首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coral bleaching, i.e. the loss of dinoflagellate symbionts from cnidarian hosts, is occurring globally at increasing rates, scales, and severity. The significance of these bleaching events to the health of coral reef ecosystems is extreme, as bleached corals exhibit high mortality, reduced fecundity and productivity and increased susceptibility to disease. This decreased coral fitness leads to reef degradation and ultimately to the breakdown of the coral reef ecosystem. To date there has been little work describing the application of biomarkers to assess coral health. The most commonly applied biomarker is, in fact, the bleaching event itself. We are interested in developing early warning biomarkers that can detect coral stress before bleaching occurs. Recently, several genes that are likely to function in regulating interactions between cnidarians and their symbionts have been characterized, using the temperate sea anemone Anthopleura elegantissima as a model species. One "symbiosis gene" identified from the host genome, sym32, is expressed as a function of anemone symbiotic-state, where sym32 expression is higher in symbiotic cf. aposymbiotic (symbiont-free) anemones. Real-time quantitative RT-PCR suggested that the level of sym32 expression was correlated with the abundance of algae in the host. Furthermore, laboratory exposures of anemones to low levels of cadmium (0, 20, 100 microg(-1) CdCl2; 14 days), which caused no change in algal cell numbers, resulted in a down-regulation of sym32 compared to controls, indicating that sym32 expression may serve as a new sensitive early warning biomarker of cnidarian-algal symbiosis breakdown.  相似文献   

2.
Our capacity to detect and interrogate patterns in nature depends on the use of standard methods for measuring biological units. Consensus methods to quantify the size of individual animals and characteristics of biological communities are critical for comparisons across time and space. Nowhere is this more important than when dealing with organisms such as sea anemones that display high plasticity in body shape. Despite the need for accurate measures of anemone size for ecological comparisons, there is little consensus on the accuracy and precision of size inferences for these animals. We assessed several morphological parameters to determine which in‐field measure accurately and reliably reflects the reference size of an anemone measured in the laboratory: (i) column height, (ii) column diameter, (iii) limbus diameter, (iv) pedal disc diameter, (v) pedal disc area or (vi) pedal disc perimeter. The results revealed large variability in the accuracy and precision amongst measures, which have implications for their suitability as a standard method for in situ measurements. In general, measures of diameter were preferable to those of height, area and perimeter; and those associated with attachment (i.e. the limbus and pedal disc diameter) performed the best. Overall, considering concurrence with measures obtained from two differing but useful reference states, pedal disc diameter was the most accurate parameter (mean percentage difference = 0.6) with which to estimate the size of sea anemones in the field, and we thus recommend its use as an effective, non‐destructive means of gaining insights into their behavioural and evolutionary ecology.  相似文献   

3.
Many tropical cnidarians, including anemones and corals, contain symbiotic dinoflagellates known as zooxanthellae. Photosynthesis by symbiotic dinoflagellates benefits the animal host and the proficiency of host metabolism also plays an important role in the nutrient status of the photosynthetic dinoflagellates. We aimed to determine the responses of symbiotic dinoflagellates to host starvation. The ultrastructure and some physiological indicators of symbiotic dinoflagellates (Symbiodinium sp., zooxanthellae) were examined in starved sea anemones (Stichodactyla mertensii; 3‐, 45‐ and 280‐day starvation). The cell size of zooxanthellae was not affected by starving the host; however, the ultrastructure and other physiological indicators of the zooxanthellae were affected. The photochemical efficiency of symbiotic dinoflagellates from anemones after 280 days of starvation was significantly (P < 0.01) higher than that of symbiotic dinoflagellates from anemones after 3‐ and 45‐day starvation. The number of symbiotic dinoflagellates from anemones decreased with increasing starvation duration. Generally, the chlorophyll a and c content of symbiotic dinoflagellates decreased significantly with longer anemone starvation. The tentacles of 3‐day starved anemones contained the most zooxanthellae, some of which were dividing and still enclosed within one periplast, and some had split entirely within one host vacuole. Moreover, each cell from 3‐day starved anemone contained up to five or six more mitochondria than those from 45‐ to 280‐day starved anemones. More lipid granules appeared in the zooxanthellae from 45‐ to 280‐day starved anemones. Pyrenoids, lobed accumulation bodies and calcium oxalate crystals existed in the symbiotic dinoflagellates from anemones at different starvation stages, which suggested that their existence had no correlation with host starvation. These findings contribute to an improved mechanistic understanding of the symbiotic relationship between zooxanthellae and anemones.  相似文献   

4.
We investigated the fouling community on the Fisheries Vessel (F/V) Khronometer during a 3‐year period, from its sinking, by means of video transects. The results demonstrate that the shipwreck presented high macroinvertebrate coverage from the first survey (100 days after sinking). The most conspicuous organisms were cnidarians, followed by amphipods and serpulids (tubes). The hydroid Ectopleura crocea was the most abundant colonizer in the early stages; the sea anemone Anthothoe chilensis and the azooxanthellate soft coral Tripalea clavaria were abundant 2 years after the vessel sank. Interestingly, shipwreck coverage and species composition at the end of the sampling period (940 days after sinking) were similar to those of the wood vessel Cristo Rey, which sank 36 years before the Khronometer. Besides, some different taxa from that seen on video transects were identified from samples taken during dives, corresponding to isolated organisms with scarce abundance or cryptic habits. Moreover, four reef fish species were recorded. Shipwrecks represent interesting places for recreational activities such as diving and fishing. This is the only study about the early development of an invertebrate community on artificial reefs in Buenos Aires coast, Argentina. Monitoring natural and artificial substrata could help to understand the ecological patterns occurring around them and provide information to help manage artificial reefs in sustainable ways.  相似文献   

5.
Our previous studies indicated that sea anemone microsomes contain cytochrome P450 (CYP) and have ethoxyresorufin O-dealkylation (EROD) activity. Other marine invertebrates have discrete organs which concentrate cytochromes P450, whereas cnidarians have evolved only to the tissue level of development. To examine the distribution of CYP in sea anemones, microsomes were prepared from the following tissue regions of two sea anemones, Anthopleura xanthogrammica: outer (heavy muscular wall), inner (imperfect and perfect mesentery, and retractor muscle), soft (digestive sac, gonads, and mesentery filaments), and tentacular (including algal/diatom symbiont). The cytochrome P450 content was distributed relatively evenly among the tissue regions. In contrast, the 418-nm CO-binding chromophore was approximately 10 times greater in the outer region than in any other region. Further, the 490-nm peak (which interferes with quantification of CYP in sea anemones) was greater in the outer region. In general, the EROD activity was comparable in the inner and soft regions and highest in the tentacles. However, the EROD results may have been complicated by the presence of the algal/diatom symbiont.  相似文献   

6.
Bleaching and associated mortality is an extreme threat to the persistence of coral populations in the projected warming regime of the next few decades. Recent evidence indicates that thermal bleaching thresholds may be affected by water quality gradients. The unexpected encounter of a coral mass bleaching event at a remote, uninhabited Caribbean island (Navassa) during a routine reef assessment cruise in November 2006 provided the opportunity to characterize bleaching responses and thermal exposure in an oceanic area with negligible continental influence or human impact on water quality. The coral taxa most susceptible to bleaching were Agaricia spp. and Montastraea faveolata. Siderastraea siderea, Diploria spp. and Porites porites were intermediately affected, while Porites astreoides and Montastraea cavernosa were minimally affected and negligible bleaching was observed in Acropora palmata. Bleaching prevalence (colonies > 4 cm diameter) ranged from 0.16 to 0.63 among sites. Deeper sites (between 18 and 37 m) had significantly higher prevalence of bleaching than shallow sites (<10 m). This general pattern of more bleaching in deeper sites also occurred within species. Though exposure to high-temperature stress was not greater at deeper sites, water motion, which may bolster bleaching resistance, was likely less. In situ loggers indicated temperatures over 30 °C initiated at shallow sites in mid-August, at deeper sites in early September, and were persistent at all sites until mid-October. Long term (1983–2007) climatologies constructed from AVHRR SSTs suggest that the mass bleaching event observed at Navassa in 2006 corresponded with greater intensity and duration of warm temperature anomalies than occurred in 2005, for which no in situ observations (bleaching nor temperature) are available.  相似文献   

7.
Knowledge of coral recruitment patterns helps us understand how reefs react following major disturbances and provides us with an early warning system for predicting future reef health problems. We have reconstructed and interpreted historical and modern-day recruitment patterns, using a combination of growth modelling and in situ recruitment experiments, in order to understand how hurricanes, storms and bleaching events have influenced coral recruitment on the Caribbean coastline of Tobago. Whilst Tobago does not lie within the main hurricane belt results indicate that regional hurricane events negatively impact coral recruitment patterns in the Southern Caribbean. In years following hurricanes, tropical storms and bleaching events, coral recruitment was reduced when compared to normal years (p = 0.016). Following Hurricane Ivan in 2004 and the 2005–2006 bleaching event, coral recruitment was markedly limited with only 2% (n = 6) of colonies estimated to have recruited during 2006 and 2007. Our experimental results indicate that despite multiple large-scale disturbances corals are still recruiting on Tobago’s marginal reef systems, albeit in low numbers.  相似文献   

8.
Top–down and bottom–up regulation in the form of grazing by herbivores and nutrient availability are important factors governing macroalgal communities in the coral reef ecosystem. Today, anthropogenic activities, such as over-harvesting of herbivorous fish and sea urchins and increased nutrient loading, are altering the interaction of these two structuring forces. The present study was conducted in Kenya and investigates the relative importance of herbivory and nutrient loading on macroalgal community dynamics, by looking at alterations in macroalgal functional groups, species diversity (H′) and biomass within experimental quadrats. The experiment was conducted in situ for 42 days during the dry season. Cages excluding large herbivorous fish and sea urchins were used in the study and nutrient addition was conducted using coated, slow-release fertilizer (nitrogen and phosphorous) at a site where herbivory is generally low and nutrient levels are relatively high for the region. Nutrient addition increased tissue nutrient content in the algae, and fertilized quadrats had 24% higher species diversity. Herbivore exclusion resulted in a 77% increase in algal biomass, mainly attributable to a >1000% increase in corticated forms. These results are in accordance with similar studies in other regions, but are unique in that they indicate that, even when prevailing nutrient levels are relatively high and herbivore pressure is relatively low, continued anthropogenic disturbance results in further ecological responses and increased reef degradation.  相似文献   

9.
Bioerosion is a natural process in coral reefs. It is fundamental to the health of these ecosystems. In the Eastern Tropical Pacific (ETP) coral reefs, the most important bioeroders are sponges, bivalves, sea urchins and the fish Arothron meleagris. In the 1980s, El Niño caused high coral mortality and an increase in macroalgal growth. As a result, greater sea urchin bioerosion occurred. This weakened the reef framework. Considering the high vulnerability of the ETP coral reefs, the goal of this study was to determine the current bioerosion impact of the sea urchin Diadema mexicanum along the western coasts of Mexico, El Salvador, Costa Rica and Panamá. The balance between coral bioaccretion and sea urchin bioerosion was also calculated. Between 2009 and 2010, in 12 coral reefs localities, D. mexicanum density, bottom cover and rugosity were quantified along band transects. The daily bioerosion rate was obtained from the amount of carbonates evacuated by sea urchins per unit time. The rate of coral accretion was calculated by multiplying the coral growth rate of the dominant genus by the density of their skeleton and by their specific coral cover. The localities were dissimilar (R = 0.765, P < 0.001) in terms of live coral cover, crustose calcareous algae, turf cover, rugosity index, and density and size of D. mexicanum. At all sites, with the exception of Bahía Culebra (Costa Rica), coral bioerosion was less than coral bioaccretion. Diadema mexicanum plays a dominant role in the balance of carbonates in the ETP, but this depends on reef condition (protection, overfishing, eutrophication) and so the impacts can be either positive or negative.  相似文献   

10.
Benthic structure of coral reefs determines the availability of refuges and food sources. Therefore, structural changes caused by natural and anthropogenic disturbances can have negative impacts on reef‐associated communities. During the 1990s, coral reefs from Bahía Culebra were considered among the most diverse ecosystems along the Pacific coast of Costa Rica; however, recently they have undergone severe deterioration as consequence of chronic stressors such as El Niño‐Southern Oscillation and harmful algal blooms. Reef fish populations in this area have also been intensely exploited. This study compared reef fish assemblages during two periods (1995–1996 and 2014–2016), to determine whether they have experienced changes as a result of natural and anthropogenic disturbances. For both periods, benthic composition and reef fish abundance were recorded using underwater visual censuses. Live coral cover (LCC) decreased from 43.09 ± 18.65% in 1995–1996 to 1.25 ± 2.42% in 2014–2016 (U = 36, p < 0.05). Macroalgal cover (%) in 2014–2016 was sixfold higher than mean values reported for the Eastern Tropical Pacific region. Mean (±SD) fish species richness in 1995–1996 (36.67 ± 14.20) was higher than in 2014–2016 (23.00 ± 9.14; U = 20, p < 0.05). Over 40% of reef fish orders observed in 1995–1996 were not detected in the 2014–2016 surveys, including large‐bodied predators. Reduction in abundance of fish predators such as sharks, grunts, and snappers is likely attributed to changes in habitat structure. Herbivorous such as parrotfishes and pufferfishes increased their abundance at sites with low LCC, probably in response to predators decline and increased algal cover. These findings revealed significant degradation and drastic loss of structural complexity in coral reefs from Bahía Culebra, which now are dominated by macroalgae. The large reduction in structural complexity of coral reefs has resulted in the loss of diversity and key ecological roles (e.g., predation and herbivory), thus potentially reducing the resilience of the entire ecosystem.  相似文献   

11.
Ihavandippolu, the northernmost atoll of the Maldives, experienced severe coral bleaching and mortality in 1998 followed by several bleaching episodes in the last decade. Coral cover in the 11 study sites surveyed in July–December of 2011 in the 3–5 m depth range varied from 1.7 to 51%. Reefs of the islands located in the center of Ihavandippolu lagoon have exhibited a very low coral recovery since 1998 and remain mostly degraded 12 years after the impact. At the same time, some reefs, especially in the inner part of the eastern ring of the atoll, demonstrate a high coral cover (>40%) with a dominance of branching Acropora that is known to be one of the coral genera that is most susceptible to thermal stress. The last severe bleaching event in 2010 resulted in high coral mortality in some sites of the atoll. Differences in coral mortality rates and proportion between “susceptible” and “resistant” taxa in study sites are apparently related to long-term adaptation and local hydrological features that can mitigate thermal impacts. Abundant herbivorous fish observed in the atoll prevent coral overgrowth by macroalgae even on degraded reefs. Despite the frequent influence of temperature anomalies and having less geomorphologic refuges for coral survivals than other larger Maldivian atolls, a major part of observed coral communities in Ihavandippolu Atoll exhibits high resilience and potential for further acclimatization to a changing environment.  相似文献   

12.
The sea anemones Calliactis conchicola Parry, 1952 and Paracalliactis rosea Hand, 1975, which live associated with gastropods, hermit crabs, and true crabs, possess mounting responses similar to those known for several species of Calliactis. In some areas of New Zealand Calliactis conchicola occurs most abundantly on living gastropods and in others on gastropod shells occupied by hermit crabs. No behaviour by either the gastropod or the hermit crabs was observed which explains this differential distribution. One hermit crab stimulates Paracalliactis rosea to mount its shell by a regular tapping of the anemone with its chelae or dactyls, but ignores Calliactis conchicola. Several other hermit crabs, which may be found carrying these anemones, do not stimulate them to mount. The spider crab Leptomithrax longipes may be found in nature carrying specimens of four kinds of anemones: Calliactis conchicola, Paracalliactis rosea, Bunodactis chrysobathys, and Phellia aucklandica. This crab prises these anemones from most substrates with its chelae, cleans them with its mouth parts, and places them on its legs and carapace with its chelae. From observation, Calliactis conchicola apparently protects this crab from octopus predatiori, but not from other predators such as small sharks. Though associations of anemones with hermit crabs and other invertebrates are usually considered to be commensal, it seems likely that these associations may be mutualistic.  相似文献   

13.
Studying the diversity‐ecosystem function relationship in the deep sea is of primary importance in the face of biodiversity loss and for our understanding of how the deep sea functions. Results from the first study of diversity‐ecosystem function relationships in the deep sea (Danovaro et al. 2008; Current Biology, 18, 1–8) are unexpected and show an exponential relationship between deep‐sea nematode diversity and ecosystem function and efficiency, although this relationship appears largely restricted to relatively low diversities [ES(51) <25]. Here, we investigate the relationship between nematode diversity and several independent measures/proxies of ecosystem function (sediment community oxygen consumption, bacterial biomass, bacterial extracellular enzyme activity) and efficiency (ratio of bacterial/nematode carbon to organic C content of the sediment) on the New Zealand continental slope. Nematode diversity at our study sites was relatively high [ES(51) = 30–42], and there was no relationship between species/functional diversity and ecosystem function/efficiency after accounting for the effects of water depth and food availability. Our results are consistent with a breakdown of the exponential diversity‐function relationship at high levels of diversity, which may be due to increased competition or greater functional redundancy. Future studies need to take into account as many environmental factors and as wide a range of diversities as possible to provide further insights into the diversity‐ecosystem function relationship in the largest ecosystem on Earth.  相似文献   

14.
Coral reefs throughout the world are under severe challenges from many environmental factors. This paper quantifies the size structure of populations and the growth rates of corals from 2000 to 2008 to test whether the Discovery Bay coral colonies showed resilience in the face of multiple acute stressors of hurricanes and bleaching. There was a reduction in numbers of colonies in the smallest size class for all the species at all the sites in 2006, after the mass bleaching of 2005, with subsequent increases for all species at all sites in 2007 and 2008. Radial growth rates (mm yr−1) of non-branching corals and linear extension rates (mm yr−1) of branching corals calculated on an annual basis from 2000–2008 showed few significant differences either spatially or temporally. At Dairy Bull reef, live coral cover increased from 13 ± 5% in 2006 to 20 ± 9% in 2007 and 31 ± 7% in 2008, while live Acropora species increased from 2 ± 2% in 2006 to 10 ± 4% in 2007 and 22 ± 7% in 2008. These studies indicate good levels of coral resilience on the fringing reefs around Discovery Bay in Jamaica.  相似文献   

15.
The parrotfish Sparisoma viride often grazes live coral from edges undermined by the Caribbean encrusting and excavating sponge Cliona tenuis. To test whether parrotfish biting action has an effect on the dynamics of the sponge–coral interaction, we manipulated access of parrotfishes to the sponge–coral border in two species of massive corals. When parrotfish had access to the border, C. tenuis advanced significantly more slowly into the coral Siderastrea siderea than into the coral Diploria strigosa. When fish bites were prevented, sponge spread into S. siderea was further slowed down but remained the same for D. strigosa. Additionally, a thinner layer of the outer coral skeleton was removed by bioerosion when fish were excluded, a condition more pronounced in D. strigosa than in S. siderea. Thus, the speed of sponge‐spread and the extent of bioerosion by parrotfish was coral species‐dependent. It is hypothesized that coral skeleton architecture is the main variable associated with such dependency. Cliona tenuis spread is slow when undermining live S. siderea owing to the coral’s compact skeleton. The coral’s smooth and hard surface promotes a wide and shallow parrotfish bite morphology, which allows the sponge to overgrow the denuded area and thus advance slightly faster. On the less compact skeleton of the brain coral, D. strigosa, sponge spread is more rapid. This coral’s rather uneven surface sustains narrower and deeper parrotfish bites which do not facilitate the already fast sponge progress. Parrotfish corallivory thus acts synergistically with C. tenuis to further harm corals whose skeletal architecture slows sponge lateral spread. In addition, C. tenuis also appears to mediate the predator–prey fish–coral interaction by attracting parrotfish biting.  相似文献   

16.
《Ocean & Coastal Management》2000,43(8-9):657-688
Coral reefs are among the most productive and diverse ecosystems on earth and provide a multitude of valuable ecosystem services. Moreover, the resources derived from coral reefs are essential to the food security of millions of people living within tropical coastal communities. Unfortunately, burgeoning human populations in coastal regions are placing an unsustainable burden on these resources such that degradation of coral reefs is common. In addition, during 1998, El Niño driven increases in sea temperature caused a mass bleaching event that further degraded many of the world's coral reefs. This article provides a brief review of the status of the world's coral reefs and highlights their value to society. Also, the anthropogenic and natural disturbances that threaten the future of coral reefs are discussed and finally, this article offers some potential remedies that promote sustainable use of coral reef resources thus ensuring their future survival.  相似文献   

17.
Excavating sponges often compete with reef‐building corals. To study sponge–coral interactions, we devised a design of hybrid cores that allows sponges and corals to be arranged side by side with similar size and shape, mimicking the situation of neighbouring organisms. Compared to earlier methods that attached sponge cores onto coral surfaces, hybrid cores provide an opportunity to study organism interactions under conditions more equal to the interacting partners. The use of hybrid cores was demonstrated for the excavating sponge Cliona orientalis and the massive coral Porites, which commonly interact on the Great Barrier Reef. Cliona orientalis and massive Porites were cut into half‐moon shaped explants and combined as hybrid cores under replicate conditions. After 90 days in an aquarium setting, positive growth of Cl. orientalis along with net bioerosion were observed in sponge control cores that combined Cl. orientalis with blank substrate. However, when Cl. orientalis and massive Porites were in contact in interaction cores, the sponge displayed negative growth and undetectable bioerosion, and was slightly overgrown by the coral. Cliona orientalis may have developed tissue extension beneath the living coral tissue, but growth and net calcification rates of massive Porites were apparently not affected by Cl. orientalis when comparing the interaction cores to coral control cores that combined massive Porites with blank substrate. Overall, the present work demonstrated that hybrid cores can be used to generate conditions suitable for studying sponge–coral interactions in the laboratory, which can also be applied in the field.  相似文献   

18.
张倩  闫昊  王路 《热带海洋学报》2021,40(6):111-119
海葵白化是由于海葵失去体内共生的虫黄藻和(或)共生的虫黄藻失去体内色素而导致海葵变白的生态现象。为探究鬼手海葵(Aiptasia pulchella)白化和白化恢复后相关的分子机制, 本研究对海葵进行慢性热胁迫处理, 以白化海葵和白化恢复后的海葵为研究对象, 采用2代IIlumina Hi-seq测序技术进行转录组测序, 探究两者在基因表达水平方面的差异变化, 分别获得50109686和43163786条Clean reads, 注释后获得24565和24157个Unigene。比较转录组分析结果显示, 白化海葵与白化恢复后的海葵之间存在214个差异表达基因, 其中白化海葵的高表达基因有101个, 白化恢复后海葵的高表达基因有113个, 这些差异表达基因主要与DNA复制、新陈代谢、离子转运和胶原蛋白有关。对不同处理所涉及的全部28050个表达基因进行基因集富集分析(gene set enrichment analysis, GSEA), 结果发现, 白化海葵在胶原蛋白和离子转运方面显著富集表达, 白化恢复后的海葵在核酸修复方面显著富集表达, 推测这些生物学过程在海葵白化和白化后修复过程中发挥重要作用。本研究获得的转录组数据和研究结果初步揭示了海葵共生体系在共生失衡后进行适应性调节的分子机制, 为海葵及珊瑚共生体系应对环境变化的适应性机制研究提供了理论依据。  相似文献   

19.
西沙群岛造礁石珊瑚主要疾病调查与初步研究   总被引:1,自引:1,他引:0  
记录了2010年5-10月及2011年4-8月在西沙群岛海域开展珊瑚疾病调查的结果,发现普哥滨珊瑚(Porites pukoensis)、扁枝滨珊瑚(Porites andrewsi)、蔷薇珊瑚(Montipora spp.)、杯形珊瑚(Pocillopora spp.)、鹿角珊瑚(Acropora spp.) 、菊花珊瑚(Goniastrea spp.)、澄黄滨珊瑚(Porites lutea)和滨珊瑚(Porites spp.)等共14种珊瑚主要出现了白化、白斑病、黑化、黄色炎症样病症、粉红颗粒状综合症等9种不同症状的疾病,目前该海域为珊瑚疾病的频发区。其中,普哥滨珊瑚的黄色炎症样病症和扁枝滨珊瑚的白化最为常见。普哥滨珊瑚黄色炎症样病症主要出现在永兴岛附近海区,患病部位存在大量黄色脓样分泌物,患病部位水螅体生长正常、萎缩或缺失,有时骨骼部分缺失,患病部位面积一般为0.02~12.00 cm2;该疾病由机械损伤或其他原因引起,因机械损伤引起的伤口一般在2~3个月可以恢复,其中小面积伤口的黄色物质可在10~20d内消失、伤口基本恢复正常,而其他原因产生的黄色物质需1~3个月才能消失,有的甚至在观察期内无明显变化。扁枝滨珊瑚的白化出现在七连屿一带的扁枝滨珊瑚分布区,该病存在整枝完全白化、局部大面积白化、散布白色斑点3种情况,白化部位水螅体缺失。本文为我国西沙海域珊瑚疾病的首次报道,可为今后开展西沙珊瑚疾病研究提供参考。  相似文献   

20.
Eastern Pacific reefs are mostly made up of interlocking coral branches of Pocillopora, which are easily broken by physical forces associated with heavy swells and winds. In this study we investigated the potential of these coral fragments to enable propagation of boring sponges. For this, we quantified the frequency of occurrence and diversity of boring sponges in fragments of corals recently trapped among the branches of live colonies, and later tested the hypothesis that these sponges colonize new branches of corals. Nearly 80% of the coral colonies investigated had coral fragments among their branches, and 69% of these coral fragments contained boring sponges (11 species), some of these sponges in reproduction (23% of them carried oocytes). To test whether sponges inhabiting coral fragments could colonize new branching corals we transplanted them to healthy branches, and to branches whose living tissue was mechanically eliminated to simulate damage produced by grazing and death after bleaching and other causes of coral tissue mortality. All the transplanted coral fragments cemented to each new colony by means of calcification, and of the three sponge species tested (Cliona vermifera, Cliona tropicalis and Thoosa mismalolli) only C. vermifera was able to colonize both new living branches (26.9%) and cleaned branches (65.5%). The apparent capability of C. vermifera to colonize by direct contact may be another key ability of this species to maintain high frequency of occurrence in Pacific coral reefs. However, although C. tropicalis and T. mismalolli were not able to colonize new coral substrata by direct contact, coral fragments have the potential to contribute to local persistence of these sponges and to their dispersal, both by asexual (fragments) and sexual means (transport of sexual products). The present findings may partly explain the current increase of excavating sponges on deteriorating reefs with a large availability of dead branching corals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号