probably formed by the breakdown of a monosulfide precursor phase at low temperature (≤230 °C) following the second shock event. NWA 4859 is interpreted to be an unusual impact‐melt breccia that contains shock melt which crystallized in different forms at depth within the parent body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号