首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyze the sky distribution of various types of cosmic gamma-ray bursts (GRBs): short, long, and intermediate; they are determined by burst duration T 90 (T 90 is the time during which 90% of the burst energy is accumulated). We have found an anisotropy in the distribution of intermediate (2 s < T 90 < 8 s) and short (T 90 < 8 s) GRBs in the form of spots with an enhanced GRB concentration near the Galactic coordinates l=115° and b=30°. Given the BATSE nonuniform exposure function, the statistical significance of the anisotropy is 99.89% for intermediate GRBs and 99.99% for short GRBs. Thus, we suggest that this anisotropy has a natural origin and is not caused by BATSE instrumental effects.  相似文献   

2.
A method is proposed allowing a quick self-consistent determination of both the central star parameters (effective temperature, surface gravity, stellar massetc.) and the optical thickness of a planetary nebula (PN). The method is a generalization of the well-known energy balance method. The method has been calibrated and tested using a photoionization model grid computed for this purpose. The internal accuracy of the method is estimated as 0.038dex for the effective temperature of central star and 0.076dex for the surface gravity.The problem of determination of overall energy losses in the nebula required by any kind of energy balance method is considered thoroughly. Approximate expressions are obtained, relating the overall energy losses to the sum of intensities of collisionally excited lines in the optical and ultraviolet spectral ranges and to some other nebular parameters. It is shown that neglecting the energy losses caused by directly unobservable collisional excitation of neutral hydrogen and helium may underestimate the central star temperature by 0.2 or even 0.5dex. Generalized energy balance method is applied to a sample of 41 PN. Central star temperaturesT GB found by this method show an agreement withHeII Zanstra temperaturesT z (HeII) whereasT z (HI) is always less thanT GB or equal to it within the accuracy of the method. So, we confirm the explanation that the well-known Zanstra discrepancy is caused merely by low optical thickness of many PN in the Lyman continuum of hydrogen. The value ofT z (HeII) found with modern model atmospheres can be used as good approximation toT ef for central stars of overwhelming majority of PN whileT z (HI) is usually close toT ef for young nebulae only.  相似文献   

3.
We present a theoretical investigation of non-equilibrium condensation of refractory metalsinthe primordial solar nebula, in relation to the origin of “Fremdlinges” included inCAIs. Todescribe the nucleation process of grains from vapor, weadopted asemi-phenomenological modelmodified fromthe classical nucleation theoryby the introductionof the second virial coefficient of vapor. This modelachieves excellent agreement with nucleation rate experiment. However,the second virial coefficients are unknown for a vapor of refractory metals. To overcome this, weexpress the nucleation rate by theuse of the chemical potential of dimersinsteadof the second virial coefficient.On the basis of this new nucleation theory,we have performed numerical simulations ofnon-equilibrium condensation of refractory metals andfind thattheircondensation temperatures, Tc, decrease considerably in comparison withequilibrium condensation. Even if the characteristiccooling time scale is aslarge as 1×105 years, the decrease in Tc isfrom 200 to 400 Kfor rare elements such as W, Re,and Os. This remarkablenon-equilibrium behaviormainly stemsfromthelow totalpressure in the primordial solar nebula. From our new modelwealso obtainthe typical size ofgrainsformed in condensation. We findthatthe cooling time should be ?1×105 years for sub-micron-sized or largerrefractory metal nuggetsto form.  相似文献   

4.
The nature of convective instability has been investigated for an electromagnetic wave, either right circularly polarised or left circularly polarised, propagating along a magnetic line of force in a plasma whose distribution function exhibits a temperature anisotropy in the hot species, a loss cone structure and a beam of cold electrons or ions travelling along the line of force with velocity V1. Detailed numerical calculations have been made using a computer for the growth and decay of the wave for different values of the anisotropy ratio T/T = δ of the perpendicular and parallel temperatures, the McIlwain parameter L, the loss cone index j, velocity V1 of the streaming particle and the particle density ratio ε. The ranges of values of ε and δ for which the wave becomes unstable have been studied in detail. It is found that wave propagation shows no dependence on the loss cone index but shows very strong dependence on the temperature anisotropy δ.  相似文献   

5.
We have obtained IUE ultraviolet spectra of the low-excitation planetary nebula CN 3-1. The recordings show the well-known doublet 2800 MgII and resonance line 2852 MgI as strong absorption lines. We show that these lines cannot be of interstellar origin and that they may be formed in two envelopes surrounding the main nebula: in the transition zone (doublet 2800 MgII) and in the neutral envelope (line 2852 MgI). These envelopes possess an important property: they contain dust particles, and even a moderate amount of such particles may influence the strength of the absorption lines of MgII and MgI.The emission line 4686 HeII has no relation to the nebula CN 3-1 and belongs to its nucleus, a star of type WR. It is very probable that the nucleus of this nebula is a binary system with a WR component (T *=50 000 K), exciting the helium lines, and a star of B0 or B2 type (T *=26 000 K) exciting the nebular linesN 1+N 2 [OIII], 3727 [OII], hydrogen lines, etc.  相似文献   

6.
Ground-based optical observations of D1 and D2 line emissions from Jupiter’s sodium nebula, which extend over several hundreds of jovian radii, were carried out at Mt. Haleakala, Maui, Hawaii using a wide field filter imager from May 19 to June 21, 2007. During this observation, the east-west asymmetry of the nebula with respect to the Io’s orbital motion was clearly identified. Particularly, the D1+D2 brightness on the western side of Jupiter is strongly controlled by the Io phase angle. The following scenario was developed to explain this phenomenon as follows: First, more ionospheric ions like NaX+, which are thought to produce fast neutral sodium atoms due to a dissociative recombination process, are expected to exist in Io’s dayside hemisphere rather than in the nightside one. Second, it is expected that more NaX+ ionospheric ions are picked up by the jovian co-rotating magnetic field when Io’s leading hemisphere is illuminated by the Sun. Third, the sodium atom ejection rate varies with respect to Io’s orbital position as a result of the first two points. Model simulations were performed using this scenario. The model results were consistent with the observation results, suggesting that Io’s ionosphere is expected to be controlled by solar radiation just like Earth.  相似文献   

7.
We consider the behavior of charged particles with an anisotropic initial velocity distribution in a magnetic trap with approaching mirrors in connection with the problem of particle acceleration in solar flares. We show that, irrespective of the charge sign, the efficiency of confinement and acceleration increases with increasing anisotropy factor of the initial distribution α = (T/T)1/2. For a positive electric potential of the trap plasma relative to the mirrors, the emerging additional effect of ion expulsion form the trap increases with αi. The derived estimate of the electric potential suggests an amplification of the initial perturbation and the development of instability.  相似文献   

8.
We present the results of spectroscopic and photometric observations for the young compact planetary nebula Hen 3–1357 and its central star SAO 244567. High-resolution spectroscopy has allowed the expansion velocity of the nebula, V exp = 8.4 ± 1.5 km s?1, and the heliocentric velocity of the object, V r = +12.6 ± 1.7 km s?1, to be determined. The gas shell parameters (N e , T e ), the extinction in the Hβ line, and the O, N, Ne, Ar, S, Cl, He, and C abundances have been determined from low-resolution spectra taken in 1992 and 2011. We have found significant changes in the relative intensities of forbidden lines in the spectrum of Hen 3–1357 within the last 20 years: the low-excitation [O I], [O II], and [N II] lines became stronger relative to Hβ by a factor of ~2, while the [O III] lines weakened by a factor of ~ 2, suggesting a decrease in the excitation class of the nebula. The V-band photometry performed under the ASAS-3 program revealed a decline in the yearly mean brightness of SAO 244 567 from 2001 to 2009 by $0_.^m 5$ and rapid variability with an amplitude of a few tenths of a magnitude. Published observational data in a wide spectral range, from the near ultraviolet to the radio band, suggest an appreciable weakening of the flux from the star and the nebula.  相似文献   

9.
Abstract— Fischer‐Tropsch catalysis, the iron/nickel catalyzed conversion of CO and H2 to hydrocarbons, would have been the only thermally‐driven pathway available in the solar nebula to convert CO into other forms of carbon. A major issue in meteoritics is to determine the origin of meteoritic organics: are they mainly formed from CO in the solar nebula via a process such as Fischer‐Tropsch, or are they derived from interstellar organics? In order to determine the role that Fischer‐Tropsch catalysis may have played in the organic chemical evolution of the solar nebula, we have developed a kinetic model for this process. Our model results agree well with experimental data from several existing laboratory studies. In contrast, empirical rate equations, which have been derived from experimental rate data for a limited temperature (T) and pressure (P) range, are inconsistent with experimental rate data for higher T and lower P. We have applied our model to pressure and temperature profiles for the solar nebula, during the epoch in which meteorite parent bodies condensed and agglomerated. We find that, under nebular conditions, the conversion rate of CO to CH4 does not simply increase with temperature as the empirically‐derived equations suggest. Instead, our model results show that this process would have been most efficient in a fairly narrow region that coincides with the present position of the asteroid belt. Our results support the hypothesis that Fischer‐Tropsch catalysis may have played a role in solar nebula chemistry by converting CO into less volatile materials that can be much more readily processed in the nebula and in parent bodies.  相似文献   

10.
《Icarus》1987,70(1):111-123
Measurements of total yields, temperature dependences, mass spectra, and energy spectra of molecules sputtered from condensed sulfur (S8) at low temperatures by keV ions are reported and results are given for Jovian plasma ion bombardment of Io. A change in the reflectance of the sulfur, which can be removed by annealing, is produced by the most penetrating ions and may be connected with the darker, colder polar regions on Io. The measured sputtering yields are much lower than those estimated earlier for room temperature sulfur films but are comparable to previous measurements of keV ion sputtering of SO2 at low temperatures. The corrected mass spectrum indicates that ≈66% of the total yield corresponds to S2 ejection while only 5 and 16% correspond to S and S3, respectively. Therefore, if ions reach the surface of Io its atmosphere will have a non-negligible sulfur component of primarily S2. The ejection of S and S2 is temperature independent for temperatures characteristic of most of the surface of Io. The energy spectrum for S has an approximate 1/E2 dependence at high ejection energies, whereas S2 and S3 fall off more rapidly. Assuming 50% coverage of both sulfur and SO2 and a thin atmosphere (e.g., nightside and polar region) the direct sputter injection of sulfur atoms and molecules into the Jovian plasma torus and the indirect injection due to coronal processes are estimated. These injection rates for sulfur are compared to those for SO2 showing that injection from sulfur deposits contributes 13% to the total mass injection rate of ∼2–3 × 1029 amu/sec.  相似文献   

11.
A spatially homogeneous and anisotropic Bianchi type-VI0 space-time filled with perfect fluid in general relativity and also in the framework of f(R,T) gravity proposed by Harko et al. (in arXiv:1104.2669 [gr-qc], 2011) has been studied with an appropriate choice of the function f(R,T). The field equations have been solved by using the anisotropy feature of the universe in Bianchi type-VI0 space time. Some important features of the models, thus obtained, have been discussed. We noticed that the involvement of new function f(R,T) doesn’t affect the geometry of the space-time but slightly changes the matter distribution.  相似文献   

12.
We propose a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona. We consider that a large number of small scale shock waves can be present in the solar corona, as suggested by recent observations of polar coronal jets by the Hinode and STEREO spacecraft. The heavy ion energization mechanism is, essentially, the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E=−(1/c)V ×B. The acceleration due to E is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T?T, which can excite ion cyclotron waves. Also, heating is more than mass proportional with respect to protons, because the heavy ion orbit is mostly upstream of the quasi-perpendicular shock foot. The observed temperature ratios between O5+ ions and protons in the polar corona, and between α particles and protons in the solar wind are easily recovered. We also discuss the mechanism of heavy ion reflection, which is based on ion gyration in the magnetic overshoot of the shock.  相似文献   

13.
We performed a statistical analysis of the intrinsic properties and their redshift dependence of long gamma-ray bursts (GRBs) mainly detected by Swift satellite. The intrinsic quantities are the (z- and K-corrected) rest-frame duration, T 90,rest, the rest-frame peak energy, E p,rest, the isotropic equivalent energy, E iso, and the peak isotropic luminosity, L iso, of the prompt emission. We find that the distributions of T 90,rest, E p,rest, E iso and L iso all span a wide range and their central values are T 90,rest~10 s, E p,rest~500 keV, E iso~1053 erg and L iso~3×1052 erg/s. We also show that E p,rest and L iso are independent with T 90,rest, but E iso is correlated with T 90,rest. Moreover, we find the observed peak energy is independent with redshift, but the intrinsic peak energy, the isotropic energy and the peak luminosity all show some dependence on redshift, where the truncation effect is taken into account.  相似文献   

14.
Abstract— The kinetics and mechanisms of kamacite sulfurization were studied experimentally at temperatures and H2S/H2 ratios relevant to the solar nebula. Pieces of the Canyon Diablo meteorite were heated at 558 K, 613 K, and 643 K in 50 parts per million by volume (ppmv) H2S-H2 gas mixtures for up to one month. Optical microscopy and x-ray diffraction analyses show that the morphology and crystal orientation of the resulting sulfide layers vary with both time and temperature. Electron microprobe analyses reveal three distinct phases in the reaction products: monosulfide solid solution (mss), (Fe, Ni, Co)1-xS, pentlandite (Fe, Ni, Co)9-xS8, and a P-rich phase. The bulk composition of the remnant metal was not significantly changed by sulfurization. Kamacite sulfurization at 558 K followed parabolic kinetics for the entire duration of the experiments. Sulfide layers that formed at 613 K grew linearly with time, while those that formed at 643 K initially grew linearly with time then switched to parabolic kinetics upon reaching a critical thickness. The experimental results suggest that a variety of thermodynamic, kinetic, and physical processes control the final composition and morphology of the sulfide layers. We combine morphological, x-ray diffraction, electron microprobe, and kinetic data to produce a comprehensive model of sulfide formation in the solar nebula. Then, we present a set of criteria to assist in the identification of solar nebula condensate sulfides in primitive meteorites.  相似文献   

15.
A complete solution has been obtained of the steady-state transport equations, including energy losses, for cosmic-rays in the interplanetary region for conditions in which diffusive transport is negligible and convective effects dominate. The region of validity of the solution will in general be a shell between heliocentric radiiR 1 andR 2 (R 2 may be infinite). The precise range of kinetic energyT and heliocentric radiusr in which the solution is valid is not known but it appears to be applicable in the vicinity of Earth to protons withT≤1 MeV. ForT~0.5 MeV near Earth,R 1 may be ~0.5 AU andR 1 will decrease asT, observed near Earth, decreases. The solution is simple in form but quite general; it predicts the differential number densityU (r, T) in terms of that observed at radius a (near Earth, say). Thus it may be quite useful in interpreting and co-ordinating steady-state cosmicray observations atT~1 MeV. The differential and integral intensities, differential anisotropy and differential radial-gradient at (r, T) also are determined. A simple interpretation of the solution is given in terms of energy losses due to adiabatic deceleration of the particles as they are being convected outward from the Sun. This leads to the useful notion of following a particle in (r, T) as it increasesr and decreasesT. Particles convected from the outer corona to Earth decrease their kinetic energy by factor ~500.Following a particle the Compton-Getting factor remains constant. Particles observed at (a, T) in convective transport have come from nearer the Sun; they may be of solar origin but may also be of galactic origin having penetrated tor<R 1相似文献   

16.
We present new results of Cassini's T9 flyby with complementary observations from T18. Based on Cassini plasma spectrometer (CAPS) and Cassini magnetometer (MAG), compositional evidence shows the upstream flow for both T9 and T18 appears composed of light ions (H+ and H2+), with external pressures ∼30 times lower than that for the earlier TA flyby where heavy ions dominated the magnetospheric plasma. When describing the plasma heating and sputtering of Titan's atmosphere, T9 and T18 can be considered interactions of low magnetospheric energy input. On the other hand, T5, when heavy ion fluxes are observed to be higher than typical (i.e., TA), represents the limiting case of high magnetospheric energy input to Titan's upper atmosphere. Anisotropy estimates of the upstream flow are 1<T/T<3 and the flow is perpendicular to B, indicative of local picked up ions from Titan's H and H2 coronae extending to Titan's Hill sphere radius. Beyond this distance the corona forms a neutral torus that surrounds Saturn. The T9 flyby unexpectedly resulted in observation of two “wake” crossings referred to as Events 1 and 2. Event 2 was evidently caused by draped magnetosphere field lines, which are scavenging pickup ions from Titan's induced magnetopause boundary with outward flux ∼2×106 ions/cm2/s. The composition of this out flow is dominated by H2+ and H+ ions. Ionospheric flow away from Titan with ion flux ∼7×106 ion/cm2/s is observed for Event 1. In between Events 1 and 2 are high energy field aligned flows of magnetosphere protons that may have been accelerated by the convective electric field across Titan's topside ionosphere. T18 observations are much closer to Titan than T9, allowing one to probe this type of interaction down to altitudes ∼950 km. Comparisons with previously reported hybrid simulations are made.  相似文献   

17.
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping rate and associated currents in homogenous plasma. Kinetic effects of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (Ti/Te) affect the dispersion relation, damping-rate and associated currents in both cases (warm and cold electron limits). The treatment of kinetic Alfven wave instability is based on the assumption that the plasma consists of resonant and non-resonant particles. The resonant particles participate in an energy exchange process, whereas the non-resonant particles support the oscillatory motion of the wave.  相似文献   

18.
Using ion-electron fluid parameters derived from Cassini Plasma Spectrometer (CAPS) observations within Saturn's inner magnetosphere as presented in Sittler et al. [2006a. Cassini observations of Saturn's inner plasmasphere: Saturn orbit insertion results. Planet. Space Sci., 54, 1197-1210], one can estimate the ion total flux tube content, NIONL2, for protons, H+, and water group ions, W+, as a function of radial distance or dipole L shell. In Sittler et al. [2005. Preliminary results on Saturn's inner plasmasphere as observed by Cassini: comparison with Voyager. Geophys. Res. Lett. 32(14), L14S04), it was shown that protons and water group ions dominated the plasmasphere composition. Using the ion-electron fluid parameters as boundary condition for each L shell traversed by the Cassini spacecraft, we self-consistently solve for the ambipolar electric field and the ion distribution along each of those field lines. Temperature anisotropies from Voyager plasma observations are used with (T/T)W+∼5 and (T/T)H+∼2. The radio and plasma wave science (RPWS) electron density observations from previous publications are used to indirectly confirm usage of the above temperature anisotropies for water group ions and protons. In the case of electrons we assume they are isotropic due to their short scattering time scales. When the above is done, our calculation show NIONL2 for H+ and W+ peaking near Dione's L shell with values similar to that found from Voyager plasma observations. We are able to show that water molecules are the dominant source of ions within Saturn's inner magnetosphere. We estimate the ion production rate SION∼1027 ions/s as function of dipole L using NH+, NW+ and the time scale for ion loss due to radial transport τD and ion-electron recombination τREC. The ion production shows localized peaks near the L shells of Tethys, Dione and Rhea, but not Enceladus. We then estimate the neutral production rate, SW, from our ion production rate, SION, and the time scale for loss of neutrals by ionization, τION, and charge exchange, τCH. The estimated source rate for water molecules shows a pronounced peak near Enceladus’ L shell L∼4, with a value SW∼2×1028 mol/s.  相似文献   

19.
We work on the reconstruction scenario of pilgrim dark energy (PDE) in f(T,T G ). In PDE model it is assumed that a repulsive force that is accelerating the Universe is phantom type with (w DE f(T,T G ) models and correspondingly evaluate equation of state parameter for various choices of scale factor. Also, we assume polynomial form of f(T,T G ) in terms of cosmic time and reconstruct H and w DE in this manner. Through discussion, it is concluded that PDE shows aggressive phantom-like behavior for s=?2 in f(T,T G ) gravity.  相似文献   

20.
A 3-D particle simulation of excitation of whistler waves driven by an electron temperature anisotropy (T > T ) is presented. Results show that whistler waves can have appreciable growth driven by the anisotropy. The maximum intensity of the excited whistler waves increases as a quadratic function of the anisotropy. Due to the presence of a threshold, one needs a relatively large electron temperature anisotropy above threshold to generate large-amplitude whistler waves. The average amplitude of turbulence in the context of whistler waves is up to as large as about 1% of the ambient magnetic field when T /T . The total energy density of the whistler turbulence is adequate for production of relativistic electrons in solar flares through stochastic acceleration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号