首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract– As part of the MEMIN research program this project is focused on shock deformation experimentally generated in dry, porous Seeberger sandstone in the low shock pressure range from 5 to 12.5 GPa. Special attention is paid to the influence of porosity on progressive shock metamorphism. Shock recovery experiments were carried out with a high‐explosive set‐up that generates a planar shock wave, and using the shock impedance method. Cylinders of sandstone of average grain size of 0.17 mm and porosity of about 19 vol%, and containing some 96 wt% SiO2, were shock deformed. Shock effects induced with increasing shock pressure include: (1) Already at 5 GPa the entire pore space is closed; quartz grains show undulatory extinction. On average, 134 fractures per mm are observed. Dark vesicular melt (glass) of the composition of the montmorillonitic phyllosilicate component of this sandstone occurs at an average amount of 1.6 vol%. (2) At 7.5 GPa, quartz grains show weak but prominent mosaicism and the number of fractures increases to 171 per millimeter. Two additional kinds of melt, both based on phyllosilicate precursor, could be observed: a light colored, vesicular melt and a melt containing large iron particles. The total amount of melt (all types) increased in this experiment to 2.4 vol%. Raman spectroscopy confirmed the presence of shock‐deformed quartz grains near the surface. (3) At 10 and 12.5 GPa, quartz grains also show weak but prominent mosaicism, the number of fractures per mm has reached a plateau value of approximately 200, and the total amount of the different melt types has increased to 4.8 vol%. Diaplectic quartz glass could be observed locally near the impacted surface. In addition, local shock effects, most likely caused by multiple shock wave reflections at sandstone‐container interfaces, occur throughout the sample cylinders and include locally enhanced formation of PDF, as well as shear zones associated with cataclastic microbreccia, diaplectic quartz glass, and SiO2 melt. Overall findings from these first experiments have demonstrated that characteristic shock effects diagnostic for the confirmation of impact structures and suitable for shock pressure calibration are rare. So far, they are restricted to the limited formation of PDF and diaplectic quartz glass at shock pressures of 10 GPa and above.  相似文献   

2.
Abstract— Impact‐metamorphosed CaCO3‐bearing sandstones at the Haughton structure have been divided into 6 classes, based to a large extent on a previous classification developed for sandstones at Meteor Crater. Class 1a sandstones (<3 GPa) display crude shatter cones, but no other petrographic indications of shock. At pressures of 3 to 5.5 GPa (class 1b), porosity is destroyed and well‐developed shatter cones occur. Class 2 rocks display planar deformation features (PDFs) and are characterized by a “jigsaw” texture produced by rotation and shear at quartz grain boundaries. Calcite shows an increase in the density of mechanical twins and undergoes micro‐brecciation in class 1 and 2 sandstones. Class 3 samples display multiple sets of PDFs and widespread development of diaplectic glass, toasted quartz, and symplectic intergrowths of quartz, diaplectic glass, and coesite. Textural evidence, such as the intermingling of silicate glasses and calcite and the presence of flow textures, indicates that calcite in class 3 sandstones has undergone melting. This constrains the onset of melting of calcite in the Haughton sandstones to > 10 < 20 GPa. At higher pressures, the original texture of the sandstone is lost, which is associated with major development of vesicular SiO2 glass or lechatelierite. Class 5 rocks (>30 GPa) consist almost entirely of lechatelierite. A new class of shocked sandstones (class 6) consists of SiO2‐rich melt that recrystallized to microcrystalline quartz. Calcite within class 4 to 6 sandstones also underwent melting and is preserved as globules and euhedral crystals within SiO2 phases, demonstrating the importance of impact melting, and not decomposition, in these CaCO3‐bearing sandstones.  相似文献   

3.
The infrared behavior of experimentally shock-loaded quartz was studied in the wavenumber region 1400 to 100 cm?1. In agreement with results of X-ray investigations reported in an earlier paper, the infrared studies indicate that solid-state (diaplectic or thetomorphic) SiO2-glass is formed upon release from shock pressures of about > 14.0 GPa; complete transformation occurs upon release from about 30.0 GPa. The structure of the solid-state glass must be quite different from that of fused SiO2. While fused silica is supposed to consist of small “crystallites,” or of a network of SiO4-tetrahedra groups of tridymite-like short-range order, the positions of the infrared absorption bands of the shock-produced solid-state quartz glass lie practically at the same wave numbers as crystalline quartz. We conclude that diaplectic quartz glass consists structurally of extremely small quartz-like “crystallites.” These crystallites are mutually linked in a disordered but structurally more open manner as in α-quartz. The formation of short-range ordered quartz-type solid-state SiO2 glass is explained by the decomposition of a sixfold coordinated stishovite-like high pressure phase upon pressure release at the relatively low shock temperatures (≤ 300°C at 30.0 GPa). The extremely short duration of the shock process may prevent the growth of the “quartz nuclei” to long-range ordered crystallites.  相似文献   

4.
Shock-induced recovery experiments were performed to investigate melt formation in porous sandstones in the low shock pressure regime between 2.5 and 17.5 GPa. The sandstone shocked at 2.5 and 5 GPa is characterized by pore closure, fracturing of quartz (Qtz), and compression and deformation of phyllosilicates; no melting was observed. At higher pressures, five different types of melts were generated around pores and alongside fractures in the sandstone. Melting of kaolinite (Kln), illite (Ill), and muscovite (Ms) starts at 7.5, 12, and 15 GPa, respectively. The larger the amount of water in these minerals (Kln ~14 wt%, Ill ~6–10 wt%, and Ms ~4 wt% H2O), the higher the shock compressibility and the lower the shock pressure required to induce melting. Vesicles in the almost dry silicate glasses attest to the loss of structural water during the short shock duration of the experiment. The compositions of the phyllosilicate-based glasses are identical to the composition of the parental minerals or their mixtures. Thus, this study has demonstrated that phyllosilicates in shocked sandstone undergo congruent melting during shock loading. In experiments at 10 GPa and higher, iron melt from the driver plate was injected into the phyllosilicate melts. During this process, Fe is partitioned from the metal droplets into the surrounding silicate melts, which induced unmixing of silicate melts with different chemical properties (liquid immiscibility). At pressures between 7.5 and 15 GPa, a pure SiO2 glass was formed, which is located as short and thin bands within Qtz grains. These bands were shown to contain tiny crystals of experimentally generated stishovite.  相似文献   

5.
Abstract— We report a previously undocumented set of high‐pressure minerals in shock‐induced melt veins of the Umbarger L6 chondrite. High‐pressure minerals were identified with transmission electron microscopy (TEM) using selected area electron diffraction and energy‐dispersive X‐ray spectroscopy. Ringwoodite (Fa30), akimotoite (En11Fs89), and augite (En42Wo33Fs25) were found in the silicate matrix of the melt vein, representing the crystallization from a silicate melt during the shock pulse. Ringwoodite (Fa27) and hollandite‐structured plagioclase were also found as polycrystalline aggregates in the melt vein, representing solid state transformation or melting with subsequent crystallization of entrained host rock fragments in the vein. In addition, Fe2SiO4‐spinel (Fa66‐Fa99) and stishovite crystallized from a FeO‐SiO2‐rich zone in the melt vein, which formed by shock melting of FeO‐SiO2‐rich material that had been altered and metasomatized before shock. Based on the pressure stabilities of the high‐pressure minerals, ringwoodite, akimotoite, and Ca‐clinopyroxene, the melt vein crystallized at approximately 18 GPa. The Fe2SiO4‐spinel + stishovite assemblage in the FeO‐SiO2‐rich melts is consistent with crystallization of the melt vein matrix at the pressure up to 18 GPa. The crystallization pressure of ?18 GPa is much lower than the 45–90 GPa pressure one would conclude from the S6 shock effects in melt veins (Stöffler et al. 1991) and somewhat less than the 25–30 GPa inferred from S5 shock effects (Schmitt 2000) found in the bulk rock.  相似文献   

6.
Abstract— Here we report the transmission electron microscopy (TEM) observations of the mineral assemblages and textures in shock‐induced melt veins from seven L chondrites of shock stages ranging from S3 to S6. The mineral assemblages combined with phase equilibrium data are used to constrain the crystallization pressures, which can be used to constrain shock pressure in some cases. Thick melt veins in the Tenham L6 chondrite contain majorite and magnesiowüstite in the center, and ringwoodite, akimotoite, vitrified silicate‐perovskite, and majorite in the edge of the vein, indicating crystallization pressure of ?25 GPa. However, very thin melt veins (5–30 μm wide) in Tenham contain glass, olivine, clinopyroxene, and ringwoodite, suggesting crystallization during transient low‐pressure excursions as the shock pressure equilibrated to a continuum level. Melt veins of Umbarger include ringwoodite, akimotoite, and clinopyroxene in the vein matrix, and Fe2SiO4‐spinel and stishovite in SiO2‐FeO‐rich melt, indicating a crystallization pressure of ?18 GPa. The silicate melt veins in Roy contain majorite plus ringwoodite, indicating pressure of ?20 GPa. Melt veins of Ramsdorf and Nakhon Pathon contain olivine and clinoenstatite, indicating pressure of less than 15 GPa. Melt veins of Kunashak and La Lande include albite and olivine, indicating crystallization at less than 2.5 GPa. Based upon the assemblages observed, crystallization of shock veins can occur before, during, or after pressure release. When the assemblage consists of high‐pressure minerals and that assemblage is constant across a larger melt vein or pocket, the crystallization pressure represents the equilibrium shock pressure.  相似文献   

7.
Abstract– We found a simple thin shock vein, less than or equal to about 60 μm in width and 1.8 mm in length, in the poikilitic area in the Yamato (Y‐) 000047 lherzolitic shergottite. The shock vein occurs only in magnesian Ca‐poor clinopyroxene, which may have transformed from orthopyroxene during the pressure increase at the shock event. The shock vein consists of (Mg0.8,Fe0.2)SiO3 pyroxene polymorphs, such as columnar akimotoite, two kinds of pyroxene glasses, dendritic akimotoite, and framboidal pyroxene glass, in the order from the periphery to the center. The compositions and textures suggest that columnar akimotoite in the periphery of the shock vein crystallized from solid‐state phase transition of clinopyoroxene during the cooling of the vein, and the remains in the shock vein solidified from shock‐produced melt. The glass includes two kinds of massive glass in the vein and framboidal glass in the vein center. The framboidal glass is the most magnesian and may have been vitrified from perovskite crystallized from high‐pressure melt produced at high temperature ≥3000 °C and high‐pressure 23–40 GPa. Dendritic akimotoites in the vein center metastably crystallized from residual shock melt. The formation sequences of the constituent phases in the shock vein happen in the following order: columnar akimotoites, rim glass, center glass, framboidal glass, and dendritic akimotoites. The increase of the Raman intensity of 660–670 cm?1 in the order of rim glass, center glass, and framboidal glass suggests that the formation of the pyroxene chain proceeds faster in the vein center than in the vein rim due to its slower cooling. The finding of the shock vein consisting merely of high‐pressure polymorphs of pyroxene, akimotoite, and framboidal glass (vitrified perovskite) is the first reported among all Martian meteorites.  相似文献   

8.
It has been almost exactly half a century since the first synthesis of stishovite in shock experiments on quartz was reported, but its formation conditions during shock is still under debate. Here, we present direct transmission electron microscopic observation of stishovite within material recovered from high‐explosive shock experiments on porous sandstone shocked at 7.5 and 12.5 GPa. Our observations allow for new conclusions on the genesis of stishovite in a close‐to‐nature environment. The formation of stishovite in short‐time shock experiments proves that its crystallization is ultrafast (<1 μs). Crystals were found only embedded in amorphous veins indicating homogeneous nucleation. Crystallization from melt rather than from glass can be concluded from the observation of roundish, defect‐free crystals up to 150 nm in diameter embedded in nondensified glass. The formation of stishovite at 7.5 GPa is in accordance with the phase diagram of silica, if rapid undercooling is present that becomes only possible by the existence of small hot spots in an otherwise cold material, which is supported by transient heat calculation. The absence of coesite at 7.5 GPa suggests kinetic hindrance of its crystallization from melt and, thus, smaller critical cooling rates compared to stishovite where critical cooling rates are estimated to be as large as 1011 K s?1. While the amorphous veins containing stishovite represent unambiguously hot spots, no associated pressure amplification could be verified within these veins. The rapid liquidus crystallization of stishovite only in hot spots generated in porous material is an alternative formation mechanism to the widely accepted theory of solid–solid transition from quartz to stishovite and might represent the more general mechanism occurring in nature for low shock pressure events.  相似文献   

9.
Abstract– In the context of the MEMIN project, a hypervelocity cratering experiment has been performed using a sphere of the iron meteorite Campo del Cielo as projectile accelerated to 4.56 km s?1, and a block of Seeberger sandstone as target material. The ejecta, collected in a newly designed catcher, are represented by (1) weakly deformed, (2) highly deformed, and (3) highly shocked material. The latter shows shock‐metamorphic features such as planar deformation features (PDF) in quartz, formation of diaplectic quartz glass, partial melting of the sandstone, and partially molten projectile, mixed mechanically and chemically with target melt. During mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co yielding a Fe/Ni that is generally higher than Fe/Ni in the projectile. This fractionation results from the differing siderophile properties, specifically from differences in reactivity of Fe, Ni, and Co with oxygen during projectile‐target interaction. Projectile matter was also detected in shocked quartz grains. The average Fe/Ni of quartz with PDF (about 20) and of silica glasses (about 24) are in contrast to the average sandstone ratio (about 422), but resembles the Fe/Ni‐ratio of the projectile (about 14). We briefly discuss possible reasons of projectile melting and vaporization in the experiment, in which the calculated maximum shock pressure does not exceed 55 GPa.  相似文献   

10.
11.
Abstract— The El'gygytgyn impact structure is about 18 km in diameter and is located in the central part of Chukotka, arctic Russia. The crater was formed in volcanic rock strata of Cretaceous age, which include lava and tuffs of rhyolites, dacites, and andesites. A mid‐Pliocene age of the crater was previously determined by fission track (3.45 ± 0.15 Ma) and 40Ar/39Ar dating (3.58 ± 0.04 Ma). The ejecta layer around the crater is completely eroded. Shock‐metamorphosed volcanic rocks, impact melt rocks, and bomb‐shaped impact glasses occur in lacustrine terraces but have been redeposited after the impact event. Clasts of volcanic rocks, which range in composition from rhyolite to dacite, represent all stages of shock metamorphism, including selective melting and formation of homogeneous impact melt. Four stages of shocked volcanic rocks were identified: stage I (≤35 GPa; lava and tuff contain weakly to strongly shocked quartz and feldspar clasts with abundant PFs and PDFs; coesite and stishovite occur as well), stage II (35–45 GPa; quartz and feldspar are converted to diaplectic glass; coesite but no stishovite), stage III (45–55 GPa; partly melted volcanic rocks; common diaplectic quartz glass; feldspar is melted), and stage IV (>55 GPa; melt rocks and glasses). Two main types of impact melt rocks occur in the crater: 1) impact melt rocks and impact melt breccias (containing abundant fragments of shocked volcanic rocks) that were probably derived from (now eroded) impact melt flows on the crater walls, and 2) aerodynamically shaped impact melt glass “bombs” composed of homogeneous glass. The composition of the glasses is almost identical to that of rhyolites from the uppermost part of the target. Cobalt, Ni, and Ir abundances in the impact glasses and melt rocks are not or only slightly enriched compared to the volcanic target rocks; only the Cr abundances show a distinct enrichment, which points toward an achondritic projectile. However, the present data do not allow one to unambiguously identify a meteoritic component in the El'gygytgyn impact melt rocks.  相似文献   

12.
Abstract— We studied unshocked and experimentally (at 12, 25, and 28 GPa, with 25, 100, 450, and 750°C pre‐shock temperatures) shock‐metamorphosed Hospital Hill quartzite from South Africa using cathodoluminescence (CL) images and spectroscopy and Raman spectroscopy to document systematic pressure or temperature‐related effects that could be used in shock barometry. In general, CL images of all samples show CL‐bright luminescent patchy areas and bands in otherwise nonluminescent quartz, as well as CL‐dark irregular fractures. Fluid inclusions appear dominant in CL images of the 25 GPa sample shocked at 750°C and of the 28 GPa sample shocked at 450°C. Only the optical image of our 28 GPa sample shocked at 25°C exhibits distinct planar deformation features (PDFs). Cathodoluminescence spectra of unshocked and experimentally shocked samples show broad bands in the near‐ultraviolet range and the visible light range at all shock stages, indicating the presence of defect centers on, e.g., SiO4 groups. No systematic change in the appearance of the CL images was obvious, but the CL spectra do show changes between the shock stages. The Raman spectra are characteristic for quartz in the unshocked and 12 GPa samples. In the 25 and 28 GPa samples, broad bands indicate the presence of glassy SiO2, while high‐pressure polymorphs are not detected. Apparently, some of the CL and Raman spectral properties can be used in shock barometry.  相似文献   

13.
Abstract— Shock‐recovery experiments were carried out on samples of the H6 chondrite Kernouvé at shock pressures of 10, 15, 20, 25, 30, 35, 45, and 60 GPa and preheating temperatures of 293 K (low‐temperature experiments) and 920 K (high‐temperature experiments). Using a calculated equation of state of Kernouvé, pressure‐pulse durations of 0.3 to 1.2 μs were estimated. The shocked samples were investigated by optical microscopy to calibrate the various shock effects in olivine, orthopyroxene, oligoclase, and troilite. The following pressure calibration is proposed for silicates: (1) undulatory extinction of olivine <GPa; (2) weak mosaicism of olivine from 10–15 GPa to 20–25 GPa; (3) onset of strong mosaicism of olivine at 20–25 GPa; (4) transformation of oligoclase to diaplectic glass completed at 25–30 GPa (low‐temperature experiments) and at 20–25 GPa (high‐temperature experiments); (5) onset of weak mosaicism in orthopyroxene at 30–35 GPa (low‐temperature experiments) and at 25–30 GPa (high‐temperature experiments); and (6) recrystallization or melting of olivine starting at 45–60 GPa (low‐temperature experiments) and at 35–45 GPa (high‐temperature experiments), and completed above 45–60 GPa in the high‐temperature experiments. Troilite displays distinct differences between the samples shocked at low and high temperatures. In the low‐temperature experiments, the following effects can be observed in troilite: (1) undulatory extinction up to 25 GPa, (2) twinning up to 45 GPa, (3) partial recrystallization from 30 to 60 GPa, and (4) complete recrystallization >35 GPa; whereas in the high‐temperature experiments, troilite shows (1) complete recrystallization from 10 up to 45 GPa and (2) melting and crystallization above 45 GPa. Localized shock‐induced melting is observed in samples shocked to pressures >15 GPa in the high‐temperature experiments and >30 GPa for the low‐temperature experiments in the form of FeNi metal and troilite melt injections and intergrowths and as pockets and veins of whole‐rock melt. Obviously, the onset and abundance of shock‐induced localized melting strongly depends on the initial temperature of the sample.  相似文献   

14.
Abstract— The lherzolitic Martian meteorite Northwest Africa (NWA) 1950 consists of two distinct zones: 1) low‐Ca pyroxene poikilically enclosing cumulate olivine (Fo70–75) and chromite, and 2) areas interstitial to the oikocrysts comprised of maskelynite, low‐ and high‐Ca pyroxene, cumulate olivine (Fo68–71) and chromite. Shock metamorphic effects, most likely associated with ejection from the Martian subsurface by large‐scale impact, include mechanical deformation of host rock olivine and pyroxene, transformation of plagioclase to maskelynite, and localized melting (pockets and veins). These shock effects indicate that NWA 1950 experienced an equilibration shock pressure of 35–45 GPa. Large (millimeter‐size) melt pockets have crystallized magnesian olivine (Fo78–87) and chromite, embedded in an Fe‐rich, Al‐poor basaltic to picro‐basaltic glass. Within the melt pockets strong thermal gradients (minimum 1 °C/μm) existed at the onset of crystallization, giving rise to a heterogeneous distribution of nucleation sites, resulting in gradational textures of olivine and chromite. Dendritic and skeletal olivine, crystallized in the melt pocket center, has a nucleation density (1.0 × 103 crystals/mm2) that is two orders of magnitude lower than olivine euhedra near the melt margin (1.6 × 105 crystals/mm2). Based on petrography and minor element abundances, melt pocket formation occurred by in situ melting of host rock constituents by shock, as opposed to melt injected into the lherzolitic target. Despite a common origin, NWA 1950 is shocked to a lesser extent compared to Allan Hills (ALH) 77005 (45–55 GPa). Assuming ejection in a single shock event by spallation, this places NWA 1950 near to ALH 77005, but at a shallower depth within the Martian subsurface. Extensive shock melt networks, the interconnectivity between melt pockets, and the ubiquitous presence of highly vesiculated plagioclase glass in ALH 77005 suggests that this meteorite may be transitional between discreet shock melting and bulk rock melting.  相似文献   

15.
This contribution addresses the role of chemical composition, pressure, temperature, and time during the shock transformation of plagioclase into diaplectic glass—i.e., maskelynite. Plagioclase of An50‐57 and An94 was recovered as almost fully isotropic maskelynite from room temperature shock experiments at 28 and 24 GPa. The refractive index (RI) decreased to values of a quenched mineral glass for An50‐57 plagioclase shocked to 45 GPa and shows a maximum in An94 plagioclase shocked to 41.5 GPa. The An94 plagioclase experiments can serve as shock thermobarometer for lunar highland rocks and howardite, eucrite, and diogenite meteorites. Shock experiments at 28, 32, 36, and 45 GPa and initial temperatures of 77 and 293 K on plagioclase (An50‐57) produced materials with identical optical and Raman spectroscopic properties. In the low temperature (<540 K) region, the formation of maskelynite is entirely controlled by shock pressure. The RI of maskelynite decreased in heating experiments of 5 min at temperatures of >770 K, thus, providing a conservative upper limit for the postshock temperature history of the rock. Although shock recovery experiments and static pressure experiments differ by nine orders of magnitude in typical time scale (microseconds versus hours), the amorphization of plagioclase occurs at similar pressure and temperature conditions with both methods. The experimental shock calibration of plagioclase can, together with other minerals, be used as shock thermobarometer for naturally shocked rocks.  相似文献   

16.
Abstract— Field studies and a shallow drilling program carried out in 1999 provided information about the thickness and distribution of suevite to the north of the Bosumtwi crater rim. Suevite occurrence there is known from an ?1.5 km2 area; its thickness is ≤15 m. The present suevite distribution is likely the result of differential erosion and does not reflect the initial areal extent of continuous Bosumtwi ejecta deposits. Here we discuss the petrographic characteristics of drill core samples of melt‐rich suevite. Macroscopic constituents of the suevites are melt bodies and crystalline and metasedimentary rock (granite, graywacke, phyllite, shale, schist, and possibly slate) clasts up to about 40 cm in size. Shock metamorphic effects in the clasts include multiple sets of planar deformation features (PDFs), diaplectic quartz and feldspar glasses, lechatelierite, and ballen quartz, besides biotite with kink bands. Basement rock clasts in the suevite represent all stages of shock metamorphism, ranging from samples without shock effects to completely shock‐melted material that is indicative of shock pressures up to ?60 GPa.  相似文献   

17.
Abstract— Sayh al Uhaymir (SaU) 300 comprises a microcrystalline igneous matrix (grain size <10 μm), dominated by plagioclase, pyroxene, and olivine. Pyroxene geothermometry indicates that the matrix crystallized at ?1100 °C. The matrix encloses mineral and lithic clasts that record the effects of variable levels of shock. Mineral clasts include plagioclase, low‐ and high‐Ca pyroxene, pigeonite, and olivine. Minor amounts of ilmenite, FeNi metal, chromite, and a silica phase are also present. A variety of lithic clast types are observed, including glassy impact melts, impact‐melt breccias, and metamorphosed impact melts. One clast of granulitic breccia was also noted. A lunar origin for SaU 300 is supported by the composition of the plagioclase (average An95), the high Cr content in olivine, the lack of hydrous phases, and the Fe/Mn ratio of mafic minerals. Both matrix and clasts have been locally overprinted by shock veins and melt pockets. SaU 300 has previously been described as an anorthositic regolith breccia with basaltic components and a granulitic matrix, but we here interpret it to be a polymict crystalline impact‐melt breccia with an olivine‐rich anorthositic norite bulk composition. The varying shock states of the mineral and lithic clasts suggest that they were shocked to between 5–28 GPa (shock stages S1–S2) by impact events in target rocks prior to their inclusion in the matrix. Formation of the igneous matrix requires a minimum shock pressure of 60 GPa (shock stage >S4). The association of maskelynite with melt pockets and shock veins indicates a subsequent, local 28–45 GPa (shock stage S2–S3) excursion, which was probably responsible for lofting the sample from the lunar surface. Subsequent fracturing is attributed to atmospheric entry and probable breakup of the parent meteor.  相似文献   

18.
Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high‐pressure polymorphs in rock‐forming minerals are known from meteorites and terrestrial impact craters. Here, we investigate the formation of high‐pressure polymorphs of α‐quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α‐quartz in situ by synchrotron powder X‐ray diffraction. Phase transitions of α‐quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s?1, experiments reveal that α‐quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO6 octahedra rather than the rearrangement of the SiO4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.  相似文献   

19.
We determined the shock‐darkening pressure range in ordinary chondrites using the iSALE shock physics code. We simulated planar shock waves on a mesoscale in a sample layer at different nominal pressures. Iron and troilite grains were resolved in a porous olivine matrix in the sample layer. We used equations of state (Tillotson EoS and ANEOS) and basic strength and thermal properties to describe the material phases. We used Lagrangian tracers to record the peak shock pressures in each material unit. The post‐shock temperatures (and the fractions of the tracers experiencing temperatures above the melting point) for each material were estimated after the passage of the shock wave and after the reflections of the shock at grain boundaries in the heterogeneous materials. The results showed that shock‐darkening, associated with troilite melt and the onset of olivine melt, happened between 40 and 50 GPa with 52 GPa being the pressure at which all tracers in the troilite material reach the melting point. We demonstrate the difficulties of shock heating in iron and also the importance of porosity. Material impedances, grain shapes, and the porosity models available in the iSALE code are discussed. We also discuss possible not‐shock‐related triggers for iron melt.  相似文献   

20.
The current shock classification scheme of meteorites assigns shock levels of S1 (unshocked) to S6 (very strongly shocked) using shock effects in rock‐forming minerals such as olivine and plagioclase. The S6 stage (55–90 GPa; 850–1750 °C) relies solely on localized effects in or near melt zones, the recrystallization of olivine, or the presence of mafic high‐pressure phases such as ringwoodite. However, high whole rock temperatures and the presence of high‐pressure phases that are unstable at those temperatures and pressures of zero GPa (e.g., ringwoodite) are two criteria that exclude each other. Each type of high‐pressure phase provides a minimum shock pressure during elevated pressure conditions to allow the formation of this phase, and a maximum temperature of the whole rock after decompression to allow the preservation of this phase. Rocks classified as S6 are characterized not by the presence but by the absence of those thermally unstable high‐pressure phases. High‐pressure phases in or attached to shock melt zones form mainly during shock pressure decline. This is because shocked rocks (<60 GPa) experience a shock wave with a broad isobaric pressure plateau only during low velocity (<4.5 km s?1) impacts, which rarely occur on small planetary bodies; e.g., the Moon and asteroids. The mineralogy of shock melt zones provides information on the shape and temporal duration of the shock wave but no information on the general maximum shock pressure in the whole rock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号