首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We report the results of nominally anhydrous equilibrium and fractional crystallization experiments on a synthetic Yamato‐980459 (Y98) bulk composition at 0.5 GPa. These experiments allow us to test a suggested fractional crystallization model, calculated using MELTS by Symes et al. ( 2008 ), in which a Y98‐like initial liquid yielded a magma closely resembling the bulk composition of QUE 94201. Although the two meteorites cannot be cogenetic owing to their age difference, they are thought to represent bona fide magmatic liquids rather than products of crystal accumulation, as are most Martian basaltic meteorites. Hence, understanding possible petrogenetic links between these types of liquids could be revealing about processes of melting and crystallization that formed the range of Martian basalts. We find that Y98 can, in fact, generate a residual liquid closely resembling QUE, but only after a very different crystallization process, and different degree of crystallization, than that modeled using MELTS. In addition, both the identity and sequence of crystallizing phases are very different between model and experiments. Our fractional crystallization experiments do not produce a QUE‐like liquid, and the crystallizing phases are an even poorer match to the MELTS‐calculated compositions than in the equilibrium runs. However, residual liquids from our experiments define a liquid line of descent that encompasses bulk compositions of parental melts calculated for several Martian basaltic meteorites, suggesting that the known Martian basaltic meteorites had their ultimate origin from the same or very similar source lithologies. These are, in turn, similar to source rocks modeled by previous studies as products of extensive crystallization of an initial Martian magma ocean.  相似文献   

2.
The thermal history of Mars during accretion and differentiation is important for understanding some fundamental aspects of its evolution such as crust formation, mantle geochemistry, chronology, volatile loss and interior degassing, and atmospheric development. In light of data from new Martian meteorites and exploration rovers, we have made a new estimate of Martian mantle siderophile element depletions. New high pressure and temperature metal–silicate experimental partitioning data and expressions are also available. Using these new constraints, we consider the conditions under which the Martian mantle may have equilibrated with metallic liquid. The resulting conditions that best satisfy six siderophile elements—Ni, Co, W, Mo, P, and Ga—and are consistent with the solidus and liquidus of the Martian mantle phase diagram are a pressure of 14 ± 3 GPa and temperature of 2100 ± 200 K. The Martian mantle depletions of Cr and V are also consistent with metal–silicate equilibration in this pressure and temperature range if deep mantle silicate phases are also taken into account. The results are not consistent with either metal–silicate equilibrium at the surface or at the current‐day Martian core–mantle boundary. Recent measurements and modeling have concluded that deep (~17 GPa or 1350 km) mantle melting is required to explain isotopic data for Martian meteorites and the nature of differentiation into core, mantle, and crust. This is in general agreement with our estimates of the conditions of Martian core formation based on siderophile elements that result in an intermediate depth magma ocean scenario for metal–silicate equilibrium.  相似文献   

3.
Knowledge of Martian igneous basaltic compositions is crucial for constraining mantle evolution, including early differentiation and mantle convection. Primitive magmas provide direct information about their mantle source regions, but most Martian meteorites either contain cumulate olivine or crystallized from fractionated melts. The recently discovered Martian meteorite Northwest Africa (NWA) 5789 is an olivine‐phyric shergottite. NWA 5789 has special significance among the Martian meteorites because it appears to represent one of the most magnesian Martian magmas known, other than Yamato (Y) 980459. Its most magnesian olivine cores (Fo85) are in Mg‐Fe equilibrium with a magma of the bulk rock composition, suggesting that the bulk represents a magma composition. Based on the Al/Ti ratio of its pyroxenes, we infer that the rock began to crystallize at a high pressure consistent with conditions in Mars’ lower crust/upper mantle. It continued and completed its crystallization closer to the surface, where cooling was rapid and produced a mesostasis of radiating sprays of plagioclase and pyroxene. The mineralogy, petrology, mineral chemistry, and bulk rock composition of NWA 5789 are very similar to those of Y‐980459. The similarities between the two meteorites suggest that NWA 5789 (like Y‐980459) represents a primitive, mantle‐derived magma composition. They also suggest the possibility that NWA 5789 and Y‐980459 formed in the same lava flow. However, based on the mineralogy and texture of its mesostasis, NWA 5789 must have cooled more slowly than Y‐980459. NWA 5789 will help elucidate the igneous geology and geochemistry of Mars.  相似文献   

4.
Melting of Martian mantle, formation, and evolution of primary magma from the depleted mantle were previously modeled from experimental petrology and geochemical studies of Martian meteorites. Based on in situ major and trace element study of a range of olivine‐hosted melt inclusions in various stages of crystallization of Tissint, a depleted olivine–phyric shergottite, we further constrain different stages of depletion and enrichment in the depleted mantle source of the shergottite suite. Two types of melt inclusions were petrographically recognized. Type I melt inclusions occur in the megacrystic olivine core (Fo76‐70), while type II melt inclusions are hosted by the outer mantle of the olivine (Fo66‐55). REE‐plot indicates type I melt inclusions, which are unique because they represent the most depleted trace element data from the parent magmas of all the depleted shergottites, are an order of magnitude depleted compared to the type II melt inclusions. The absolute REE content of type II displays parallel trend but somewhat lower value than the Tissint whole‐rock. Model calculations indicate two‐stage mantle melting events followed by enrichment through mixing with a hypothetical residual melt from solidifying magma ocean. This resulted in ~10 times enrichment of incompatible trace elements from parent magma stage to the remaining melt after 45% crystallization, simulating the whole‐rock of Tissint. We rule out any assimilation due to crustal recycling into the upper mantle, as proposed by a recent study. Rather, we propose the presence of Al, Ca, Na, P, and REE‐rich layer at the shallower upper mantle above the depleted mantle source region during the geologic evolution of Mars.  相似文献   

5.
Abstract— Crystallization of a magma ocean on a large terrestrial planet that is significantly melted by the energy of accretion may lead to an unstable cumulate density stratification, which may overturn to a stable configuration. Overturn of the initially unstable stratification may produce an early basaltic crust and differentiated mantle reservoirs. Such a stable compositional stratification can have important implications for the planet's subsequent evolution by delaying or suppressing thermal convection and by influencing the distribution of radiogenic heat sources. We use simple models for fractional crystallization of a martian magma ocean, and calculate the densities of the resulting cumulates. While the simple models presented do not include all relevant physical processes, they are able to describe to first order a number of aspects of martian evolution. The models describe the creation of magma source regions that differentiated early in the history of Mars, and present the possibility of an early, brief magnetic field initiated by cold overturned cumulates falling to the coremantle boundary. In a model that includes the density inversion at about 7.5 GPa, where olivine and pyroxene float in the remaining magma ocean liquids while garnet sinks, cumulate overturn sequesters alumina in the deep martian interior. The ages and compositions of source regions are consistent with SNC meteorite data.  相似文献   

6.
Abstract— If Vesta is the parent body of the howardite, eucrite, and diogenite (HED) meteorites, then geo-chemical and petrologic constraints for the meteorites may be used in conjunction with astronomical constraints for the size and mass of Vesta to (1) determine the size of a possible metal core in Vesta and (2) model the igneous differentiation and internal structure of Vesta. The density of Vesta and petrologic models for HED meteorites together suggest that the amount of metal in the parent body is <25 mass%, with a best estimate of ~5%, assuming no porosity. For a porosity of up to 5% in the silicate fraction of the asteroid, the permissible metal content is <30%. These results suggest that any metal core in the HED parent body and Vesta is not unusually large. A variety of geochemical and other data for HED meteorites are consistent with the idea that they originated in a magma ocean. It appears that diogenites formed by crystal accumulation in a magma ocean cumulate pile and that most noncumulate eucrites (excepting such eucrites as Bouvante and Statinem) formed by subsequent crystallization of the residual melts. Modelling results suggest that the HED parent body is enriched in rare earth elements by a factor of ~2.5–3.5 relative to CI-chondrites and that it has approximately chondritic Mg/Si and Al/Sc ratios. Stokes settling calculations for a Vesta-wide, nonturbulent magma ocean suggest that early-crystallizing magnesian olivine, orthopyroxene, and pigeonite would have settled relatively quickly, permitting fractional crystallization to occur, but that later-crystallizing phases would have settled (or floated) an order of magnitude more slowly, allowing, instead, a closer approach to equilibrium crystallization for the more evolved (eucritic) melts. This would have inhibited the formation of a plagioclase-flotation crust on Vesta. Plausible models for the interior of Vesta, which are consistent with the data for HED meteorites and Vesta, include a metal core (<130 km radius), an olivine-rich mantle (~65–220 km thick), a lower crustal unit (~12–43 km thick) composed of pyroxenite, from which diogenites were derived, and an upper crustal unit (~23–42 km thick), from which eucrites originated. The present shape of Vesta (with ~60 km difference in the maximum and minimum radius) suggests that all of the crustal materials, and possibly some of the underlying olivine from the mantle, could have been locally excavated or exposed by impact cratering.  相似文献   

7.
The Martian meteorites record a wide diversity of environments, processes, and ages. Much work has been done to decipher potential mantle sources for Martian magmas and their interactions with crustal and surface environments. Chlorine isotopes provide a unique opportunity to assess interactions between Martian mantle‐derived magmas and the crust. We have measured the Cl‐isotopic composition of 17 samples that span the range of known ages, Martian environments, and mantle reservoirs. The 37Cl of the Martian mantle, as represented by the olivine‐phyric shergottites, NWA 2737 (chassignite), and Shergotty (basaltic shergottite), has a low value of approximately ?3.8‰. This value is lower than that of all other planetary bodies measured thus far. The Martian crust, as represented by regolith breccia NWA 7034, is variably enriched in the heavy isotope of Cl. This enrichment is reflective of preferential loss of 35Cl to space. Most basaltic shergottites (less Shergotty), nakhlites, Chassigny, and Allan Hills 84001 lie on a continuum between the Martian mantle and crust. This intermediate range is explained by mechanical mixing through impact, fluid interaction, and assimilation‐fractional crystallization.  相似文献   

8.
The hydrogen isotopic composition of planetary reservoirs can provide key constraints on the origin and history of water on planets. The sources of water and the hydrological evolution of Mars may be inferred from the hydrogen isotopic compositions of mineral phases in Martian meteorites, which are currently the only samples of Mars available for Earth‐based laboratory investigations. Previous studies have shown that δD values in minerals in the Martian meteorites span a large range of ?250 to +6000‰. The highest hydrogen isotope ratios likely represent a Martian atmospheric component: either interaction with a reservoir in equilibrium with the Martian atmosphere (such as crustal water), or direct incorporation of the Martian atmosphere due to shock processes. The lowest δD values may represent those of the Martian mantle, but it has also been suggested that these values may represent terrestrial contamination in Martian meteorites. Here we report the hydrogen isotopic compositions and water contents of a variety of phases (merrillites, maskelynites, olivines, and an olivine‐hosted melt inclusion) in Tissint, the latest Martian meteorite fall that was minimally exposed to the terrestrial environment. We compared traditional sample preparation techniques with anhydrous sample preparation methods, to evaluate their effects on hydrogen isotopes, and find that for severely shocked meteorites like Tissint, the traditional sample preparation techniques increase water content and alter the D/H ratios toward more terrestrial‐like values. In the anhydrously prepared Tissint sample, we see a large range of δD values, most likely resulting from a combination of processes including magmatic degassing, secondary alteration by crustal fluids, shock‐related fractionation, and implantation of Martian atmosphere. Based on these data, our best estimate of the δD value for the Martian depleted mantle is ?116 ± 94‰, which is the lowest value measured in a phase in the anhydrously prepared section of Tissint. This value is similar to that of the terrestrial upper mantle, suggesting that water on Mars and Earth was derived from similar sources. The water contents of phases in Tissint are highly variable, and have been affected by secondary processes. Considering the H2O abundances reported here in the driest phases (most likely representing primary igneous compositions) and appropriate partition coefficients, we estimate the H2O content of the Tissint parent magma to be ≤0.2 wt%.  相似文献   

9.
Abstract— Available evidence strongly suggests that the HED (howardite, eucrite, diogenite) meteorites are samples of asteroid 4 Vesta. Abundances of the moderately siderophile elements (Ni, Co, Mo, W and P) in the HED mantle indicate that the parent body may have been completely molten during its early history. During cooling of a chondritic composition magma ocean, equilibrium crystallization is fostered by the suspension of crystals in a convecting magma ocean until the crystal fraction reaches a critical value near 0.80, when the convective system freezes and melts segregate from crystals by gravitational forces. The extruded liquids are similar in composition to Main Group and Stannern trend eucrites, and the last pyroxenes to precipitate out of this ocean (before convective lockup) span the compositional range of the diogenites. Subsequent fractional crystallization of a Main Group eucrite liquid, which has been isolated as a body of magma, produces the Nuevo Laredo trend and the cumulate eucrites. The predicted cumulate mineral compositions are in close agreement with phase compositions analyzed in the cumulate eucrites. Thus, eucrites and diogenites are shown to have formed as part of a simple and continuous crystallization sequence starting with a magma ocean environment on an asteroidal size parent body that is consistent with Vesta.  相似文献   

10.
Highly siderophile elements (HSEs) can be used to understand accretion and core formation in differentiated bodies, due to their strong affinity for FeNi metal and sulfides. Coupling experimental studies of metal–silicate partitioning with analyses of HSE contents of Martian meteorites can thus offer important constraints on the early history of Mars. Here, we report new metal–silicate partitioning data for the PGEs and Au and Re across a wide range of pressure and temperature space, with three series designed to complement existing experimental data sets for HSE. The first series examines temperature effects for D(HSE) in two metallic liquid compositions—C‐bearing and C‐free. The second series examines temperature effects for D(Re) in FeO‐bearing silicate melts and FeNi‐rich alloys. The third series presents the first systematic study of high pressure and temperature effects for D(Au). We then combine our data with previously published partitioning data to derive predictive expressions for metal–silicate partitioning of the HSE, which are subsequently used to calculate HSE concentrations of the Martian mantle during continuous accretion of Mars. Our results show that at midmantle depths in an early magma ocean (equivalent to approximately 14 GPa, 2100 °C), the HSE contents of the silicate fraction are similar to those observed in the Martian meteorite suite. This is in concert with previous studies on moderately siderophile elements. We then consider model calculations that examine the role of melting, fractional crystallization, and sulfide saturation/undersaturation in establishing the range of HSE contents in Martian meteorites derived from melting of the postcore formation mantle. The core formation modeling indicates that the HSE contents can be established by metal–silicate equilibrium early in the history of Mars, thus obviating the need for a late veneer for HSE, and by extension volatile siderophile elements, or volatiles in general.  相似文献   

11.
Elemental abundances for volatile siderophile and chalcophile elements for Mars inform us about processes of accretion and core formation. Such data are few for Martian meteorites, and are often lacking in the growing number of desert finds. In this study, we employed laser ablation inductively coupled plasma–mass spectrometry (LA‐ICP‐MS) to analyze polished slabs of 15 Martian meteorites for the abundances of about 70 elements. This technique has high sensitivity, excellent precision, and is generally accurate as determined by comparisons of elements for which literature abundances are known. However, in some meteorites, the analyzed surface is not representative of the bulk composition due to the over‐ or underrepresentation of a key host mineral, e.g., phosphate for rare earth elements (REE). For other meteorites, the range of variation in bulk rastered analyses of REE is within the range of variation reported among bulk REE analyses in the literature. An unexpected benefit has been the determination of the abundances of Ir and Os with a precision and accuracy comparable to the isotope dilution technique. Overall, the speed and small sample consumption afforded by this technique makes it an important tool widely applicable to small or rare meteorites for which a polished sample was prepared. The new volatile siderophile and chalcophile element abundances have been employed to determine Ge and Sb abundances, and revise Zn, As, and Bi abundances for the Martian mantle. The new estimates of Martian mantle composition support core formation at intermediate pressures (14 ± 3 GPa) in a magma ocean on Mars.  相似文献   

12.
We conducted a petrologic study of apatite within 12 Martian meteorites, including 11 shergottites and one basaltic regolith breccia. These data were combined with previously published data to gain a better understanding of the abundance and distribution of volatiles in the Martian interior. Apatites in individual Martian meteorites span a wide range of compositions, indicating they did not form by equilibrium crystallization. In fact, the intrasample variation in apatite is best described by either fractional crystallization or crustal contamination with a Cl‐rich crustal component. We determined that most Martian meteorites investigated here have been affected by crustal contamination and hence cannot be used to estimate volatile abundances of the Martian mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite source has 36–73 ppm H2O and the depleted source has 14–23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the Martian mantle. We also estimated the H2O, Cl, and F content of the Martian crust using known crust‐mantle distributions for incompatible lithophile elements. We determined that the bulk Martian crust has ~1410 ppm H2O, 450 ppm Cl, and 106 ppm F, and Cl and H2O are preferentially distributed toward the Martian surface. The estimate of crustal H2O results in a global equivalent surface layer (GEL) of ~229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.  相似文献   

13.
Knowledge of Martian igneous and mantle compositions is crucial for understanding Mars' mantle evolution, including early differentiation, mantle convection, and the chemical alteration at the surface. Primitive magmas provide the most direct information about their mantle source regions, but most Martian meteorites either contain cumulate olivine or crystallized from fractionated melts. The new Martian meteorite Northwest Africa (NWA) 6234 is an olivine‐phyric shergottite. Its most magnesian olivine cores (Fo78) are in Mg‐Fe equilibrium with a magma of the bulk rock composition, suggesting that it represents a melt composition. Thermochemical calculations show that NWA 6234 not only represents a melt composition but is a primitive melt derived from an approximately Fo80 mantle. Thus, NWA 6234 is similar to NWA 5789 and Y 980459 in the sense that all three are olivine‐phyric shergottites and represent primitive magma compositions. However, NWA 6234 is of special significance because it represents the first olivine‐phyric shergottite from a primitive ferroan magma. On the basis of Al/Ti ratio of pyroxenes in NWA 6234, the minor components in olivine and merrillite, and phosphorus zoning of olivine, we infer that the rock crystallized completely at pressures consistent with conditions in Mars' upper crust. The textural intergrowths of the two phosphates (merrillite and apatite) indicate that at a very last stage of crystallization, merrillite reacted with an OH‐Cl‐F‐rich melt to form apatite. As this meteorite crystallized completely at depth and never erupted, it is likely that its apatite compositions represent snapshots of the volatile ratios of the source region without being affected by degassing processes, which contain high OH‐F content.  相似文献   

14.
Abstract— Until recently, the SNC meteorites represented the only source of information about the chemistry and petrology of the Martian surface and mantle. The Mars Exploration Rovers have now analyzed rocks on the Martian surface, giving additional insight into the petrology and geochemistry of the planet. The Adirondack basalts, analyzed by the MER Spirit in Gusev crater, are olivine‐phyric basaltic rocks which have been suggested to represent liquids, and might therefore provide new insights into the chemistry of the Martian mantle. Experiments have been conducted on a synthetic Humphrey composition at upper mantle and crustal conditions to investigate whether this composition might represent a primary mantle‐derived melt. The Humphrey composition is multiply saturated at 12.5 kbar and 1375 °C with olivine and pigeonite; a primary anhydrous melt derived from a “chondritic” mantle would be expected to be saturated in orthopyroxene, not pigeonite. In addition, the olivine and pigeonite present at the multiple saturation are too ferroan to have been from a Martian mantle as is understood now. Therefore, it seems likely that the Humphrey composition does not represent a primary anhydrous melt from the Martian mantle, but was affected by mineral/melt fractionations at lower (crustal) pressures.  相似文献   

15.
We report results of systematic experimental simulation of fractional crystallization of a lunar magma ocean (LMO) with the Lunar Primitive Upper Mantle bulk composition. These results complement prior work that simulated equilibrium crystallization. In contrast to previous numerical models for investigating magma ocean solidification processes and implications, our combined program simulates these processes directly using petrologic experimentation. Our experiments mimic LMO crystallization that is fractional throughout the process, rather than switching from initially equilibrium to fractional crystallization partway through. To do this, we adopted an iterative approach in which the starting material for each run is synthesized using the composition of the melt phase from the prior run. We compare our results to those from long-standing numerical models of LMO crystallization and show that although some features of those models are broadly reproduced, there are key differences in liquid lines of descent and the cumulate lithologies generated. Our results can be used to estimate the possible thickness of a primordial lunar crust formed from flotation of plagioclase during magma ocean solidification. Our estimate is greater than that from the recent Gravity Recovery and Interior Laboratory (GRAIL) mission, but consistent with the criteria on which the starting bulk composition was originally calculated. It assumes perfectly efficient separation of all plagioclase formed from the crystallizing magma ocean, which is likely not the case. We also demonstrate that a non-chondritic bulk composition, with respect to trace elements, is not required in order to generate a KREEP (potassium, rare earth elements, and phosphorus) signature from magma ocean crystallization.  相似文献   

16.
Abstract— The age, structure, composition, and petrogenesis of the martian lithosphere have been constrained by spacecraft imagery and remote sensing. How well do martian meteorites conform to expectations derived from this geologic context? Both data sets indicate a thick, extensive igneous crust formed very early in the planet's history. The composition of the ancient crust is predominantly basaltic, possibly andesitic in part, with sediments derived from volcanic rocks. Later plume eruptions produced igneous centers like Tharsis, the composition of which cannot be determined because of spectral obscuration by dust. Martian meteorites (except Allan Hills 84001) are inferred to have come from volcanic flows in Tharsis or Elysium, and thus are not petrologically representative of most of the martian surface. Remote‐sensing measurements cannot verify the fractional crystallization and assimilation that have been documented in meteorites, but subsurface magmatic processes are consistent with orbital imagery indicating thick crust and large, complex magma chambers beneath Tharsis volcanoes. Meteorite ejection ages are difficult to reconcile with plausible impact histories for Mars, and oversampling of young terrains suggests either that only coherent igneous rocks can survive the ejection process or that older surfaces cannot transmit the required shock waves. The mean density and moment of inertia calculated from spacecraft data are roughly consistent with the proportions and compositions of mantle and core estimated from martian meteorites. Thermal models predicting the absence of crustal recycling, and the chronology of the planetary magnetic field agree with conclusions from radiogenic isotopes and paleomagnetism in martian meteorites. However, lack of vigorous mantle convection, as inferred from meteorite geochemistry, seems inconsistent with their derivation from the Tharsis or Elysium plumes. Geological and meteoritic data provide conflicting information on the planet's volatile inventory and degassing history, but are apparently being reconciled in favor of a periodically wet Mars. Spacecraft measurements suggesting that rocks have been chemically weathered and have interacted with recycled saline groundwater are confirmed by weathering products and stable isotope fractionations in martian meteorites.  相似文献   

17.
Multiple observations from missions to Mars have revealed compelling evidence for a volatile‐rich Martian crust. A leading theory contends that eruption of basaltic magmas was the ultimate mechanism of transfer of volatiles from the mantle toward the surface after an initial outgassing related to the crystallization of a magma ocean. However, the concentrations of volatile species in ascending magmas and in their mantle source regions are highly uncertain. This work and this special issue of Meteoritics & Planetary Science summarize the key findings of the workshop on Volatiles in the Martian Interior (Nov. 3–4, 2014), the primary open questions related to volatiles in Martian magmas and their source regions, and the suggestions of the community at the workshop to address these open questions.  相似文献   

18.
火星陨石可以为研究火星岩浆演化过程提供直接证据并限制其源区特征.通常认为含粗粒橄榄石斑晶辉玻无球粒陨石携带有火星原始地幔的信息,因此选取该类样品Northwest Africa (NWA) 8716为研究对象,进行岩相结构及矿物成分分析. NWA8716由橄榄石、辉石、填隙状熔长石以及其他次要矿物组成.其中橄榄石颗粒有两种级别的粒径,长轴分别约为0.5–1.8 mm和50–400μm.较小橄榄石斑晶内部的熔体包裹体和NWA 8716全岩成分(计算值)均显示明显的轻稀土元素亏损([La/Yb]CI值为0.06–0.1),说明NWA 8716源于一个亏损的火星岩浆池.粗粒橄榄石斑晶的来源对衡量该样品是否能够代表原始熔体成分非常重要.对橄榄石晶体的粒径统计分析发现,粗粒橄榄石斑晶应为堆晶.进一步对铁-镁以及稀土元素分配特征的计算表明NWA 8716并非形成于一个封闭系统,但是计算所得原始熔体成分与全岩成分差异不大,因此粗粒橄榄石斑晶应当来源于与母岩浆成分相似的熔体.总的看来, NWA 8716应当来源于亏损型火星幔源区且演化程度较低.  相似文献   

19.
Several olivine‐phyric shergottites contain enough olivine that they could conceivably represent the products of closed‐system crystallization of primary melts derived from partial melting of the Martian mantle. Larkman Nunatak (LAR) 06319 has been suggested to represent a close approach to a Martian primary liquid composition based on approximate equilibrium between its olivine and groundmass. To better understand the olivine–melt relationship and the evolution of this meteorite, we report the results of new petrographic and chemical analyses. We find that olivine megacryst cores are generally not in equilibrium with the groundmass, but rather have been homogenized by diffusion to Mg# 72. We have identified two unique grain types: an olivine glomerocryst and an olivine grain preserving a primary magmatic boundary that constrains the time scale of eruption to be on the order of hours. We also report the presence of trace oxide phases and phosphate compositions that suggest that the melt contained approximately 1.1% H2O and lost volatiles during cooling, also associated with an increase in oxygen fugacity upon degassing. We additionally report in situ rare earth element measurements of the various mineral phases in LAR 06319. Based on these reported trace element abundances, we estimate the oxygen fugacity in the LAR 06319 parent melt early in its crystallization sequence (i.e., at the time of crystallization of the low‐Ca and high‐Ca pyroxenes), the rare earth element composition of the parent melt, and those of melts in equilibrium with later formed phases. We suggest that LAR 06319 represents the product of closed‐system crystallization within a shallow magma chamber, with additional olivine accumulated from a cumulate pile. We infer that the olivine megacrysts are antecrysts, derived from a single magma chamber, but not directly related to the host magma, and suggest that mixing of antecrysts within magma chambers may be a common process in Martian magmatic systems.  相似文献   

20.
The recent witnessed fall of the meteorite Tissint represents the delivery of a pristine new sample from the surface of Mars. This meteorite provides an unprecedented opportunity to study a variety of aspects about the planet's evolution. Using the Rb–Sr and Sm–Nd isotopic systems, we determined that Tissint, a depleted shergottite, has a crystallization age of 574 ± 20 Ma, an initial ε143Nd = +42.2 ± 0.5, and an initial 87Sr/86Sr = 0.700760 ± 11. These initial Nd and Sr isotopic compositions suggest that Tissint originated from a mantle source on Mars that is distinct from the source reservoirs of the other Martian meteorites. The known crystallization ages, geochemical characteristics, ejection ages, and ejection dynamics of Tissint and other similarly grouped Martian meteorites suggest that they are likely derived from a source crater up to approximately 90 km in diameter with an age of approximately 1 Ma that is located on terrain that is approximately 600 million years old.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号