首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
One of the most puzzling aspects of Mars is that organics have not yet been found on the surface. The simplest of organic molecules, methane, was detected in the Martian atmosphere for the first time in 2003. The existence and behavior of methane on Mars is of great significance, as methane is a potential biomarker. In this paper we review our current understanding of possible sources and sinks of methane on Mars. We also investigate the role of other trace species in the maintenance and removal of methane from the atmosphere, as well as of other organic material from the surface. In particular, we examine the exogenous, hydrogeochemical—especially serpentinization—and biological sources, for supplying methane to Mars. We suggest that comets and meteorites are the least likely, whereas low-temperature serpentinization is the most plausible of all candidates to explain the methane observations. Nevertheless, it is premature to rule out the role of biology in producing methane on Mars, in view of available data. It is important to note that the loss of methane to surface must also be factored into any “source” scenarios for methane. Ordinary heterogeneous loss process to surface tends to be very slow. On the other hand, a reactive surface could potentially accelerate the destruction of methane. If correct, it would imply that a larger source of methane is present than currently estimated on the basis of photochemical loss alone. A reactive surface can also explain why no organic material has ever been detected on the Martian surface. The surface could become reactive if some oxidizer were present. We suggest that vast quantities of a powerful oxidant, hydrogen peroxide, can be produced in electrochemistry triggered by electrostatic fields generated in the Martian dust devils and dust storms, and in normal saltation process close to the surface. Finally, current observations are inadequate to prove or disprove the existence of life on Mars, now or in the past. The question of extraterrestrial life is a fundamental one, and it should be addressed meticulously on future missions to Mars. Measurements planned on the Mars Science Laboratory (MSL), especially carbon isotopes and chirality, will go a long way in meeting this goal. A brief overview of the MSL Mission and measurements relevant to the question of life and habitability of Mars is also presented in this paper.  相似文献   

2.
Processing of organic molecules by liquid water was probably an essential requirement towards the emergence of terrestrial primitive life. According to Oparin's hypothesis, organic building blocks required for early life were produced from simple organic molecules formed in a primitive reducing atmosphere. Geochemists favour now a less reducing atmosphere dominated by carbon dioxide. In such an atmosphere, very few building blocks are formed. Import of extraterrestrial organic molecules may represent an alternative supply. Experimental support for such an alternative scenario is examined in comets, meteorites and micrometeorites. The early histories of Mars and Earth clearly show similarities. Liquid water was once stable on the surface of Mars attesting the presence of an atmosphere capable of decelerating C-rich micro-meteorites. Therefore, primitive life may have developed on Mars, as well. Liquid water disappeared from the surface of Mars very early, about 3.8 Ga ago. The Viking missions did not find, at the surface of the Martian soil, any organic molecules or clear-cut evidence for microbial activities such as photosynthesis, respiration or nutrition. The results can be explained referring to an active photochemistry of Martian soil driven by the high influx of solar UV. These experiments do not exclude the existence of organic molecules and fossils of micro-organisms which developed on early Mars until liquid water disappeared. Mars may store below its surface some well preserved clues of a still hypothetical primitive life.  相似文献   

3.
Despite the fact that microbial cells are unlikely to be found in the Martian soil in the near future, this paper is written on the assumption that some of the seasonally varying concentration of Martian methane is due to ongoing methanogenesis. It is first pointed out that life might have arisen on Mars first and been transported to Earth later. A case is made that an icy origin of life is more likely than a hot origin, especially if biomolecules take advantage of the high encounter rates and stability against hydrolysis, and that microorganisms feed on the ions that comprise eutectic solutions in ice. Although certain difficulties are avoided if RNA and DNA grow while adsorbed on clay grains, double strand-breaks of microbial DNA due to alpha radioactivity are a far greater threat to microbial survival on clay or other rock types than in ice. Developing a relation between the rate of microbial metabolism in ice and the experimentally determined rate of production of trapped gases of microbial origin, one can estimate the concentration of methanogens that could account for the methane production rate as a function of temperature of their habitat. The result, of order 1 cell cm−3 in the Martian subsurface, seems an attainable goal provided samples are taken from at least 1 or 2 m below the hostile surface of Mars. Instruments on NASA’s 2011 Mars Science Lab will measure stable isotopes for methane, water, and carbon dioxide, which on Earth served to distinguish abiotic, thermogenic, and microbial origins. Future measurements of chirality of biomolecules might also provide evidence for Martian life.  相似文献   

4.
Mars appears to have experienced little compositional differentiation of primitive lithosphere, and thus much of the surface of Mars is covered by mafic lavas. On Earth, mafic and ultramafic rocks present in ophiolites, oceanic crust and upper mantle that have been obducted onto land, are therefore good analogs for Mars. The characteristic mineralogy, aqueous geochemistry, and microbial communities of cold-water alkaline springs associated with these mafic and ultramafic rocks represent a particularly compelling analog for potential life-bearing systems. Serpentinization, the reaction of water with mafic minerals such as olivine and pyroxene, yields fluids with unusual chemistry (Mg–OH and Ca–OH waters with pH values up to ~12), as well as heat and hydrogen gas that can sustain subsurface, chemosynthetic ecosystems. The recent observation of seeps from pole-facing crater and canyon walls in the higher Martian latitudes supports the hypothesis that even present conditions might allow for a rock-hosted chemosynthetic biosphere in near-surface regions of the Martian crust. The generation of methane within a zone of active serpentinization, through either abiogenic or biogenic processes, could account for the presence of methane detected in the Martian atmosphere. For all of these reasons, studies of terrestrial alkaline springs associated with mafic and ultramafic rocks are particularly timely. This study focuses on the alkaline Adobe Springs, emanating from mafic and ultramafic rocks of the California Coast Range, where a community of novel bacteria is associated with the precipitation of Mg–Ca carbonate cements. The carbonates may serve as a biosignature that could be used in the search for evidence of life on Mars.  相似文献   

5.
NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research’s (COSPAR’s) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary COSPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable “ground truth” data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.  相似文献   

6.
The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography‐mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot‐water extracts with high relative abundances of β‐alanine and γ‐amino‐n‐butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight‐chained amine‐terminal n‐ω‐amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites (Burton et al. 2012; Chan et al. 2012). A carbon isotope ratio of ?24‰ ± 6‰ for β‐alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of n‐ω‐amino acids may be due to a high temperature Fischer‐Tropsch‐type synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses.  相似文献   

7.
Several characteristic geological features found on the surface of Mars by planetary rovers suggest that a possible extinct biosphere could exist based on similar sources of energy as occurred on Earth. For this reason, analytical instrumental protocols for the detection of biomarkers in suitable geological matrices unequivocally have to be elaborated for future unmanned explorations including the forthcoming ESA ExoMars mission. As part of the Pasteur suite of analytical instrumentation on ExoMars, the Raman/LIBS instrument will seek elemental and molecular information about geological, biological and biogeological markers in the Martian record. A key series of experiments on terrestrial Mars analogues, of which this paper addresses a particularly important series of compounds, is required to obtain the Raman spectra of key molecules and crystals, which are characteristic for each biomarker. Here, we present Raman spectra of several examples of organic compounds which have been recorded non-destructively—higher n-alkanes, polycyclic aromatic hydrocarbons, carotenoids, salts of organic acids, pure crystalline terpenes as well as oxygen-containing organic compounds. In addition, the lower limit of β-carotene detection in sulphate matrices using Raman microspectroscopy was estimated.  相似文献   

8.
Searching for traces of extinct and/or extant life on the surface of Mars is one of the major objectives for remote-sensing and in-situ exploration of the planet. In the present paper we study the infrared (IR) spectral modifications induced by thermal processing on differently preserved calcium carbonate fossils, in order to discriminate them from their abiotic counterparts.The main conclusion of this study is that the degree of alteration of the fossils, derived from IR spectral analysis, seems to be well correlated with the sample age, and that terrestrial fossils after a billion years are so altered that it becomes impossible to trace their biotic origin. Since it is reasonable to assume that the putative Martian fossils should be at least 3.5 billion years old, this would imply that our spectroscopic method could not be able to detect them, if their degradation rate were the same as that we have found in usual conditions for the terrestrial fossils. However, due to the different climate evolution of the two planets, there is the possibility of having two different degradation rates, much lower for Mars than for Earth, especially if the fossils are embedded in a protective layer, such as a clay deposit. In this case IR spectroscopy, coupled with thermal processing, can be a useful tool for discriminating between abiotic and biotic (fossil) carbonate samples collected on the Martian surface.  相似文献   

9.
3.5 billion years (byr) ago, when it is thought that Mars and Earth had similar climates, biological evolution on Earth had made considerable progress, such that life was abundant. It is therefore surmised that prior to this time period the advent of chemical evolution and subsequent origin of life occurred on Earth and may have occurred on Mars. Analysis for organic compounds in the soil buried beneath the Martian surface may yield useful information regarding the occurrence of chemical evolution and possibly biological evolution. Calculations based on the stability of amino acids lead to the conclusion that remnants of these compounds, if they existed on Mars 3.5 byr ago, might have been preserved buried beneath the surface oxidizing layer. For example, if phenylalanine, an amino acid of average stability, existed on Mars 3.5 byr ago, then 1.6% would remain buried today, or 25 pg-2.5 ng of C g-1 Martian soil may exist from remnants of meteoritic and cometary bombardment, assuming that 1% of the organics survived impact.  相似文献   

10.
Abstract– Even in the absence of any biosphere on Mars, organic molecules, including polycyclic aromatic hydrocarbons (PAHs), are expected on its surface due to delivery by comets and meteorites of extraterrestrial organics synthesized by astrochemistry, or perhaps in situ synthesis in ancient prebiotic chemistry. Any organic compounds exposed to the unfiltered solar ultraviolet spectrum or oxidizing surface conditions would have been readily destroyed, but discoverable caches of Martian organics may remain shielded in the subsurface or within surface rocks. We have studied the stability of three representative polycyclic aromatic hydrocarbons (PAHs) in a Mars chamber, emulating the ultraviolet spectrum of unfiltered sunlight under temperature and pressure conditions of the Martian surface. Fluorescence spectroscopy is used as a sensitive indicator of remaining PAH concentration for laboratory quantification of molecular degradation rates once exposed on the Martian surface. Fluorescence‐based instrumentation has also been proposed as an effective surveying method for prebiotic organics on the Martian surface. We find the representative PAHs, anthracene, pyrene, and perylene, to have persistence half‐lives once exposed on the Martian surface of between 25 and 60 h of noontime summer UV irradiation, as measured by fluorescence at their peak excitation wavelength. This equates to between 4 and 9.6 sols when the diurnal cycle of UV light intensity on the Martian surface is taken into account, giving a substantial window of opportunity for detection of organic fluorescence before photodegradation. This study thus supports the use of fluorescence‐based instrumentation for surveying recently exposed material (such as from cores or drill tailings) for native Martian organic molecules in rover missions.  相似文献   

11.
To assess whether life existed on Mars, it is crucial to identify geochemical biosignatures that are relevant to specific Martian environments. In this paper, thermochemical modeling was used to investigate fluid chemistries and secondary minerals that would have evolved biotically over geological time scales in Martian fluvio-lacustrine and evaporitic settings, and that could be used as potential inorganic biosignatures for life detection on Mars. Modeling was performed using fluid and rock chemistries relevant to Gale crater aqueous environments. Potential inorganic biosignatures were identified investigating alteration deposits found at the surface of a simulant exposed to short-term bio-mediated weathering and comparing experimental and modeling results. In a fluvio-lacustrine setting (water/rock of 2000–278), models suggest that less complex mineral assemblages form during biotic basalt dissolution and subsequent brine evaporation compared to what would happen in an abiotic system. Mainly nontronite, kaolinite, and quartz form under biotic conditions, whereas celadonite, talc, and goethite would also precipitate abiotically. Quartz, sepiolite, and gypsum would precipitate from the evaporation of fluids evolved biotically, whereas nontronite, talc, zeolite, and gypsum would form in an abiotic evaporitic environment. These results could be used to distinguish products of abiotic and biotic processes, aiding the interpretation of data from Mars exploration missions.  相似文献   

12.
Abstract– Analyses by the Mars Exploration Rover (MER), Spirit, of Martian basalts from Gusev crater show that they are chemically very different from terrestrial basalts, being characterized in particular by high Mg‐ and Fe‐contents. To provide suitable analog basalts for the International Space Analogue Rockstore (ISAR), a collection of analog rocks and minerals for preparing in situ space missions, especially, the upcoming Mars mission MSL‐2011 and the future international Mars‐2018 mission, it is necessary to synthesize Martian basalts. The aim of this study was therefore to synthesize Martian basalt analogs to the Gusev crater basalts, based on the geochemical data from the MER rover Spirit. We present the results of two experiments, one producing a quench‐cooled basalt (<1 h) and one producing a more slowly cooled basalt (1 day). Pyroxene and olivine textures produced in the more slowly cooled basalt were surprisingly similar to spinifex textures in komatiites, a volcanic rock type very common on the early Earth. These kinds of ultramafic rocks and their associated alteration products may have important astrobiological implications when associated with aqueous environments. Such rocks could provide habitats for chemolithotrophic microorganisms, while the glass and phyllosilicate derivatives can fix organic compounds.  相似文献   

13.
The presence of methane on Mars is of great interest, since one possibility for its origin is that it derives from living microbes. However, CH4 in the martian atmosphere also could be attributable to geologic emissions released through pathways similar to those occurring on Earth. Using recent data on methane degassing of the Earth, we have estimated the relative terrestrial contributions of fossil geologic methane vs. modern methane from living methanogens, and have examined the significance that various geologic sources might have for Mars.Geologic degassing includes microbial methane (produced by ancient methanogens), thermogenic methane (from maturation of sedimentary organic matter), and subordinately geothermal and volcanic methane (mainly produced abiogenically). Our analysis suggests that ~80% of the “natural” emission to the terrestrial atmosphere originates from modern microbial activity and ~20% originates from geologic degassing, for a total CH4 emission of ~28.0×107 tonnes year?1.Estimates of methane emission on Mars range from 12.6×101 to 57.0×104 tonnes year?1 and are 3–6 orders of magnitude lower than that estimated for Earth. Nevertheless, the recently detected martian, Northern-Summer-2003 CH4 plume could be compared with methane expulsion from large mud volcanoes or from the integrated emission of a few hundred gas seeps, such as many of those located in Europe, USA, Mid-East or Asia. Methane could also be released by diffuse microseepage from martian soil, even if macro-seeps or mud volcanoes were lacking or inactive. We calculated that a weak microseepage spread over a few tens of km2, as frequently occurs on Earth, may be sufficient to generate the lower estimate of methane emission in the martian atmosphere.At least 65% of Earth’s degassing is provided by kerogen thermogenesis. A similar process may exist on Mars, where kerogen might include abiogenic organics (delivered by meteorites and comets) and remnants of possible, past martian life. The remainder of terrestrial degassed methane is attributed to fossil microbial gas (~25%) and geothermal-volcanic emissions (~10%). Global abiogenic emissions from serpentinization are negligible on Earth, but, on Mars, individual seeps from serpentinization could be significant. Gas discharge from clathrate-permafrost destabilization should also be considered.Finally, we have shown examples of potential degassing pathways on Mars, including mud volcano-like structures, fault and fracture systems, and major volcanic edifices. All these types of structures could provide avenues for extensive gas expulsion, as on Earth. Future investigations of martian methane should be focused on such potential pathways.  相似文献   

14.
A theoretical reconstruction of the history of Martian volatiles indicates that Mars probably possessed a substantial reducing atmosphere at the outset of its history and that its present tenous and more oxidized atmosphere is the result of extensive chemical evolution. As a consequence, it is probable that Martian atmospheric chemical conditions, now hostile with respect to abiotic organic synthesis in the gas phase, were initially favorable. Evidence indicating the chronology and degradational history of Martian surface features, surface mineralogy, bulk volatile content, internal mass distribution, and thermal history suggests that Mars catastrophically developed a substantial reducing atmosphere as the result of rapid accretion. This atmosphere probably persisted—despite the direct and indirect effects of hydrogen escape—for a geologically short time interval during, and immediately following, Martian accretion. That was the only portion of Martian history when the atmospheric environment could have been chemically suited for organic synthesis in the gas phase. Subsequent gradual degrassing of the Martian interior throughout Martian history could not sustain a reducing atmosphere due to the low intensity of planet-wide orogenic activity and the short atmospheric mean residence time of hydrogen on Mars. During the post-accretion history of Mars, the combined effects of planetary hydrogen escape, solar-wind sweeping, and reincorporation of volatiles into the Martian surface produced and maintained the present atmosphere.  相似文献   

15.
Abstract— In the framework of international planetary exploration programs, several space missions are planned to search for organics and bio‐signatures on Mars. Previous attempts have not detected any organic compounds in the Martian regolith. It is therefore critical to investigate the processes that may affect organic molecules on and below the planet's surface. Laboratory simulations can provide useful data about the reaction pathways of organic material at Mars' surface. We have studied the stability of amino acid thin films against ultraviolet (UV) irradiation and use those data to predict the survival time of these compounds on and in the Martian regolith. We show that thin films of glycine and D‐alanine are expected to have half‐lives of 22 ± 5 hr and of 3 ± 1 hr, respectively, when irradiated with Mars‐like UV flux levels. Modelling shows that the half‐lives of the amino acids are extended to the order of 107 years when embedded in regolith. These data suggest that subsurface sampling must be a key component of future missions to Mars dedicated to organic detection.  相似文献   

16.
It has been reported by several groups that methane in the Martian atmosphere is both spatially and temporally variable. Gough et al. (2010) suggested that temperature dependent, reversible physical adsorption of methane onto Martian soils could explain this variability. However, it is also useful to consider if there might be chemical destruction of methane (and compensating sources) operating on seasonal time scales. The lifetime of Martian methane due to known chemical loss processes is long (on the order of hundreds of years). However, observations constrain the lifetime to be 4 years or less, and general circulation models suggest methane destruction must occur even faster (<1 year) to cause the reported variability and rapid disappearance. The Martian surface is known to be highly oxidizing based on the Viking Labeled Release experiments in which organic compounds were quickly oxidized by samples of the regolith. Here we test if simulated Martian soil is also oxidizing towards methane to determine if this is a relevant loss pathway for Martian methane. We find that although two of the analog surfaces studied, TiO2·H2O2 and JSC-Mars-1 with H2O2, were able to oxidize the complex organic compounds (sugars and amino acids) used in the Viking Labeled Release experiments, these analogs were unable to oxidize methane to carbon dioxide within a 72 h experiment. Sodium and magnesium perchlorate, salts that were recently discovered at the Phoenix landing site and are potential strong oxidants, were not observed to directly oxidize either the organic solution or methane. The upper limit reaction coefficient, α, was found to be <4×10?17 for methane loss on TiO2·H2O2 and <2×10?17 for methane loss on JSC-Mars-1 with H2O2. Unless the depth of soil on Mars that contains H2O2 is very deep (thicker than 500 m), the lifetime of methane with respect to heterogeneous oxidation by H2O2 is probably greater than 4 years. Therefore, reaction of methane with H2O2 on Martian soils does not appear to be a significant methane sink, and would not destroy methane rapidly enough to cause the reported atmospheric methane variability.  相似文献   

17.
火星是类地行星,火星动力学的研究不仅具有科学意义,而且还具有实际应用价值。火星的空间探测获得了许多有关火星极运动的重要资料,它与理论值的比较是检验火星内部结构的重要手段,也是为改进火星岁差章动理论提供依据的有效途径。介绍了当前国际上有关火星的岁差和章动研究的进展,分别对刚体火星的章动序列、火星内部结构参数化模型的建立和火星自转的简正模作了描述,并进行了简单的讨论。  相似文献   

18.
The life marker chip (LMC) is being designed to test for the chemical signature of life in the soil and rocks of Mars. It will use an antibody array as part of its detection and characterisation system and aims to detect both polar and non-polar molecules at the sub-ppm to tens of ppb level. It is necessary to use a solvent to transfer organic compounds from the Martian samples to the LMC itself, but organic solvents such as dichloromethane or hexane, commonly used to dissolve non-polar molecules, are incompatible with the LMC antibodies. Hence, an aqueous-based solvent capable of dissolving the biomarkers that might exist in the soil or rocks of Mars is required. Solvent extractions of a Martian soil analogue, JSC Mars-1, spiked with a range of standards show that a 20:80 (vol:vol) mixture of methanol and water is incapable of extracting compounds insoluble in water. However, addition of 1.5 mg ml−1 of the surfactant polysorbate 80 produces extraction efficiencies of the aliphatic standards, hexadecane and phytane, equal to 25-30% of those produced by the common organic solvent mixture 93:7 (vol:vol) dichloromethane:methanol. Extraction of squalene and stigmasterol using the polysorbate solution is less efficient but still successful, at 5-10% of the efficiency of 93:7 dichloromethane:methanol. Such aliphatic compounds with occasional functional groups represent the compound classes to which most fossil organic biomarkers belong. The polysorbate solution did not extract the aromatic compounds pyrene and anthracene with great efficiency. A solvent of 20:80 methanol:water with 1.5 mg ml−1 polysorbate 80 is therefore capable of selectively extracting aliphatic biomarkers from Martian samples and transferring them to the antibody sites on the life marker chip.  相似文献   

19.
The existence of methane in the Martian atmosphere is well established today. Several mechanisms have been discussed, which could be able to produce methane. However no mechanism is presently accepted to explain the observations satisfactorily.It is the aim of this paper to describe results of experimental laboratory investigations to study relationships and possible chemical reactions between Martian atmospheric carbon dioxide, liquid interfacial water (at least temporarily present), UV irradiation, and the possibly catalyzing influence of minerals like hematite with respect to the possible formation of oxygenate molecules. It is assumed that hematite can act as a photocatalyst under laboratory conditions (and also on the surface of Mars), and the formation of oxygenates evolves in course of the irradiation of carbon dioxide with UV-light in the presence of water, finally resulting in C–, O–, and H– containing molecules, which have been identified by GC–MS. The experiments were carried out under terrestrial atmospheric pressure and room temperature. Oxygenate molecules with one carbon atom like formaldehyde and methanol were found to be reaction products, but also C2- and C3-species like acetone. The important role of hematite as a photocatalytic active solid could be shown. The conversion of carbon dioxide increases in the presence of hematite. It has also a significant influence on the distribution of the products. Experiments with 18O-labeled water show a transfer of oxygen from water to carbon, which results in labeled oxygenate molecules. Oxygenates could have been formed from CO2 via a photocatalytic reduction processes. The observed formation of C2- and C3-species might point to secondary competitive and consecutive reactions via complex and less selective mechanisms.All these results indicate the action of different reaction mechanisms, supporting therefore the assumption that both photocatalytic and radical reactions can contribute to the formation of oxygenates from carbon dioxide and water by UV irradiation. More importantly, the results give indication of a potential formation of hydrocarbons, such as methane, via conversion of atmospheric carbon dioxide and water on Martian soil mineral/water interfaces.Summarizing, it must be stated that, based on these first and promising results, a deeper and more quantitative understanding is necessary to model the contribution of photocatalytic processes to the apparent presence of oxygenates and hydrocarbons in the near surface atmosphere of Mars.  相似文献   

20.
Abstract Terrestrial alteration of meteorites results in the redistribution, gain, or loss of uranium and other elements. We have measured the maximum U adsorption capacity of a meteorite and two geochemical reference materials under conditions resembling terrestrial ones (pH 5.8). The basaltic eucrite Sioux County adsorbs 7 ppm of U. The result for the terrestrial granite AC‐E is similar (5 ppm), while the basalt BE‐N adsorbs 34 ppm of U. We have also investigated U adsorption in the presence of phosphate (0.01 M or less) in imitation of conditions that probably occurred in the earlier history of Mars. Such a process would have alterated Martian surface material and would be noticeable in Martian meteorites from the affected surface. The experiments demonstrated the counteracting effects of phosphate, which increases U adsorption, but decreases the quantity of dissolved U that is available for adsorption. U adsorption by AC‐E increases to 7 ppm. The lowered value for BE‐N of 8 ppm results from the low quantity of dissolved U in the volume of solution used. The results from the adsorption experiments and from leaching the Martian meteorite Zagami and a terrestrial basalt imply that the aqueous redistribution of U on Mars was moderate. Acidic liquids mobilized uranium and other metals, but present phosphate impeded the dissolution of U compounds. Some mobilized U may have reached the global sinks, while most of it probably was transported in the form of suspended particles over a limited distance and then settled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号