首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Zdenek Sekanina 《Icarus》1978,33(1):173-185
A multiparameter model has been devised to discriminate the effects of the velocity of separation of two fragments of a split comet on their observed motions from the effects of the postsplit differential nongravitational forces. The iterative differential-correction procedure is applied to five extensively observed split comets: West 1975n, Ikeya-Seki 1965 VIII, Wirtanen 1957 VI, the Southern Comet 1947 XII, and Periodic Brooks 2 1889 V. The present model confirms that the major contribution to the observed rate of separation of the fragments comes from the postsplit forces. The model removes or substantially reduces the systematic trends in the residuals of comets West, Wirtanen, and P/Brooks 2, which could not be eliminated by a simple model that ignored the effects of the separation velocity. In particular, the results for Comet Wirtanen now indicate that the comet split at a heliocentric distance of more than 9 AU and that the initial rate of separation of the two fragments did not amount to more than 26 cm/sec. The separation velocities for the other comets range from 1 to 2 m/sec. Difficulties of the interpretation of the observed separation velocities are briefly discussed.  相似文献   

3.
Zdenek Sekanina 《Icarus》1977,30(3):574-594
A new approach is formulated for the study of motions of the split comets. It is based on the assumption that two fragments of a comet separate at a rate that is determined primarily by a slight difference between their effective solar attractions rather than by the impulse imparted on them at the time of splitting. The net dynamical effect is interpreted as due to differential nongravitational forces, which depend on the size, density, structure, composition, and spin rate of the fragments. Since at least at smaller distances from the Sun these forces vary inversely as roughly the square of heliocentric distance, their dynamical effect resembles that of radiation pressure, so that the formalism developed for the motion of a dust particle in a cometary tail is applicable in principle. The calculations show that this approach provides reasonably good to excellent fits of the observed separations for a great majority of the split comets, and that it fails only in the case of Comet 1957 VI. The correlation between the differential nongravitational forces and the endurance of the fragment is investigated in terms of the physical behavior of the fragments, with the emphasis on the short-lived objects. Some of the unusual phenomena accompanying the split comets are discussed, and comments are also offered on the sequence of splitting for comets with multiple nuclei and on the distribution of the points of splitting in space.  相似文献   

4.
《Planetary and Space Science》1999,47(6-7):787-795
The infrared emission of various comets can be matched within the framework that all comets are made of aggregated interstellar dust. This is demonstrated by comparing results on Halley (a periodic comet), Borrelly (a Jupiter family short period comet), Hale-Bopp (a long period comet), and extra-solar comets in the β Pictoris disk. Attempts have been made to generalize the chemical composition of comet nuclei based on the observation of cometary dust and volatiles and the interstellar dust model. Finally, we deduce some of the expected dust and surface properties of comet Wirtanen from the interstellar dust model as applied to other comets.  相似文献   

5.
Using a sample of serendipitously discovered active comets in the Sloan Digital Sky Survey (SDSS), we develop well-controlled selection criteria for greatly increasing the efficiency of comet identification in the SDSS catalogs. After follow-up visual inspection of images to reject remaining false positives, the total sample of SDSS comets presented here contains 19 objects, roughly one comet per 10 million other SDSS objects. The good understanding of selection effects allows a study of the population statistics, and we estimate the apparent magnitude distribution to r18, the ecliptic latitude distribution, and the comet distribution in SDSS color space. The most surprising results are the extremely narrow range of colors for comets in our sample (e.g. root-mean-square scatter of only ∼0.06 mag for the g-r color), and the similarity of comet colors to those of jovian Trojans. We discuss the relevance of our results for upcoming deep multi-epoch optical surveys such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope (LSST), and estimate that LSST may produce a sample of about 10,000 comets over its 10-year lifetime.  相似文献   

6.
We review the composition of Jupiter-family comet (JFC) dust as inferred from infrared spectroscopy. We find that JFCs have silicate emission features with fluxes roughly 20-25% over the dust continuum (emission strength 1.20-1.25), similar to the weakest silicate features in Oort Cloud (OC) comets. We discuss the grain properties that alter the silicate emission feature (composition, size, and structure/shape), and emphasize that thermal emission from the comet nucleus can have significant influence on the derived silicate emission strength. Recent evidence suggests that grain porosity is the is different between JFCs and OC comets, but more observations and models of silicates in JFCs are needed to determine if a consistent set of grain parameters can explain their weak silicate emission features. Models of 8 m telescope and Spitzer Space Telescope observations have shown that JFCs have crystalline silicates with abundances similar to or less than those found in OC comets, although the crystalline silicate mineralogy of comets 9P/Tempel and C/1995 O1 (Hale-Bopp) differ from each other in Mg and Fe content. The heterogeneity of comet nuclei can also be assessed with mid-infrared spectroscopy, and we review the evidence for heterogeneous dust properties in the nucleus of comet 9P/Tempel. Models of dust formation, mixing in the solar nebula, and comet formation must be able to explain the observed range of Mg and Fe content and the heterogeneity of comet 9P/Tempel, although more work is needed in order to understand to what extent do comets 9P/Tempel and Hale-Bopp represent comets as a whole.  相似文献   

7.
Our current understanding of split, Jupiter-family comets is reviewed. The focus is on what recent studies of comets have told us about the nature of the splitting phenomenon. The goal is to not repeat the information given in recent reviews of split comets, but to build upon it. In particular, we discuss comets that have suffered splitting or fragmentation events in the past few years. These include comets (a) 57P/du Toit-Neujmin-Delporte, observed with a long train of fragments in 2002; (b) 73P/Schwassmann-Wachmann 3, which split in 1995 and was extensively studied during its relatively close passage to Earth in 2006, during which dozens of fragments were discovered and studied; and (c) 174P/Echeclus, a Centaur and potentially future JFC, which split in late 2005 and was the first such Centaur observed to do so. We also discuss recent observations by SOHO of split comets that are likely of short-period. The Spitzer Space Telescope has observed many JFCs and provided us with unprecedented detailed views of cometary debris trails, which may be thought of as a middle ground between “normal” ejection of micron-sized dust grains and the cleaving off of meter-to-kilometer sized fragments. We will also discuss potential breakthroughs in studying splitting JFCs that may come from future surveys.  相似文献   

8.
We systematically surveyed the orbits of short-period (SP) comets that show a large change of perihelion distance (q) between 1–2 AU (visible comets) and 4–5 AU (invisible comets) during 4400 years. The data are taken from Cosmo-DICE (Nakamura and Yoshikawa 1991a), which is a long-term orbital evolution project for SP comets. Recognizing that q is the most critical element for observability of comets, an invisibility factor (f), defined as the ratio of unobservable time span to observable span during 4400 years, is calculated for each of the large-q-change comets. A detection limit for each comet is obtained from the heliocentric distance at discovery and/or the absolute magnitude at recent apparitions. A mean f value for 35 SP comets with 2.9 J (J is the Tisserand's invariant) is found to be 19.8. This implies that for each visible SP comet of this J-range, at every epoch of time, there exist about 20 invisible comets near the capture orbits by Jupiter, under the assumptions of steady-state flux and ergodicity for the SP-comet population.  相似文献   

9.
Results are presented of a statistical analysis of dynamic parameters for 114 comets with split nuclei. A list of the objects includes actually split comets, fragments of cometary pairs, lost comets with designation D, and comets with large-scale atmospheric features. Some aspects of the hypothesis that splitting is caused by collisions of cometary nuclei with meteoroid swarms are investigated. To verify the hypothesis, an analysis is conducted of the positions of split comets’ orbits relative to 58 meteor streams from Cook’s catalogue. The calculations give the number (N) of orbital nodes of split comets relative to the plane of each swarm within a distance of 0.001, 0.005, 0.01, 0.05, and 0.1 AU from each swarm. A special algorithm is proposed for determining the degree of redundancy of N by finding the expected value and dispersion for the number of the nodes. The comparison of N with the expected value, together with the consideration of the dispersion, reveals a redundancy of N in 29 cases. Therefore, collisions of comets with meteoroid swarms can be considered as one of the possible causes of comet splitting. A similar testing is conducted for the asteroid belt and Kuiper belt as potential sources of a vast number of sporadic meteoroids. Based on the results of the calculations, the former may be considered as the most effective region of splitting of periodic comets.  相似文献   

10.
This study is based primarily on the calculations of comet orbits over ~ 106 years for 160 short-period comets by Harold F. Levison and Martin J. Duncan from which there are calculated “ablation AGES”. There are positive statistical correlations (having many deviations) with radial nongravitational forces, comet activity measures, and dust-to-gas ratios in the spectra, in the sense that comets of greater “AGES” tend to be less active and to show less dust in their spectra than comets of lesser “AGES”.  相似文献   

11.
An attempt is made to determine the spatial location of the main source of short-period comet nuclei. Numerical calculations for the orbital evolution of Jupiter family comets, medium-period comets, and Centaurs are used to show that the orbits of small solar system bodies tend to evolve in the direction of increasing semimajor axes. This relates to bodies that can experience encounters with planets and whose orbital evolution is shaped by gravitational perturbations. It is concluded that there is good reason to search for the main source of the nuclei of Jupiter family comets at distances of 6 AU or less from the sun.  相似文献   

12.
This paper studies the dynamical evolution of 97 Jupiter-family comets over an 800-year time period. More than two hundred encounters with Jupiter are investigated, with the observed comets moving during a certain period of time in an elliptic jovicentric orbit. In most cases this is an ordinary temporary satellite capture of a comet in Everhart??s sense, not associated with a transition of the small body into Jupiter??s family of satellites. The phenomenon occurs outside the Hill sphere with comets with a high Tisserand constant relative to Jupiter; the comets?? orbits have a small inclination to the ecliptic plane. An analysis of 236 encounters has allowed the determination within the planar pair two-body problem of a region of orbits in the plane (a, e) whose semimajor axes and eccentricities contribute to the phenomenon under study. Comets with orbits belonging to this region experience a temporary satellite capture during some of their encounters; the jovicentric distance function has several minima; and the encounters are characterized by reversions of the line of apsides and some others features of their combination that are intrinsic to comets in this region. Therefore, this region is called a region of comets with specific features in their encounters with Jupiter. Twenty encounters (out of 236), whereby the comet enters an elliptic jovicentric orbit in the Hill sphere, are identified and investigated. The size and shape of the elliptic heliocentric orbits enabling this transition are determined. It is found that in 11 encounters the motion of small bodies in the Hill sphere has features the most important of which is multiple minima of the jovicentric distance function. The study of these 20 encounters has allowed the introduction of the concept of temporary gravitational capture of a small body into the Hill sphere. An analysis of variations in the Tisserand constant in these (20) encounters of the observable comets shows that their motion is unstable in Hill??s sense.  相似文献   

13.
Comets must form a major part of the interstellar medium. The solar system provides a flux of comets into the interstellar space and there is no reason to suspect that many other stars and their surrounding cometary systems would not make a similar contribution. Occasionally interstellar comets must pass through the inner solar system, but Whipple (1975) considers it unlikely that such a comet is among the known cases of apparently hyperbolic comets. Even so the upper limit for the density of unobserved interstellar comets is relatively high.In addition, we must consider the possibility that comets are a genuine component of interstellar medium, and that the Oort Cloud is merely a captured part of it (McCrea, 1975). Here we review various dynamical possibilities of two-way exchange of comet populations between the Solar System and the interstellar medium. We describe ways in which a traditional Oort Cloud (Oort, 1950) could be captured from the interstellar medium. However, we note that the so called Kuiper belt (Kuiper, 1951) of comets cannot arise through this process. Therefore we have to ask how necessary the concept of the yet unobserved Kuiper belt is for the theory of short period comets.There has been considerable debate about the question whether short period comets can be understood as a captured population of the Oort Cloud of comets or whether an additional source has to be postulated. The problem is made difficult by the long integration times of comet orbits through the age of the Solar System. It would be better to have an accurate treatment of comet-planet encounters in a statistical sense, in the form of cross sections, and to carry out Monte Carlo studies. Here we describe the plan of action and initial results of the work to derive cross sections by carrying out large numbers of comet — planet encounters and by deriving approximate analytic expressions for them. Initially comets follow parabolic orbits of arbitrary inclination and perihelion distance; cross sections are derived for obtaining orbits of given energy and inclination after the encounter. The results are used in subsequent work to make evolutionary models of the comet population.  相似文献   

14.
Ultraviolet spectra of seven comets taken with the same instrument are presented. Comets P/Encke (1980), P/Tuttle (1980 h), P/Stephan-Oterma (1980 g), and Meier (1980 q) were observed during November-December 1980 with the International Ultraviolet Explorer (IUE) satellite observatory, while comets P/Borrelly (1980 i) and Panther (1980 u) were observed with IUE on 6 March 1981. The spectra of these comets are compared with those of comet Bradfield (1979 X), studied extensively earlier in 1980 with IUE, as well as with each other. In order to simplify the interpretation of the data and to minimize the dependence upon a specific model, the spectra are compared at approximately the same value of heliocentric distance whenever possible. Effects due to heliocentric velocity, geocentric distance, and optical depth are also discussed. All of the cometary spectra are remarkably similar, which suggests that these comets may have a common composition and origin.  相似文献   

15.
As any comet nears the Sun, gas sublimes from the nucleus taking dust with it. Jupiter family comets are no exception. The neutral gas becomes ionized, and the interaction of a comet with the solar wind starts with ion pickup. This key process is also important in other solar system contexts wherever neutral particles become ionized and injected into a flowing plasma such as at Mars, Venus, Io, Titan and interstellar neutrals in the solar wind. At comets, ion pickup removes momentum and energy from the solar wind and puts it into cometary particles, which are then thermalised via plasma waves. Here we review what comets have shown us about how this process operates, and briefly look at how this can be applied in other contexts. We review the processes of pitch angle and energy scattering of the pickup ions, and the boundaries and regions in the comet-solar wind interaction. We use in-situ measurements from the four comets visited to date by spacecraft carrying plasma instrumentation: 21P/Giacobini-Zinner, 1P/Halley, 26P/Grigg-Skjellerup and 19P/Borrelly, to illustrate the process in action. While, of these, comet Halley is not a Jupiter class comet, it has told us the most about cometary plasma environments. The other comets, which are from the Jupiter family, give an interesting comparison as they have lower gas production rates and less-developed interactions. We examine the prospects for Rosetta at comet Churyumov-Gerasimenko, another Jupiter family comet where a wide range of gas production rates will be studied.  相似文献   

16.
We present observational data for two long-period and three dynamically new comets observed at heliocentric distances between 5.8 to 14.0 AU. All of the comets exhibited activity beyond the distance at which water ice sublimation can be significant. We have conducted experiments on gas-laden amorphous ice samples and show that considerable gas emission occurs when the ice is heated below the temperature of the amorphous-crystalline ice phase transition (T∼137 K). We propose that annealing of amorphous water ice is the driver of activity in comets as they first enter the inner Solar System. Experimental data show that large grains can be ejected at low velocity during annealing and that the rate of brightening of the comet should decrease as the heliocentric distance decreases. These results are consistent with both historical observations of distant comet activity and with the data presented here. If observations of the onset of activity in a dynamically new comet are ever made, the distance at which this occurs would be a sensitive indicator of the temperature at which the comet had formed or represents the maximum temperature that it has experienced. New surveys such as Pan STARRS, may be able to detect these comets while they are still inactive.  相似文献   

17.
Comets seem to be composed of matter, which is supposed to have the same molecular composition as protosolar nebula. Although there are no unbiased evidence that cometary nuclei retain the molecular composition inherited from the protosolar cloud, the observed properties of comets indicate that there is at least a resemblance between cometary composition and the material properties of dense interstellar clouds. Therefore the origin of comets could be searched in the cold stages of the protosolar nebula and molecular abundances of grain mantles in this nebula may be similar to those in the cometary dust. It is suggested that comets may contain pristine, virtually unaltered protosolar material and their study might be very relevant way to more information about processes in early stages of the solar nebula. Our knowledge about composition of the cometary nucleus is still relatively scarce, but we can partly deduce it from data obtained either by ground-based spectroscopy or by in situ mass spectrometry from space experiments. Most important were the discovery of fluffy CHON particles composed partly or even completely from compounds containing light elements. No consensus concerning the presence of interstellar pristine matter in comet has been reached from various approaches to determine the relationship between comets and interstellar grains. Most of these studies are based on infrared spectroscopy. Another method is the comparison on the chemical models of the protosolar nebula with the volatile compounds of the cometary nuclei. Both gas-phase and grain-surface chemistry are considered and initial gas-phase atomic abundances are assumed to be protosolar. The cometary matter is certainly not identical with the typical material of dense interstellar cool dense clouds, but it is closer to it than any other type of matter in solar system so far accessible to us. The data from comets combined with models of chemical evolution of matter in environment similar as prevailed the early stage of presolar nebula may at least impose constrains on the condition for comet formation. Here presented study is a preliminary contribution to such studies.  相似文献   

18.
In this work we have compiled 37,692 observations of 27 periodic and non-periodic comets to create the secular light curves (SLCs), using two plots per comet. The data have been reduced homogeneously. Our overriding goal is to learn the properties of the ensemble of comets. More than 30 parameters are listed, of which over ∼20 are new and measured from the plots. We define two ages for a comet using activity as a proxy, the photometric age P-AGE, and the time-age, T-AGE. It is shown that these parameters are robust, implying that the input data can have significant errors but P-AGE and T-AGE come out with small errors. This is due to their mathematical definition. It is shown that P-AGE classifies comets by shape of their light curve. The value of this Atlas is twofold: The SLCs not only show what we know, but also show what we do not know, thus pointing the way to meaningful observations. Besides their scientific value, these plots are useful for planning observations. The SLCs have not been modeled, and there is no cometary light curve standard model as there is for some variable stars (i.e. eclipsing binaries). Comets are classified by age and size. In this way it is found that 29P/Schwassmann-Wachmann 1 is a baby goliath comet, while C/1983 J1 Sugano-Saigusa-Fujikawa is a middle age dwarf. There are new classes of comets based on their photometric properties. The secular light curves presented in this Atlas exhibit complexity beyond current understanding.  相似文献   

19.
An overview is given of close encounters of nearly parabolic comets (NPCs; with periods of P > 200 years and perihelion distances of q > 0.1 AU; the number of the comets is N = 1041) with planets. The minimum distances Δmin between the cometary and planetary orbits are calculated to select comets whose Δmin are less than the radius of the planet’s sphere of influence. Close encounters of these comets with planets are identified by numerical integration of the comets’ equations of motion over an interval of ±50 years from the time of passing the perihelion. Close encounters of NPCs with Jupiter in 1663–2011 are reported for seven comets. An encounter with Saturn is reported for comet 2004 F2 (in 2001).  相似文献   

20.
A brief discussion of the infrared observations from 4 to 20 micrometers of seven comets is presented. The observed infrared emission from comets depends primarily on their heliocentric distance. A model based on grain populations composed of a mixture of silicate and amorphous carbon particles in the mass ratio of about 40 to 1, with a power-law size distribution similar to that inferred for comet Halley, is applied to the observations. The model provides a good match to the observed heliocentric variation of both the 10 micrometers feature and the overall thermal emission from comets West and Halley. Matches to the observations of comet IRAS-Araki-Alcock and the antitail of comet Kohoutek require slightly larger grains. While the model does not match the exact profile and position of the 3.4 micrometers feature discovered in comet Halley, it does produce a qualitative fit to the observed variation of the feature's strength as a function of heliocentric distance. The calculations predict that the continuum under the 3.4 micrometers feature is due primarily to thermal emission from the comet dust when the comet is close to the Sun and to scattered solar radiation at large heliocentric distances, as is observed. A brief discussion of the determination of cometary grain temperatures from the observed infrared emission is presented. It is found that the observed shape of the emission curve from about 4 to 8 micrometers provides the best spectral region for estimating the cometary grain temperature distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号