首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Petrology of Martian meteorite Northwest Africa 998   总被引:1,自引:0,他引:1  
Abstract— Nakhlite Northwest Africa (NWA) 998 is an augite-rich cumulate igneous rock with mineral compositions and oxygen isotopic composition consistent with an origin on Mars. This 456-gram, partially fusion-crusted meteorite consists of (by volume) ∼75% augite (core composition Wo39En39Fs22), ∼9% olivine (Fo35), ∼7% plagioclase (Ab61An35) as anhedra among augite and olivine, ∼3.5% low-calcium pyroxenes (pigeonite and orthopyroxene) replacing or forming overgrowths on olivine and augite, ∼1% titanomagnetite, and other phases including potassium feldspar, apatite, pyrrhotite, chalcopyrite, ilmenite, and fine-grained mesostasis material. Minor secondary alteration materials include “iddingsite” associated with olivine (probably Martian), calcite crack fillings, and iron oxide/hydroxide staining (both probably terrestrial). Shock effects are limited to minor cataclasis and twinning in augite. In comparison to other nakhlites, NWA 998 contains more low-calcium pyroxenes and its plagioclase crystals are blockier. The large size of the intercumulus feldspars and the chemical homogeneity of the olivine imply relatively slow cooling and chemical equilibration in the late- and post-igneous history of this specimen, and mineral thermometers give subsolidus temperatures near 730 °C. Oxidation state was near that of the QFM buffer, from about QFM-2 in earliest crystallization to near QFM in late crystallization, and to about QFM + 1.5 in some magmatic inclusions. The replacement or overgrowth of olivine by pigeonite and orthopyroxene (with or without titanomagnetite), and the marginal replacement of augite by pigeonite, are interpreted to result from late-stage reactions with residual melts (consistent with experimental phase equilibrium relationships). Apatite is concentrated in planar zones separating apatite-free domains, which suggests that residual magma (rich in P and REE) was concentrated in planar (fracture?) zones and possibly migrated through them. Loss of late magma through these zones is consistent with the low bulk REE content of NWA 998 compared with the calculated REE content of its parent magma.  相似文献   

2.
The Northwest Africa (NWA) 7475 meteorite is one of the several stones of paired regolith breccias from Mars based on petrography, oxygen isotope, mineral compositions, and bulk rock compositions. Its inventory of lithic clasts is dominated by vitrophyre impact melts that were emplaced while they were still molten. Other clast types include crystallized impact melt rocks, evolved plutonic rocks, possible basalts, contact metamorphosed rocks, and siltstones. Impact spherules and vitrophyre shards record airborne transport, and accreted dust rims were sintered on most clasts, presumably during residence in an ejecta plume. The clast assemblage records at least three impact events, one that formed an impact melt sheet on Mars ≤4.4 Ga ago, a second that assembled NWA 7475 from impactites associated with the impact melt sheet at 1.7–1.4 Ga, and a third that launched NWA 7475 from Mars ~5 Ma ago. Mildly shocked pyroxene and plagioclase constrain shock metamorphic conditions during launch to >5 and <15 GPa. The mild postshock‐heating that resulted from these shock pressures would have been insufficient to sterilize this water‐bearing lithology during launch. Magnetite, maghemite, and pyrite are likely products of secondary alteration on Mars. Textural relationships suggest that calcium‐carbonate and goethite are probably of terrestrial origin, yet trace element chemistry indicates relatively low terrestrial alteration. Comparison of Mars Odyssey gamma‐ray spectrometer data with the Fe and Th abundances of NWA 7475 points to a provenance in the ancient southern highlands of Mars. Gratteri crater, with an age of ~5 Ma and an apparent diameter of 6.9 km, marks one possible launch site of NWA 7475.  相似文献   

3.
Abstract— We report noble gas data for the second chassignite, Northwest Africa (NWA) 2737, which was recently found in the Moroccan desert. The cosmic ray exposure (CRE) age based on cosmogenic 3He, 21Ne, and 38Ar around 10–11 Ma is comparable to the CRE ages of Chassigny and the nakhlites and indicates ejection of meteorites belonging to these two families during a discrete event, or a suite of discrete events having occurred in a restricted interval of time. In contrast, U‐Th/He and K/Ar ages <0.5 Ga are in the range of radiometric ages of shergottites, despite a Sm‐Nd signature comparable to that of Chassigny and the nakhlites (Misawa et al. 2005). Overall, the noble gas signature of NWA 2737 resembles that of shergottites rather than that of Chassigny and the nakhlites: NWA 2737 does not contain, in detectable amount, the solar‐like xenon found in Chassigny and thought to characterize the Martian mantle nor apparently fission xenon from 244Pu, which is abundant in Chassigny and some of the nakhlites. In contrast, NWA 2737 contains Martian atmospheric noble gases trapped in amounts comparable to those found in shergottite impact glasses. The loss of Martian mantle noble gases, together with the trapping of Martian atmospheric gases, could have occurred during assimilation of Martian surface components, or more likely during shock metamorphism, which is recorded in the petrology of this meteorite.  相似文献   

4.
Abstract— Transmission electron microscopy was used to examine pyroxene microstructure in the Northwest Africa (NWA) 856 martian meteorite to construct its cooling and shock histories. All pyroxenes contain strained coherent pigeonite/augite exsolution lamellae on (001). The average width and periodicity of lamellae are 80 and 400 nm, respectively, indicating a cooling rate below 0.1 °C/hr for the parent rock. Pigeonite and augite are topotactic, with strained coherent interfaces parallel to (001). The closure temperature for Ca‐Fe, Mg interdiffusion, estimated from the composition at the augite pigeonite interface, is about 700 °C. Tweed texture in augite reveals that a spinodal decomposition occurred. Locally, tweed evolved toward secondary pigeonite exsolutions on (001). Due to the decreasing diffusion rate with decreasing temperature, “M‐shaped” concentration profiles developed in augite lamellae. Pigeonite contains antiphase boundaries resulting from the C2/c to P21/c space group transition that occurred during cooling. The reconstructive phase transition from P21/c clinopyroxene to orthopyroxene did not occur. The deformation (shock) history of the meteorites is revealed by the presence of dislocations and mechanical twins. Dislocations are found in glide configuration, with the [001](100) glide system preferentially activated. They exhibit strong interaction with the strained augite/pigeonite interfaces and did not propagate over large distances. Twins are found to be almost all parallel to (100) and show moderate interaction with the augite/pigeonite interfaces. These twins are responsible for the plastic deformation of the pyroxene grains. Comparison with microstructure of shocked clinopyroxene (experimentally or naturally shocked) suggests that NWA 856 pyroxenes are not strongly shocked.  相似文献   

5.
Abstract— Rare earth element (REE) and other selected trace and minor element concentrations were measured in individual grains of orthopyroxene, feldspathic glass (of plagioclase composition) and merrillite of the ALH 84001 Martian meteorite. Unlike in other Martian meteorites, phosphate is not the main REE carrier in ALH 84001. The REE pattern of ALH 84001 bulk rock is dependent on the modal abundances of three REE-bearing phases, namely, orthopyroxene, which contains most of the heavy rare earth elements (HREEs); feldspathic glass, which dominates the Eu abundances; and merrillite, which contains the majority of the light rare earth elements (LREEs). Variations in the REE abundances previously observed in different splits of ALH 84001 can easily be explained in terms of small variations in the modal abundances of these three minerals without the need to invoke extensive redistribution of LREEs. At least some orthopyroxenes (i.e., those away from contacts with feldspathic glass) in ALH 84001 appear to have preserved their original REE zonation from igneous fractionation. An estimate of the ALH 84001 parent magma composition from that of the unaltered orthopyroxene “core” (i.e., zoned orthopyroxene with the lowest REE abundances) indicates that it is LREE depleted. This implies that the Martian mantle was already partly depleted within ~100 Ma of solar system formation, which is consistent with rapid accretion and differentiation of Mars. Although equilibration and exchange of REEs between phases (in particular, transport of LREEs into the interstitial phases, feldspathic glass and merrillite) cannot be ruled out, our data suggest that the LREE enrichment in melts “in equilibrium” with these interstitial phases is most likely the result of late-stage infiltration of the cumulate pile by a LREE-enriched melt.  相似文献   

6.
Northwest Africa 7533, a polymict Martian breccia, consists of fine‐grained clast‐laden melt particles and microcrystalline matrix. While both melt and matrix contain medium‐grained noritic‐monzonitic material and crystal clasts, the matrix also contains lithic clasts with zoned pigeonite and augite plus two feldspars, microbasaltic clasts, vitrophyric and microcrystalline spherules, and shards. The clast‐laden melt rocks contain clump‐like aggregates of orthopyroxene surrounded by aureoles of plagioclase. Some shards of vesicular melt rocks resemble the pyroxene‐plagioclase clump‐aureole structures. Submicron size matrix grains show some triple junctions, but most are irregular with high intergranular porosity. The noritic‐monzonitic rocks contain exsolved pyroxenes and perthitic intergrowths, and cooled more slowly than rocks with zoned‐pyroxene or fine grain size. Noritic material contains orthopyroxene or inverted pigeonite, augite, calcic to intermediate plagioclase, and chromite to Cr‐bearing magnetite; monzonitic clasts contain augite, sodic plagioclase, K feldspar, Ti‐bearing magnetite, ilmenite, chlorapatite, and zircon. These feldspathic rocks show similarities to some rocks at Gale Crater like Black Trout, Mara, and Jake M. The most magnesian orthopyroxene clasts are close to ALH 84001 orthopyroxene in composition. All these materials are enriched in siderophile elements, indicating impact melting and incorporation of a projectile component, except for Ni‐poor pyroxene clasts which are from pristine rocks. Clast‐laden melt rocks, spherules, shards, and siderophile element contents indicate formation of NWA 7533 as a regolith breccia. The zircons, mainly derived from monzonitic (melt) rocks, crystallized at 4.43 ± 0.03 Ga (Humayun et al. 2013 ) and a 147Sm‐143Nd isochron for NWA 7034 yielding 4.42 ± 0.07 Ga (Nyquist et al. 2016 ) defines the crystallization age of all its igneous portions. The zircon from the monzonitic rocks has a higher Δ17O than other Martian meteorites explained in part by assimilation of regolith materials enriched during surface alteration (Nemchin et al. 2014 ). This record of protolith interaction with atmosphere‐hydrosphere during regolith formation before melting demonstrates a thin atmosphere, a wet early surface environment on Mars, and an evolved crust likely to have contaminated younger extrusive rocks. The latest events recorded when the breccia was on Mars are resetting of apatite, much feldspar and some zircons at 1.35–1.4 Ga (Bellucci et al. 2015 ), and formation of Ni‐bearing pyrite veins during or shortly after this disturbance (Lorand et al. 2015 ).  相似文献   

7.
Abstract Shock recovery experiments to determine whether magnetite could be produced by the decomposition of iron‐carbonate were initiated. Naturally occurring siderite was first characterized by a variety of techniques to be sure that the starting material did not contain detectable magnetite. Samples were shocked in tungsten‐alloy holders (W = 90%, Ni = 6%, Cu = 4%) to further ensure that any iron phases in the shock products were contributed by the siderite rather than the sample holder. Each sample was shocked to a specific pressure between 30 to 49 GPa. Transformation of siderite to magnetite as characterized by TEM was found in the 49 GPa shock experiment. Compositions of most magnetites are >50% Fe+2 in the octahedral site of the inverse spinel structure. Magnetites produced in shock experiments display the same range of sizes (?50–100 nm), compositions (100% magnetite to 80% magnetite‐20% magnesioferrite), and morphologies (equant, elongated, euhedral to subhedral) as magnetites synthesized by Golden et al. (2001) and as the magnetites in Martian meteorite Allan Hills (ALH) 84001. Fritz et al. (2005) previously concluded that ALH 84001 experienced ?32 GPa pressure and a resultant thermal pulse of ?100–110°C. However, ALH 84001 contains evidence of local temperature excursions high enough to melt feldspar, pyroxene, and a silica‐rich phase. This 49 GPa experiment demonstrates that magnetite can be produced by the shock decomposition of siderite as a result of local heating to > 470°C. Therefore, magnetite in the rims of carbonates in Martian meteorite ALH 84001 could be a product of shock devolatilization of siderite as well.  相似文献   

8.
Lunar meteorite Northwest Africa (NWA) 5744 is a granulitic breccia with an anorthositic troctolite composition that may represent a distinct crustal lithology not previously described. This meteorite is the namesake and first‐discovered stone of its pairing group. Bulk rock major element abundances show the greatest affinity to Mg‐suite rocks, yet trace element abundances are more consistent with those of ferroan anorthosites. The relatively low abundances of incompatible trace elements (including K, P, Th, U, and rare earth elements) in NWA 5744 could indicate derivation from a highlands crustal lithology or mixture of lithologies that are distinct from the Procellarum KREEP terrane on the lunar nearside. Impact‐related thermal and shock metamorphism of NWA 5744 was intense enough to recrystallize mafic minerals in the matrix, but not intense enough to chemically equilibrate the constituent minerals. Thus, we infer that NWA 5744 was likely metamorphosed near the lunar surface, either as a lithic component within an impact melt sheet or from impact‐induced shock.  相似文献   

9.
Abstract— In order to use igneous surface lithologies to constrain Martian mantle characteristics, secondary processes that lead to compositional modification of primary mantle melts must be considered. Crystal fractionation of a mantle‐derived magma at the base of the crust followed by separation and ascent of residual liquids to the surface is common in continental hotspot regions on Earth. The possibility that this process also takes place on Mars was investigated by experimentally determining whether a surface rock, specifically the hawaiite Backstay analyzed by the MER Spirit could produce a known cumulate lithology with a deep origin (namely the assemblages of the Chassigny meteorite) if trapped at the base of the Martian crust. Both the major cumulus and melt inclusion mineral assemblages of the Chassigny meteorite were produced experimentally by a liquid of Backstay composition within the pressure range 9.3 to 6.8 kbar with bulk water contents between 1.5 and 2.6 wt%. Experiments at 4.3 and 2.8 kbar did not produce the requisite assemblages. This agreement suggests that just as on Earth, Martian mantle‐derived melts may rise to the surface or remain trapped at the base of the crust, fractionate, and lose their residual liquids. Efficient removal of these residual liquids at depth would yield a deep low‐silica cumulate layer for higher magmatic water content; at lower magmatic water content this cumulate layer would be basaltic with shergottitic affinity.  相似文献   

10.
Northwest Africa (NWA) 5790 is the most recently discovered member of the nakhlite group. Its mineralogy differs from the other nakhlites with a high abundance mesostasis (38.1 ± 3.6 vol%) and scarcity of olivine (4.0 ± 2.2 vol%). Furthermore, zoning of augite phenocrysts, and other petrographic and chemical characteristics suggest that NWA 5790 samples the chilled margin of its parent lava flow/sill. NWA 5790 contains calcite and rare clay minerals that are evidence for its exposure to liquid water. The calcite forms a cement to coatings of dust on the outer surface of the find and extends into the interior of the meteorite within veins. The presence of microbial remains within the coating confirms that the dust and its carbonate cement are terrestrial in origin, consistent with the carbon and oxygen isotope composition of the calcite. The clay minerals are finely crystalline and comprise ~0.003 vol% of the meteorite. δD values of the clay minerals range from ?212 ± 109‰ to ?96 ± 132‰, and cannot be used to distinguish between a terrestrial or Martian origin. As petrographic results are also not definitive, we conclude that secondary minerals produced by Martian groundwaters are at best very rare within NWA 5790. The meteorite has therefore sampled a region of the lava flow/sill with little or no exposure to the aqueous solutions that altered other nakhlites. This isolation could relate to the scarcity of olivine in NWA 5790 because dissolution of olivine in other nakhlites by Martian groundwaters enhanced their porosity and permeability, and provided solutes for secondary minerals.  相似文献   

11.
The bulk matrix domain of the Martian breccia NWA 7034 was examined petrographically and isotopically to better understand the provenance and age of the source material that make up the breccia. Both 147Sm‐143Nd and 146Sm‐142Nd age results for mineral separates from the bulk matrix portion of breccia NWA 7034 suggest that various lithological components in the breccia probably formed contemporaneously ~4.44 Ga ago. This old age is in excellent agreement with the upper intersection ages (4.35–4.45 Ga) for U‐Pb discordia and also concordia defined by zircon and baddeleyite grains in matrix and igneous‐textured clasts. Consequently, we confirm an ancient age for the igneous components that make up the NWA 7034 breccia. Substantial disturbance in the Rb‐Sr system was detected, and no age significance could be gleaned from our Rb‐Sr data. The disturbance to the Rb‐Sr system may be due to a thermal event recorded by bulk‐rock K‐Ar ages of 1.56 Ga and U‐Pb ages of phosphates at about 1.35–1.5 Ga, which suggest partial resetting from an unknown thermal event(s), possibly accompanying breccia formation. The NWA 7034 bulk rock is LREE enriched and similar to KREEP‐rich lunar rocks, which indicates that the earliest Martian crust was geochemically enriched. This enrichment supports the idea that the crust is one of the enriched geochemical reservoirs on Mars that have been detected in studies of other Martian meteorites.  相似文献   

12.
Abstract— Silica‐rich late‐stage crystallization pockets in the Martian meteorite Northwest Africa (NWA) 856 were investigated by transmission electron microscopy (TEM). The pockets occur as wedges between maskelynite laths or between maskelynite and pyroxene. They consist of elongated grains of cristobalite and quartz embedded in a silica‐rich glass. Interstitial to the amorphous phase and silica minerals, a number of small accessory minerals have been identified, typical for late‐stage crystallization products. They are ilmenite, tranquillityite, fayalite, troilite, baddeleyite, apatite, and chloroapatite. Cristobalite and quartz are shocked, as revealed by the occurrence of numerous amorphous lamellae. This assemblage suggests metastable dendritic crystallization under hydrous conditions. Cristobalite crystallization was probably facilitated by the presence of impurities such as Na or H2O. Our observations show that silica minerals can be formed under magmatic conditions on Mars.  相似文献   

13.
The composition of the silicate portion of Martian regolith fines indicates derivation of the fines from mafic to ultramafic igneous rocks, probably rich in pyroxene. Rock types similar in chemical and mineralogical composition include terrestrial Archean basalts and certain achondrite meteorites. If these igneous rocks weathered nearly isochemically, the nontronitic clays proposed earlier as an analog to Martian fines could be formed. Flood basalts of pyroxenitic lavas may be widespread and characteristic of early volcanism on Mars, analogous to maria flood basalts on the Moon and early Precambrian basaltic komatiites on Earth. Compositional differences between lunar, terrestrial, and Martian flood basalts may be related to differences in planetary sizes and mantle compositions of the respective planetary objects.  相似文献   

14.
This study presents the petrography, mineralogy, and bulk composition of lunar regolith breccia meteorite Northwest Africa (NWA) 7948. We identify a range of lunar lithologies including basaltic clasts (very low-titanium and low-titanium basalts), feldspathic lithologies (ferroan anorthosite, magnesian-suite rock, and alkali suite), granulites, impact melt breccias (including crystalline impact melt breccias, clast-bearing impact melt breccias, and glassy melt breccias), as well as regolith components (volcanic glass and impact glass). A compositionally unusual metal-rich clast was also identified, which may represent an impact melt lithology sourced from a unique Mg-suite parent rock. NWA 7948 has a mingled bulk rock composition (Al2O3 = 21.6 wt% and FeO = 9.4 wt%) and relatively low concentrations of incompatible trace elements (e.g., Th = 1.07 ppm and Sm = 2.99 ppm) compared with Apollo regolith breccias. Comparing the bulk composition of the meteorite with remotely sensed geochemical data sets suggests that the sample was derived from a region of the lunar surface distal from the nearside Th-rich Procellarum KREEP Terrane. Our investigations suggest that it may have been ejected from a nearside highlands-mare boundary (e.g., around Mare Crisium or Orientale) or a cryptomare region (e.g., Schickard-Schiller or Mare smythii) or a farside highlands-mare boundary (e.g., Mare Australe, Apollo basin in the South Pole–Aitken basin). The distinctive mineralogical and geochemical features of NWA 7948 suggest that the meteorite may represent lunar material that has not been reported before, and indicate that the lunar highlands exhibit wide geological diversity.  相似文献   

15.
Abstract— Martian meteorites (MMs) have been launched from an estimated 5–9 sites on Mars within the last 20 Myr. Some 80–89% of these launch sites sampled igneous rock formations from only the last 29% of Martian time. We hypothesize that this imbalance arises not merely from poor statistics, but because the launch processes are dominated by two main phenomena: first, much of the older Martian surface is inefficient in launching rocks during impacts, and second, the volumetrically enormous reservoir of original cumulate crust enhances launch probability for 4.5 Gyr old rocks. There are four lines of evidence for the first point, not all of equal strength. First, impact theory implies that MM launch is favored by surface exposures of near‐surface coherent rock (≤102 m deep), whereas Noachian surfaces generally should have ≥102 m of loose or weakly cemented regolith with high ice content, reducing efficiency of rock launch. Second, similarly, both Mars Exploration Rovers found sedimentary strata, 1–2 orders of magnitude weaker than Martian igneous rocks, favoring low launch efficiency among some fluvial‐derived Hesperian and Noachian rocks. Even if launched, such rocks may be unrecognized as meteorites on Earth. Third, statistics of MM formation age versus cosmic‐ray exposure (CRE) age weakly suggest that older surfaces may need larger, deeper craters to launch rocks. Fourth, in direct confirmation, one of us (N. G. B.) has found that older surfaces need larger craters to produce secondary impact crater fields (cf. Barlow and Block 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with prominent fields of secondaries have diameters of ?45 km, ?19 km, and ?10 km, respectively. Because 40% of Mars is Noachian, and 74% is either Noachian or Hesperian, the subsurface geologic characteristics of the older areas probably affect statistics of recognized MMs and production rates of secondary crater populations, and the MM and secondary crater statistics may give us clues to those properties.  相似文献   

16.
Abstract– Northwest Africa (NWA) 2977 is an olivine‐gabbro lunar meteorite that has a distinctly different petrographic texture from other lunar basalts. We studied this rock with a series of in situ analytical methods. NWA 2977 consists mainly of olivine and pyroxene with minor plagioclase. It shows evidence of intense shock metamorphism, locally as high as shock‐stage S6. Olivine adjacent to a melt vein has been partially transformed into ringwoodite and Al,Ti‐rich chromite grains have partially transformed into their high‐pressure polymorph (possibly CaTi2O4‐structure). Olivine in NWA 2977 contains two types of lithic inclusions. One type is present as Si,Al‐rich melt inclusions that are composed of glass and, in most cases, dendritic pyroxene. The other type is mafic and composed of relatively coarse‐grained augite with accessory chromite, RE‐merrillite, and baddeleyite. Two Si,Al‐rich melt inclusions are heavy rare earth elements (REE) enriched, whereas the mafic inclusion has high REE concentrations and a KREEP‐like pattern. The mafic inclusion could be a relict fragment captured during the ascent of the parent magma of NWA 2977, whereas the Si,Al‐rich inclusions may represent the original NWA 2977 melt. The calculated whole‐rock composition has a KREEP‐like REE pattern, suggesting that NWA 2977 has an affinity to KREEP rocks. Baddeleyite has recorded a young crystallization age of 3123 ± 7 Ma (2σ), which is consistent with results from previous whole‐rock and mineral Sm‐Nd and Rb‐Sr studies. The petrography, mineralogy, trace element geochemistry, and young crystallization age of NWA 2977 support the possibility of pairing between NWA 2977 and the olivine‐gabbro portion of NWA 773.  相似文献   

17.
The Northwest Africa (NWA) 2996 meteorite is a lunar regolith breccia with a “mingled” bulk composition and slightly elevated incompatible element content. NWA 2996 is dominated by clasts of coarse‐grained noritic and troctolitic anorthosite containing calcic plagioclase (An#~98) and magnesian mafic minerals (Mg#~75), distinguishing it from Apollo ferroan anorthosites and magnesian‐suite rocks. This meteorite lacks basalt, and owes its mingled composition to a significant proportion of coarse‐grained mafic clasts. One group of mafic clasts has pyroxenes similar to anorthosites, but contains more sodic plagioclase (An#~94) distinguishing it as a separate lithology. Another group contains Mg‐rich, very low‐titanium pyroxenes, and could represent an intrusion parental to regional basalts. Other clasts include granophyric K‐feldspar, disaggregated phosphate‐bearing quartz monzodiorites, and alkali‐suite fragments (An#~65). These evolved lithics are a minor component, but contain minerals rich in incompatible elements. Several anorthosite clasts contain clusters of apatite, suggesting that the anorthosites either assimilated evolved rocks or were metasomatized by a liquid rich in incompatible elements. We used Lunar Prospector gamma‐ray spectrometer remote sensing data to show that NWA 2996 is most similar to regoliths in and around the South Pole Aitken (SPA) basin, peripheral regions of eastern mare, Nectaris, Crisium, and southern areas of Mare Humorum. However, the mineralogy of NWA 2996 is distinctive compared with Apollo and Luna mission samples, and is likely consistent with an origin near the SPA basin: anorthosite clasts could represent local crustal material, mafic clasts could represent intrusions beneath basalt flows, and apatite‐bearing rocks could carry the SPA KREEP signature.  相似文献   

18.
Anorthite is an important constituent mineral in basaltic achondrites from small celestial bodies. Its high‐pressure phase transformation in shocked meteorites has not been systematically studied. In this study, we report the diverse phase transformation behaviors of anorthite in a shocked eucrite Northwest Africa (NWA) 2650, which also contains coesite, stishovite, vacancy‐rich clinopyroxene, super‐silicic garnet, and reidite. Anorthite in NWA 2650 has transformed into anorthite glass (anorthite glassy vein, maskelynite, and glass with a schlieren texture and vesicles), tissintite and dissociated into three‐phase assemblage grossular + kyanite + silica glass. Different occurrences of anorthite glass might have formed via the mechanism involving shear melting, solid‐state transformation, and postshock thermally melting, respectively. Tissintite could have crystallized from a high‐pressure plagioclase melt. The nucleation of tissintite might be facilitated by relict pyroxene fragments and the early formed vacancy‐rich clinopyroxene. The three‐phase assemblage grossular, kyanite, and silica glass should have formed from anorthitic melt at high‐pressure and high‐temperature conditions. The presence of maskelynite and reidite probably suggests a minimum peak shock pressure up to 20 GPa, while the other high‐pressure phases indicate that the shock pressure during the crystallization of shock melt veins might vary from >8 GPa to >2 GPa with a heterogeneous temperature distribution.  相似文献   

19.
Northwest Africa (NWA) 7755 is a newly found enriched lherzolitic shergottite. Here, we report its detailed petrography and mineralogy. NWA 7755 contains both poikilitic and non‐poikilitic lithologies. Olivine has different compositional ranges in the poikilitic and non‐poikilitic lithologies, Fa30–39 and Fa37–40, respectively. Pyroxene in the non‐poikilitic lithology is systematically Fe‐richer than that in the poikilitic lithology. The chromite grains in non‐poikilitic lithology are highly Ti‐richer than those in the poikilitic lithology. The chemical variations of olivine, pyroxene, and chromite between the poikilitic and non‐poikilitic lithologies support a two‐stage formation model of lherzolitic shergottites. Besides planar fractures and strong mosaicism in olivine and pyroxene, shock‐induced melt veins and pockets are observed in NWA 7755. Olivine grains within and adjacent to melt veins and/or pockets have either transformed to ringwoodite, amorphous phase, or dissociated to bridgmanite plus magnesiowüstite. Merrillite in melt veins has completely transformed to tuite; however, apatite only has partially transformed to tuite, indicating a relatively sluggish transformation rate. The partial transformation from apatite to tuite resulted in fractional devolatilization of Cl and F in apatite. The fine‐grained mineral assemblage in melt veins consists mainly of bridgmanite, minor magnesiowüstite, Fe‐sulfide, Fe‐phosphide, and Ca‐phosphate minerals. The coexistence of bridgmanite and magnesiowüstite in these veins indicates a shock pressure of >~24 GPa and a temperature of 1800–2000 °C. Coesite and seifertite are probably present in NWA 7755. The presence of these high‐pressure minerals indicates that NWA 7755 has experienced a more intense shock metamorphism than other enriched lherzolitic shergottites.  相似文献   

20.
The study of lunar magma evolution holds significant importance within the scientific community due to its relevance in understanding the Moon's thermal and geological history. However, the intricate task of unraveling the history of early volcanic activity on the Moon is hindered by the high flux of impactors, which have substantially changed the morphology of pristine volcanic constructs. In this study, we focus on a unique volcanic glass found in the lunar meteorite Northwest Africa 11801. This kind of volcanic glass is bead-like in shape and compositionally similar to the Apollo-14 and Apollo-17 very low-Ti glass. Our research approach involves conducting a comprehensive analysis of the petrology and mineralogy of the volcanic glass, coupled with multiple thermodynamic modeling techniques. Through the investigation, we aim to shed light on the petrological characteristics and evolutionary history of the glass. The results indicate that the primitive magma of the glass was created at 1398–1436°C and 8.3–11.9 kbar (166–238 km) from an olivine+orthopyroxene mantle source region. Then, the magma ascended toward the surface along a non-adiabatic path with an ascent rate of ~40 m s−1 or 0.2 MPa s−1. During the magma ascent, only olivine crystallized and the onset of magma eruption occurred at ~1320–1343°C. Finally, the glass cooled rapidly on the lunar surface with a cooling rate ranging between 20 and 200 K min−1. Considerable evidence from petrology, mineralogy, cooling rate, and the eruption rate of the glass beads strongly supports the occurrence of ancient explosive volcanism on the Moon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号