首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
David Morrison 《Icarus》1976,28(1):125-132
Radiometry of Eros at 10 and 20 μm demonstrates that the thermal conductivity of the upper centimeter of the surface is approximately as low as that of the Moon, suggesting that the asteroid has a regolith of highly porous rocky material. When combined with photoelectric photometry, these infrared measurements yield an effective diameter of Eros at maximum light of D0 = 22 ± 2 km and a geometric albedo of pv = 0.18 ± 0.03.  相似文献   

2.
We report infrared thermal emission measurements of 1862 Apollo, which is the type example of an Earth-crossing asteroid. We derive a geometric albedo of 0.21 ± 0.02 which is within the albedo range of the S class of asteroids. The effective diameter was observed to vary with rotation from 1.2 ± 0.1 to 1.5 ± 0.1 km.  相似文献   

3.
Abstract— We present combined multi‐spectral imager (MSI) (0.95 μm) and near‐infrared spectrometer (NIS) (0.8–2.4 μm) observations of Psyche crater on S‐type asteroid 433 Eros obtained by the Near‐Earth Asteroid Rendezvous (NEAR)—Shoemaker spacecraft. At 5.3 km in diameter, Psyche is one of the largest craters on Eros which exhibit distinctive brightness patterns consistent with downslope motion of dark regolith material overlying a substrate of brighter material. At spatial scales of 620 m/ spectrum, Psyche crater wall materials exhibit albedo contrasts of 32–40% at 0.946 μm. Associated spectral variations occur at a much lower level of 4–8% (±2–4%). We report results of scattering model and lunar analogy investigations into several possible causes for these albedo and spectral trends: grain size differences, olivine, pyroxene, and troilite variations, and optical surface maturation. We find that the albedo contrasts in Psyche crater are not consistent with a cause due solely to variations in grain size, olivine, pyroxene or lunar‐like optical maturation. A grain size change sufficient to explain the observed albedo contrasts would result in strong color variations that are not observed. Olivine and pyroxene variations would produce strong band‐correlated variations that are not observed. A simple lunar‐like optical maturation effect would produce strong reddening that is not observed. The contrasts and associated spectral variation trends are most consistent with a combination of enhanced troilite (a dark spectrally neutral component simulating optical effects of shock) and lunar‐like optical maturation. These results suggest that space weathering processes may affect the spectral properties of Eros materials, causing surface exposures to differ optically from subsurface bedrock. However, there are significant spectral differences between Eros' proposed analog meteorites (ordinary chondrites and/or primitive achondrites), and Eros' freshest exposures of subsurface bright materials. After accounting for all differences in the measurement units of our reflectance comparisons, we have found that the bright materials on Eros have reflectance values at 0.946 μm consistent with meteorites, but spectral continua that are much redder than meteorites from 1.5 to 2.4 μm. Most importantly, we calculate that average Eros surface materials are 30–40% darker than meteorites.  相似文献   

4.
Analysis of the disk-integrated solar phase curve of 433 Eros, as derived from ground-based telescopic and NEAR Shoemaker spacecraft measurements, shows that Eros's surface properties are typical of average S-type asteroids. Eros displays the same single-particle scattering characteristics and porosity vs theoretical grain size relationships as typical S-asteroids, as does Ida. Eros's single-scattering albedo, however, is higher. The geometric albedo at 550 nm derived for Eros (0.29±0.02) is higher than Ida's but is equivalent to Gaspra's within the error bars. The phase integral (0.39±0.02) and Bond albedo (0.12±0.02) for Eros are higher than those estimated for average S-type asteroids but commensurate with the values obtained for Gaspra.  相似文献   

5.
We present near-infrared spectrometer (NIS) observations (0.8 to 2.4 μm) of the S-type asteroid 433 Eros obtained by the NEAR Shoemaker spacecraft and report results of our Hapke photometric model analysis of data obtained at phase angles ranging from 1.2° to 111.0° and at spatial resolutions of 1.25×2.5 to 2.75×5.5 km/spectrum. Our Hapke model fits successfully to the NEAR spectroscopic data for systematic color variations that accompany changing viewing and illumination geometry. Model parameters imply a geometric albedo at 0.946 μm of 0.27±0.04, which corresponds to a geometric albedo at 0.550 μm of 0.25±0.05. We find that Eros exhibits phase reddening of up to 10% across the phase angle range of 0-100°. We observe a 10% increase in the 1-μm band depth at high phase angles. In contrast, we observe only a 5% increase in continuum slope from 1.486 to 2.363 μm and essentially no difference in the 2-μm band depth at higher phase angles. These contrasting phase effects imply that there are phase-dependent differences in the parametric measurements of 1- and 2-μm band areas, and in their ratio. The Hapke model fits suggest that Eros exhibits a weaker opposition surge than either 951 Gaspra or 243 Ida (the only other S-type asteroids for which we possess disk-resolved photometric observations). On average, we find that Eros at 0.946 μm has a higher geometric albedo and a higher single-scatter albedo than Gaspra or Ida at 0.56 μm; however, Eros's single-particle phase function asymmetry and average surface macroscopic roughness parameters are intermediate between Gaspra and Ida. Only two of the five Hapke model parameters exhibit a notable wavelength dependence: (1) The single-scatter albedo mimics the spectrum of Eros, and (2) there is a decrease in angular width of the opposition surge with increasing wavelength from 0.8 to 1.7 μm. Such opposition surge behavior is not adequately modeled with our shadow-hiding Hapke model, consistent with coherent backscattering phenomena near zero phase.  相似文献   

6.
We present a new high-resolution map of thermal inertia derived from observations of planetary brightness temperature by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) obtained during the entire MGS primary mapping mission. Complete seasonal coverage provides a nearly global view of Mars, including the polar regions, at a spatial resolution of approximately 3 km. Our map of nighttime thermal-bolometer-based thermal inertia covers approximately 60% of the surface between 80° S and 80° N latitudes. We confirm the global pattern of high and low thermal inertia seen in lower resolution mapping efforts and provide greater detail concerning a third surface unit with intermediate values of both thermal inertia and albedo first identified by Mellon et al. 2000, Icarus 148, 437-455. Several smaller regional units with distinct characteristics are observed. Most notably, a unit of low thermal inertia () and low-to-intermediate albedo (0.09-0.22) dominates the region polewards of 65° S. We consider possible causes for these characteristics and conclude that a low-density mantle formed by desiccation of a previously ice-rich near-surface layer is the most likely explanation for the observed thermophysical properties. Global comparison of thermal inertia and elevation shows that high and low thermal inertia values can be found over a broad range of elevation, with only low values (30-) occurring at the highest elevations and the highest values occurring only at lower elevations. However, the lowest values () are found only at lower elevations, implying that the distribution of low thermal inertia material is not solely controlled by atmospheric pressure and the trapping of fines at high elevations. A new estimate of thermal inertia for the Viking and Pathfinder landing sites helps establish an important link between surface characteristics observed in situ and those derived from remote-sensing data.  相似文献   

7.
Ben Zellner 《Icarus》1976,28(1):149-153
Newly available photometric, polarimetric, spectroscopic, thermal-radiometric, radar, and occultation results are synthesized in order to derive a coherent model for Eros. The geometric albedo is 0.19±0.01 at the visual wavelength, and the overall dimensions are approximately 13 × 15 × 36km. The rotation is about the short axis, in the direct sense, with a sidereal period of 5h16m13s.4. The pole of rotation lies within a few degrees of ecliptic coordinates λ = 16° and β = + 11°.Eros is uniformly coated with a particulate surface layer several millimeters thick. It has an iron-bearing silicate composition, similar to that of a minority of main-belt asteroids, and probably identifiable with H-type ordinary chondrites.  相似文献   

8.
B. Zellner  J. Gradie 《Icarus》1976,28(1):117-123
Linear polarizations measured for asteroid 433 Eros at various wavelengths and at solar phase angles ranging from 9° to 53° are presented. The polarization results are entirely typical of main-belt S asteroids, and indicate a dusty surface with geometric albedo 0.20. The derived effective diameter at photometric maximum is 21 km. Eros is quite uniform polarimetrically; no dependence on aspect is detected, and the polarization is shown to be constant during a single rotation with a precision of one part in forty.  相似文献   

9.
Analytic expressions for the semimajor and semiminor axes and an orientation angle of the ellipse projected by a triaxial ellipsoid (an asteroid) and of the ellipse segment cast by a terminator across the ellipsoid as functions of the dimensions and pole of the body and the asterocenteric position of the Earth and Sun are derived. Applying these formulae to observations of the Earth-approaching asteroid 433 Eros obtained with the speckle interferometry system of Steward Observatory on December 17–18, 1981, and January 17–18, 1982, the following dimensions are derived: (40.5 ± 3.1 km) × (14.5 ± 2.3 km) × (14.1 ± 2.4 km) Eros' north pole is found to lie within 14° of RA = 0h16m Dec. = +43° (ecliptic longitude 23°, latitude +37°). Other than knowing the rotation period of Eros, these results are completely independent of any other data, and in the main confirm the results obtained in the 1974–1975 apparition by other methods. These dimensions, together with a lightcurve from December 18, 1981, lead to a geometric albedo of 0.156 ± 0.010. A series of two-dimensional power spectra and autocorrelation functions of the resolved asteroid clearly show it spinning in space.  相似文献   

10.
We obtained broadband visual and 10.6-μm photometry of 1580 Betulia during its close approach to Earth in May 1976. We analyzed our photometry by using the “radiometric method” to derive the radius (2.10 ± 0.40 km) and albedo (0.108 ± 0.012) of Betulia. Radar and polarimetric results indicate a radius greater than 3.0 km and a geometric albedo of about 0.05. To be compatible with these results we also modeled Betulia as having a surface with the thermal characteristics of bare rock rather than those of the “lunar” regolith model used for previous analysis of radiometry of other asteroids. A 3.7-km radius and a geometric albedo of ~0.04 are compatible with all available observations. Betulia is the first Mars-crossing asteroid found to have such a low albedo, which may be indicative of carbonaceous surface material.  相似文献   

11.
A. Mantz  R. Sullivan  J. Veverka 《Icarus》2004,167(1):197-203
Images of Eros from the NEAR Shoemaker spacecraft reveal bright and dark albedo features on steep crater walls unlike markings previously observed on asteroids. These features have been attributed to the downslope movement of space-weathered regolith, exposing less weathered material (Science 292 (2001) 484; Meteor. Planet. Sci. 36 (2001) 1617; Icarus 155 (2002) 145). Here we present observations of the interiors of large craters (>1 km in diameter) to test this hypothesis and constrain the origin of the features. We find that bright regions in these craters correspond to steep slopes, consistent with previous work. The geographic distribution of craters with albedo variations shows no pattern and does not resemble the distribution of ponds, another phenomenon on Eros attributed to regolith movement. Shadows and other indications of topography are not observed at feature boundaries, implying that the transported layer is ?1 m thick. The presence of multiple bright and dark units on long slopes with sharp boundaries between them suggests that mobilized regolith may be halted by frictional or other effects before reaching the foot of the slope. Features on crater walls should darken at the same rate as bright ejecta deposits from crater formation; the lack of observed, morphologically fresh craters with bright interiors or ejecta suggests that the albedo patterns are younger than the most recently formed craters greater than about 100 m in diameter. Smaller or micrometeorite impacts, which would not necessarily leave evident deposits of bright ejecta, remain possible causes of albedo patterns. Although their effectiveness is difficult to assess, electrostatic processes and thermal creep are also candidates.  相似文献   

12.
The Galileo photopolarimeter–radiometer (PPR) made over 100 observations of Europa’s surface temperature. We have used these data to constrain a diurnal thermal model and, thus, map the thermal inertia and bolometric albedo over 20% of the surface. We find an increased thermal inertia at mid-latitudes that is widespread in longitude and does not appear to correlate with geology, albedo, or other observables. Our derived thermophysical properties can be used to predict volatile stability across the surface over the course of a day and in planning of infrared instruments on future missions. Furthermore, while observations in the thermal infrared can and have been used to find endogenic activity, no such activity was detected at Europa. We have calculated the detection limits of these PPR observations and find that 100 km2 hotspots with temperatures of 116–1200 K could exist undetected on the surface, depending on the location.  相似文献   

13.
A photometric model of (433) Eros at wavelengths from 450 to 1050 nm is constructed using the combination of the images from the multispectral imager (MSI) obtained during the one-year long orbital phase of the NEAR mission, ground-based lightcurves from earlier observations, and our theoretical forward modeling simulations coupled with the NEAR shape model. The single scattering albedo is found to be 0.33±0.03 at 550 nm, which is smaller than past findings by 30%. The amplitude and width of the opposition effect are 1.4±0.1 and 0.010±0.004 from ground based lightcurves. It is confirmed that the asymmetry factor of the single-particle phase function and the surface roughness parameter do not depend on wavelength from 450 to 1050 nm, and their values are estimated to be −0.25±0.02 and 28°±3°, respectively, comparable with the earlier measurements from the NEAR NIS data. The geometric albedo and the Bond albedo at 550 nm are calculated to be 0.23 and 0.093, respectively, which make Eros less reflective than previous models, but still slightly more reflective than average S-type asteroids. The lower albedos of Eros are more consistent with our forward modeling simulations, as well as with its spectrum. Eros is a typical S-type asteroid like (951) Gaspra and (243) Ida, and has similar surface regolith properties. Combining the single-scattering albedo with the olivine composition of ordinary chondrites, taking into account space weathering darkening, we constrain the grain size of the regolith particles on Eros to a range of 50 to 100 μm.  相似文献   

14.
Spectra taken by Cassini’s Composite Infrared Spectrometer (CIRS) between 10 and 600 cm−1 (17-1000 μm) of surface thermal emission of Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus have been used to derive the thermal inertia and bolometric Bond albedo values. Only an upper limit for the bolometric Bond albedo of Iapetus’ dark leading side could be determined due to the insensitivity of the thermal model to albedo when albedos are very low. The thermal inertia in this region however is better constrained. The CIRS coverage of Enceladus is extensive enough that the latitudinal variation in these values from 60°S to 70°N has been determined in 10° wide bins. The bolometric Bond albedos determined here are consistent with literature values which show the surface of the saturnian icy moons to be covered in ice contaminated to varying degrees. The thermal inertia of the moons is shown to be in the range 9-, approximately 2-6 times lower than that of the Galilean satellites, implying a less well consolidated and more porous surface. The thermal inertias of Iapetus and Phoebe are somewhat higher, suggesting that the very low thermal inertias of satellites from Rhea inwards may be related to their probable coating of E-ring material. Latitudinal variations on the surface of Enceladus show that the bolometric Bond albedo and thermal inertia increase towards the active plume source at the south pole.  相似文献   

15.
The energy balance at the surface of an airless planetary body is strongly influenced by the bolometric Bond albedo and the surface thermal inertia. Both of these values may be calculated through the application of a thermal model to measured surface temperatures. The accuracy of either, though, increases if the value of the other is better constrained. In this study, we used the improved global bolometric Bond albedo map of Iapetus derived from Cassini VIMS and ISS and Voyager ISS data in conjunction with Cassini CIRS temperature data to reevaluate surface thermal inertia across Iapetus. Results showed the thermal inertia of the dark terrain varies between 11 and 14.8 J m−2 K−1 s−1/2 while the light material varies between 15 and 25 J m−2 K−1 s−1/2. Using an approximation to the thermal properties of the dark overburden derived from our thermal inertia results, we can implement our thermal model to provide estimates on the dark material thickness, which was found to lie between 7 cm and 16 cm. In order to develop an accurate global thermal model, a weighted function that approximates the surface thermal inertia across Iapetus was developed and verified via our measurements. The global bolometric Bond albedo map, surface thermal inertia map, and the thermal model are then used to synthesize global temperature maps that may be used to study the stability of volatiles.  相似文献   

16.
We present the results of extensive thermal-infrared observations of the C-type near-Earth Asteroid (1580) Betulia obtained in June 2002 with the 3-m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. Betulia is a highly unusual object for which earlier radiometric observations, interpreted on the basis of simple thermal models, indicated a surface of high thermal inertia. A high thermal inertia implies a lack of thermally insulating regolith. Radiometric observations of other asteroids of comparable size indicate that regolith is present in nearly all cases. Knowledge of the surface thermal properties of small near-Earth asteroids is crucial for meaningful calculations of the Yarkovsky effect, which is invoked to explain the delivery of collisional fragments from the main belt into near-Earth orbits, and apparently has a significant influence on the orbital evolution of potentially hazardous near-Earth asteroids. Furthermore, apart from being an indicator of the presence of thermally insulating regolith on the surface of an asteroid, the thermal inertia determines the magnitude of the diurnal temperature variation and is therefore of great importance in the design of instrumentation for lander missions to small asteroids. In the case of Betulia our database is sufficiently broad to allow the use of more sophisticated thermal models than were available for earlier radiometric observations. The measured fluxes have been fitted with thermal-model emission continua to determine the asteroid's size and geometric albedo, pv. Fits obtained with a new thermophysical model imply an effective diameter of 4.57±0.46 km and an albedo of 0.077±0.015 and indicate a moderate surface thermal inertia of around 180 J m−2 s−0.5 K−1. It is difficult to reconcile our results with earlier work, which indicate a larger diameter for Betulia and a high-thermal-inertia surface of bare rock.  相似文献   

17.
David Morrison 《Icarus》1974,22(1):57-65
Broad-band radiometry with a spatial resolution of 5 arc sec is presented of Saturn and its rings. The brightness temperature of the B ring is 96 ± 3°K at 20 μm and 91 ± 3°K at 11 μm. These values constrain the bolometric Bond albedo of the ring particles to be less than 0.6, thus requiring a phase integral of less than unity. From differences in the thermal emission of the ansae, I suggest that the leading side of the particles has higher albedo than the trailing side. A measured drop in temperature of the B ring following eclipse of 2.0 ± 0.5°K is consistent with radii for the ring particles of 2 cm or larger.  相似文献   

18.
We utilized Cassini VIMS, Cassini ISS, and Voyager ISS observations of Iapetus to produce the first bolometric Bond albedo map of Iapetus. The average albedo values for the leading and trailing hemispheres are 0.06 ± 0.01 and 0.25 ± 0.03, respectively. However, the bright material in high-resolution ISS images has a value of 0.38 ± 0.04, highlighting the importance of resolution in determining accurate albedo values for Iapetus due to the speckling of localized regions of dark material into the trailing hemisphere. The practical application of this map is determining more accurate surface temperatures in thermal models; these albedo values translate into first order blackbody temperatures of 125.5 K and 118.4 K for the trailing and leading hemispheres at the semi-major axis.  相似文献   

19.
A photometric analysis of the S-type Asteroid 25143 Itokawa is performed over multiple wavelengths ranging from 0.85 to 2.10 μm based on disk-resolved reflectance spectra obtained with the Hayabusa near-infrared spectrometer (NIRS). We derive the global photometric properties of Itokawa in terms of Hapke's photometric model. We find that Itokawa has a single-scatter albedo that is 35-40% less than that of Asteroid 433 Eros. Itokawa also has a single-particle phase function that is more strongly back-scattering than that of Eros. Despite its hummocky surface strewn with large boulders, Itokawa exhibits an opposition effect. However, the total amplitude of the opposition surge for Itokawa was estimated to be less than unity while Eros and other S-type asteroids have been found to have model values exceeding unity. The wavelength dependence of the opposition surge width reveals that coherent backscatter contributes to the opposition effect on Itokawa's surface. The photometric roughness of Itokawa is well constrained to a value of 26° ± 1° which is similar to Eros, suggesting that photometric roughness models the smallest surface roughness scale for which shadows exist.  相似文献   

20.
Dale P. Cruikshank 《Icarus》1979,37(1):307-309
The radius and surface geometric albedo of Hyperion are calculated using the photometric/ radiometric method and a new measurement of the 20-μm thermal flux of the satellite. The results are R = 112 ± 15 km and pv = 0.47 ± 0.11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号