首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Today, living banks of the coral Cladocora caespitosa appear to be restricted to a few Mediterranean locations and are threatened by the escalating impacts affecting coastal areas. In this study the exceptional occurrence of the Mediterranean coral C. caespitosa in the Columbretes Islands Marine Reserve (NW Mediterranean, Spain) is characterised in terms of spatial distribution, cover area, colony size and growth rates. The coral colonies form beds and banks in rocky bottoms within a semi‐enclosed bay that offers both hydrodynamic protection and high water exchange. The spatial distribution of the C. caespitosa colonies, from 5 to 27 m depth, is highly aggregated, depending on sea‐floor morphology and showing up to 80% of substrate coverage. The annual corallite growth rates obtained through the alizarin red staining method and x‐ray image analysis are similar, and range between 2.55 ± 0.79 mm and 2.54 ± 0.81 mm, respectively. The exceptional nature of these bioconstructions is due to their cumulative cover area, which is comparable in size to the largest C. caespitosa bioconstructions described to date in Mljet National Park (Croatia, Adriatic Sea).  相似文献   

2.
Sponges are sessile organisms capable of colonizing diverse substrata. In the Caribbean, coral reefs have suffered a drastic decline, and branching corals of the genus Acropora have been widely decimated. On dead coral skeletons and around surviving tissue the settling of sessile organisms can be observed, sponges being common. In order to investigate whether or not sponges have a preference for a particular species of coral, or for specific microhabitats of the colonies, we evaluated species composition, cover, richness and diversity of sponges colonizing the dead parts of still live colonies of the branching corals Acropora palmata and Acropora cervicornis in five locations of the Tayrona National Natural Park in the Colombian Caribbean. Ten colonies of Ac. palmata were quantified in each of the five locations, and eight Ac. cervicornis colonies in each of two locations. Quantification was carried out using video taken within 0.625‐m2 photoquadrats. Seventeen sponge species were found, 13 of them associated with Ac. palmata and seven with Ac. cervicornis. Desmapsamma anchorata, Clathria venosa and Scopalina rutzleri were found to be common to all Ac. palmata locations, while De. anchorata occurred in the two Ac. cervicornis locations. On Ac. palmata, encrusting sponges dominated, while on Ac. cervicornis branched and lobed sponges predominated. Significant differences in sponge cover were not found among locations but were observed in the sponge species present. On Ac. palmata the species with highest cover were D. anchorata and Cla. venosa, while on Ac. cervicornis it was De. anchorata. The richness and diversity of sponges were low for both coral species, and their varying distribution can be attributed to the differences in available substrate for attachment, given coral colony morphology; for Ac. palmata, sponges predominated on the underside of the branches, semi‐cryptic areas and colony bases, whereas for Ac. cervicornis, they were located over the entire area of the cylindrical branches. Surviving colonies of Ac. palmata and Ac. cervicornis that are still erect offer additional microhabitats for reef sponges, some of which can be found directly interacting with live coral tissue, further threatening their recovery.  相似文献   

3.
Sven Zea 《Marine Ecology》2011,32(2):162-173
The Caribbean sponge Cliona delitrix is among the strongest reef space competitors; it is able to overpower entire coral heads by undermining coral polyps. It has become abundant in reefs exposed to organic pollution, such as San Andrés Island, Colombia, SW Caribbean. Forty‐four sponge‐colonized coral colonies were followed‐up for 13 months to establish the circumstances and the speed at which this sponge advances laterally into live coral tissue and the coral tissue retreats. Cliona delitrix presence and abundance was recorded at seven stations to interpret current reef space and coral species colonization trends. The spread of C. delitrix on a coral colony was preceded by a band of dead coral a few millimeters to several centimeters wide. However, the sponge was directly responsible for coral death only when live coral tissue was within about 2 cm distance; coral death became sponge advance‐independent at greater distances, being indirectly dependent on other conditions that tend to accelerate its retreat. Cliona delitrix advanced fastest into recently killed clean coral calices; however, sponge spread slowed down when these became colonized by algae. The lateral advance of C. delitrix was slower than other Cliona spp. encrusting excavating sponges, probably owing to the greater depth of its excavation into the substratum. Cliona delitrix prefers elevated portions of massive corals, apparently settling on recently dead areas. It currently inhabits 6–9% of colonies in reefs bordering San Andrés. It was found more frequently in Siderastrea siderea (the most abundant local massive coral), which is apparently more susceptible to tissue mortality than other corals. Current massive coral mortality caused by C. delitrix could initially change the relative proportions of coral species and in the long‐term favor foliose and branching corals.  相似文献   

4.
Eastern Pacific reefs are mostly made up of interlocking coral branches of Pocillopora, which are easily broken by physical forces associated with heavy swells and winds. In this study we investigated the potential of these coral fragments to enable propagation of boring sponges. For this, we quantified the frequency of occurrence and diversity of boring sponges in fragments of corals recently trapped among the branches of live colonies, and later tested the hypothesis that these sponges colonize new branches of corals. Nearly 80% of the coral colonies investigated had coral fragments among their branches, and 69% of these coral fragments contained boring sponges (11 species), some of these sponges in reproduction (23% of them carried oocytes). To test whether sponges inhabiting coral fragments could colonize new branching corals we transplanted them to healthy branches, and to branches whose living tissue was mechanically eliminated to simulate damage produced by grazing and death after bleaching and other causes of coral tissue mortality. All the transplanted coral fragments cemented to each new colony by means of calcification, and of the three sponge species tested (Cliona vermifera, Cliona tropicalis and Thoosa mismalolli) only C. vermifera was able to colonize both new living branches (26.9%) and cleaned branches (65.5%). The apparent capability of C. vermifera to colonize by direct contact may be another key ability of this species to maintain high frequency of occurrence in Pacific coral reefs. However, although C. tropicalis and T. mismalolli were not able to colonize new coral substrata by direct contact, coral fragments have the potential to contribute to local persistence of these sponges and to their dispersal, both by asexual (fragments) and sexual means (transport of sexual products). The present findings may partly explain the current increase of excavating sponges on deteriorating reefs with a large availability of dead branching corals.  相似文献   

5.
The precious red coral Corallium rubrum (L., 1758) lives in the Mediterranean Sea and adjacent Eastern Atlantic Ocean on subtidal hard substrates. Corallium rubrum is a long‐lived gorgonian coral that has been commercially harvested since ancient times for its red axial calcitic skeleton and which, at present, is thought to be in decline because of overexploitation. The depth distribution of C. rubrum is known to range from c. 15 to 300 m. Recently, live red coral colonies have been observed in the Strait of Sicily at depths of c. 600–800 m. This record sheds new light on the ecology, biology, biogeography and dispersal mechanism of this species and calls for an evaluation of the genetic divergence occurring among highly fragmented populations. A genetic characterization of the deep‐sea red coral colonies has been done to investigate biological processes affecting dispersal and population resilience, as well as to define the level of isolation/differentiation between shallow‐ and deep‐water populations of the Mediterranean Sea. Deep‐water C. rubrum colonies were collected at two sites (south of Malta and off Linosa Island) during the cruise MARCOS of the R/V Urania. Collected colonies were genotyped using a set of molecular markers differing in their level of polymorphism. Microsatellites have been confirmed to be useful markers for individual genotyping of C. rubrum colonies. ITS‐1 and mtMSH sequences of deep‐water red coral colonies were found to be different from those found in shallow water colonies, suggesting the possible occurrence of genetic isolation among shallow‐ and deep‐water populations. These findings suggest that genetic diversity of red coral over its actual range of depth distribution is shaped by complex interactions among geological, historical, biological and ecological processes.  相似文献   

6.
Understanding processes that contribute to a better comprehension of the population dynamics of long‐lived species is critical for the maintenance and potential recovery of such species. Despite the abundance of soft corals in Mediterranean rocky reefs, little information exists on their life histories and reproductive patterns. In this study, we assessed the main reproductive characteristics and early life‐history traits of the long‐lived soft coral Alcyonium acaule. The sex ratio was 1:1; the smallest fertile colonies were one finger in size (2.1 ± 0.6 cm in height), and both colony and polyp fertility increased with colony size. Likewise, the number of eggs and spermary sacs per polyp increased significantly with colony size, whereas the diameter of the female and male sexual products did not. Over 6 years of observations (2007–2012), spawning occurred primarily in July, after the seawater reached 20 °C, in a single spawning episode per year. Approximately 80% of female colonies released eggs, which were retained on the surface of the mother colony by mucous strings for up to a few days. High fertilization rates were observed during spawning in 2008 and 2009 (94.9% and 87.0%, respectively). The timing of development was ~24 h for the blastulae, ~48–72 h for the planulae and 8–22 days for metamorphosis into primary polyps. Survivorship of planulae was relatively high (~50% at 45 days after release), but only 24% of larvae metamorphosed into primary polyps, and their survivorship was moderate after 2 months (65% in 2008 and 74% in 2009). Asexual reproduction was negligible, indicating that sexual reproduction is the main mechanism supporting the maintenance and recovery of populations.  相似文献   

7.
Bioerosion is a natural process in coral reefs. It is fundamental to the health of these ecosystems. In the Eastern Tropical Pacific (ETP) coral reefs, the most important bioeroders are sponges, bivalves, sea urchins and the fish Arothron meleagris. In the 1980s, El Niño caused high coral mortality and an increase in macroalgal growth. As a result, greater sea urchin bioerosion occurred. This weakened the reef framework. Considering the high vulnerability of the ETP coral reefs, the goal of this study was to determine the current bioerosion impact of the sea urchin Diadema mexicanum along the western coasts of Mexico, El Salvador, Costa Rica and Panamá. The balance between coral bioaccretion and sea urchin bioerosion was also calculated. Between 2009 and 2010, in 12 coral reefs localities, D. mexicanum density, bottom cover and rugosity were quantified along band transects. The daily bioerosion rate was obtained from the amount of carbonates evacuated by sea urchins per unit time. The rate of coral accretion was calculated by multiplying the coral growth rate of the dominant genus by the density of their skeleton and by their specific coral cover. The localities were dissimilar (R = 0.765, P < 0.001) in terms of live coral cover, crustose calcareous algae, turf cover, rugosity index, and density and size of D. mexicanum. At all sites, with the exception of Bahía Culebra (Costa Rica), coral bioerosion was less than coral bioaccretion. Diadema mexicanum plays a dominant role in the balance of carbonates in the ETP, but this depends on reef condition (protection, overfishing, eutrophication) and so the impacts can be either positive or negative.  相似文献   

8.
This study investigates the size, age and growth of Corallium rubrum which is a key species of the only large reef-like structure in the Mediterranean Sea, the coralligéne. Two populations were studied in the Ligurian Sea at a depth between 36 and 42 m. Basal diameter, colony height and numbers of branches of 230 colonies were measured, and age and growth rates were assessed from 25 colonies. Mean growth rate was 0.2 mm yr−1 of basal diameter growth, corresponding to a mean annual total branch length increase of 5 mm. These results point to a coral growth much slower than assumed in many earlier studies. Additionally, age and size at first reproduction were analysed. Male colonies were shown to become sexually mature at a minimum age of six years (1.2 mm of basal diameter), while female colonies reached maturity when at least 10 years old (2 mm of basal diameter). We further discuss the implications of slow growth and early sexual maturity for red coral management and conservation.  相似文献   

9.
During a research cruise carried out in April 2010, aimed at updating the knowledge on the biodiversity of the Santa Maria di Leuca (SML) cold‐water coral province (Mediterranean Sea), a facies of the sea pen Kophobelemnon stelliferum (Muller, 1776) was found on mud‐dominated bottoms. This finding represents a new species and a new habitat record from the SML coral province as well as a new bathyal facies in the whole Central Mediterranean Sea. The colonies were collected using an epi‐benthic sledge, at depths between 400 and 470 m. A significant positive relationship between polyp number and colony length was detected. Density of the colonies ranged from 0.003 to 0.038 N·m?2. Differences and affinities between Mediterranean and Atlantic occurrences of K. stelliferum are discussed.  相似文献   

10.
Paramuricea clavata (Cnidaria, Octocorallia) is an important ecosystem engineer of coralligenous assemblages increasingly threatened by anthropogenic activities and climate changes. As climate warming is predicted to continue in the coming years it is important to hypothesize future scenarios. Here we tested the influence of gorgonian colonies on sedimentation rates and vagile fauna trends, comparing sediments collected by traps inside and outside a gorgonian garden, in a coralligenous community of the Western Ligurian Sea, at 32 m depth, over a period of 1 year. The results indicated that sea fans created a sort of homeostatic effect on the surrounding habitat. We found evidence that where gorgonian colonies were present, the monthly fluctuations of sediments rate were lower than outside a garden. Gorgonian colonies also influenced the distribution of the associated vagile fauna; these organisms were generally more abundant inside than outside the garden. The data collected in this work appear to confirm the role of P. clavata as an ecosystem engineer, affecting biomass and variability of the surrounding habitat at both spatial and temporal scales.  相似文献   

11.
This study quantified background rates of mortality for Acropora cytherea in the Chagos Archipelago. Despite low levels of anthropogenic disturbance, 27.5% (149/541) of A. cytherea colonies exhibited some level of partial mortality, and 9.0% (49/541) of colonies had recent injuries. A total of 15.3% of the overall surface area of physically intact A. cytherea colonies was dead. Observed mortality was partly attributable to overtopping and/or self-shading among colonies. There were also low-densities of Acanthaster planci apparent at some study sites. However, most of the recent mortality recorded was associated with isolated infestations of the coral crab, Cymo melanodactylus. A. cytherea is a relatively fast growing coral and these levels of mortality may be biologically unimportant. However, few studies have measured background rates of coral mortality, especially in the absence of direct human disturbances. These data are important for assessing the impacts of increasing disturbances, especially in projecting likely recovery.  相似文献   

12.
Coral reefs throughout the world are under severe challenges from many environmental factors. This paper quantifies the size structure of populations and the growth rates of corals from 2000 to 2008 to test whether the Discovery Bay coral colonies showed resilience in the face of multiple acute stressors of hurricanes and bleaching. There was a reduction in numbers of colonies in the smallest size class for all the species at all the sites in 2006, after the mass bleaching of 2005, with subsequent increases for all species at all sites in 2007 and 2008. Radial growth rates (mm yr−1) of non-branching corals and linear extension rates (mm yr−1) of branching corals calculated on an annual basis from 2000–2008 showed few significant differences either spatially or temporally. At Dairy Bull reef, live coral cover increased from 13 ± 5% in 2006 to 20 ± 9% in 2007 and 31 ± 7% in 2008, while live Acropora species increased from 2 ± 2% in 2006 to 10 ± 4% in 2007 and 22 ± 7% in 2008. These studies indicate good levels of coral resilience on the fringing reefs around Discovery Bay in Jamaica.  相似文献   

13.
Rapa (27°36′ S, 144°20′ W) is a small (~40 km2) volcanic island isolated in the Southern Austral Archipelago, where direct anthropogenic stressors are extremely limited. Here, we present the results of the first quantitative survey of coral community structure across habitats and depths around the island. Despite its geographical isolation in the depauperate South Central Pacific, its small size and unfavourable environmental conditions (competition with macroalgae, low sea surface temperatures, reduced reef accretion), the diversity of scleractinian corals at Rapa is particularly high (112 species from 32 genera, including 37 species of Acropora) in comparison to other French Polynesian islands and subtropical Pacific locations. Our results indicate that the abundance (>100 colonies per 10 m2 recorded at nine of the 17 sampling stations) and cover (>40% at four stations) of corals are relatively high for a marginal reef location. Strong spatial heterogeneity was found, with high variation in diversity, abundance, cover and community composition among stations. Variation in community composition was related to habitat types, with distinct assemblages among fringing reefs within bays, reef formations at bay entrances, and those on the submerged platform surrounding the island. On the platform, a depth gradient was detected, with generic richness, abundance and cover generally greater at deeper stations (18–20 m depth) compared with medium‐depth (10–12 m) and shallow (1–3 m) stations. A gradient was also recorded along bays, with increasing coral diversity and abundance from the bay heads to the bay entrances. The coral community at Rapa was characterized by the presence of several taxa not found in other French Polynesian archipelagos and the rarity of others that are common and abundant in the Society and the Tuamotu islands. Another distinctive feature of reef communities at Rapa is the high cover and dominance of macroalgae, particularly in the shallower parts of the surrounding platform, which probably explains the lower densities of coral colonies recorded there. These characteristics of the diversity and biogeographical composition of coral assemblages at Rapa provide considerable ecological grounds for its conservation.  相似文献   

14.
Knowledge of coral recruitment patterns helps us understand how reefs react following major disturbances and provides us with an early warning system for predicting future reef health problems. We have reconstructed and interpreted historical and modern-day recruitment patterns, using a combination of growth modelling and in situ recruitment experiments, in order to understand how hurricanes, storms and bleaching events have influenced coral recruitment on the Caribbean coastline of Tobago. Whilst Tobago does not lie within the main hurricane belt results indicate that regional hurricane events negatively impact coral recruitment patterns in the Southern Caribbean. In years following hurricanes, tropical storms and bleaching events, coral recruitment was reduced when compared to normal years (p = 0.016). Following Hurricane Ivan in 2004 and the 2005–2006 bleaching event, coral recruitment was markedly limited with only 2% (n = 6) of colonies estimated to have recruited during 2006 and 2007. Our experimental results indicate that despite multiple large-scale disturbances corals are still recruiting on Tobago’s marginal reef systems, albeit in low numbers.  相似文献   

15.
Sexual reproduction of zooxanthellate scleractinian corals in the Eastern Tropical Pacific (ETP) is influenced by the interactive effects of regional and local oceanographic conditions, as well as a variety of other environmental factors. Differences in spatial and temporal gamete development and reproductive patterns of three widespread scleractinian corals of this region—Pocillopora damicornis (branching colony morphology, characterized as hermaphrodite broadcaster), Pavona gigantea (massive colonies, characterized as gonochoric broadcaster/sequential co‐sexually hermaphroditic) and Porites panamensis (encrusting colonies, characterized as gonochoric brooder)—were evaluated at local and regional scales across the ETP. This area extended from the Gulf of California (24°N) to the southern coast of Ecuador (–1°S), including offshore islands, using existing data pooled from prior studies. Predictive models were employed based on environmental variables: sea surface temperature, daylight hours, diffuse attenuation co‐efficient at 490 nm and photosynthetically active radiation. Datasets were extracted from satellite images ( https://oceancolor.gsfc.nasa.gov ) and analysed using WAM_STATIST ver. 6.33® software to obtain monthly average data from each site. The spatial (region, sub‐region and site) and seasonal (wet, dry) variation in reproductive activity (% colonies with gametes) differed among the three species; significant interactions were season × sub‐region for P. damicornis, season × site (sub‐region) for P. gigantea, and season × site for P. panamensis, for which sub‐region was not considered as a factor. The predictive models also suggest that gamete production/maturation of P. damicornis and P. gigantea is influenced by local differences in sea surface temperature and daylight hours. Porites panamensis was not correlated with any environmental variable examined. Variations in local and regional reproductive developmental patterns are likely an acclimatization response by each species imposed by the timing and duration of local stressor events. This analysis has provided insights into the diverse local and regional physical drivers that affect species responses and acclimatization in sexual reproduction across the ETP.  相似文献   

16.
On Caribbean reefs, the excavating sponge Cliona tenuis opportunistically colonized dead skeletons of the elkhorn coral Acropora palmata after its massive die‐off in the 1980s. Further C. tenuis population increase occurred by colonization of other coral species, causing coral tissue death through undermining of live tissue and lateral growth. To follow up on a previous (2001) characterization of the abundance and size structure of C. tenuis at Islas del Rosario (Colombia), these factors were again estimated in 2014, along with its substratum utilization. The fate of sponge individuals colonizing massive coral colonies marked in 2001–2004 was also followed. By 2014 C. tenuis was still disproportionally occupying dead A. palmata branches, but its abundance and density, and the cover of other benthic elements, had not significantly changed over the 13‐year period, suggesting that a stasis has been reached. Cliona tenuis was thus initially favored in the 1980s, but substratum monopolization did not occur. From 2001 to 2014, small individuals increased in number and very large ones decreased, suggesting not only that new recruitment is occurring, but also that larger sponges are shrinking or fragmenting. Marked sponges continued killing corals over the first few years, but over longer times they retreated or died, allowing corals to resume upward growth. However, it could not be ascertained whether the sponge retreat was age‐related or the result of some environmental effect. The apparent preference for recently dead clean coral by larvae of C. tenuis and its current dynamics of recruitment, growth, fragmentation and mortality have stabilized its space occupation at Islas del Rosario.  相似文献   

17.
The Mediterranean endemic Cladocora caespitosa (Linnaeus, 1767) is a colonial scleractinian coral belonging to the family Faviidae and the only zooxanthellate coral from Mediterranean whose colonies may fuse in reef‐like structures (hermatypic). Recent surveys are focused on three locations where banks occur in the Adriatic Sea (Croatia): near Prvi? Island in the northern Adriatic, near Pag Island in the central Adriatic and in Veliko jezero (Mljet National Park) in the southern Adriatic. The C. caespitosa bank in Veliko jezero covers an area more than 650 m2 and is thus the largest bank of C. caespitosa found to date. The strong sea currents, which occur as a result of tidal exchange in the channel, appear to favour the growth of the bank. The goal of the study was to present the influence of major environmental factors upon the build‐up process of the coral bank. Biometrical parameters in the C. caespitosa colonies like diameter of the calyces, polyp ash free dry weight (AFDW), corallite linear growth rate and index of sphericity were investigated and compared from these three locations. The morphology of coral banks from the Adriatic Sea and the disposition of the biometrical values are affected by the sea currents, temperature and sedimentation.  相似文献   

18.
Porites panamensis is a hermatypic coral present in the eastern Pacific Ocean. Skeletal growth parameters have been reported, but studies of the relationship between annual calcification rates and environmental controls are scarce. In this study, we investigated three aspects of the annual calcification rates of P. panamensis: growth parameters among three P. panamensis populations; the sea surface temperature as a calcification rate control spanning a latitudinal gradient; and calcium carbonate production among three sites. Growth parameters varied among the sites due to the colony growth form. Massive colonies in the north showed a higher calcification rate than encrusting colonies in the south (mean: 1.22–0.49 g CaCO3 · cm?2 · yr?1), where variations in calcification rates were related to growth rate (0.91–0.38 cm · yr?1) rather than to skeletal density differences (overall mean ± SD, 1.31 ± 0.04 g CaCO3 · cm?3). Our results showed a positive linear relationship between annual calcification rates and sea surface temperatures within these P. panamensis populations. Differences were related to distinct oceanographic environments (within and at the entrance of the Gulf of California) with different sea surface temperature regimes and other chemical properties. Different populations calcified under different environmental conditions. Calcium carbonate production was dependent upon the calcification rate and coral cover and so carbonate production was higher in the north (coral cover 12%) than in the south (coral cover 3.5). Thus, the studied sites showed low calcium carbonate production (0.25–0.43 kg CaCO3 · m?2 · yr?1). Our results showed reduced calcification rates, regional temperature regime control over calcification rates, different growth forms, low coral cover and low calcium carbonate production rates in P. panamensis.  相似文献   

19.
Tissue degradation and resulting mortality are major threats to coral reefs around the world. Information on interactions of the major environmental factors that mediate tissue loss and mortality in coral reefs is of great importance. It is essential to understand the prevailing reef health conditions and to develop appropriate management actions. In the present study, a series of benthic surveys conducted in the Lakshadweep Islands revealed the interaction of major biological factors in causing tissue loss and mortality. Hierarchical regression analysis revealed interactions of various environmental scenarios. Tissue loss was prevalent in islands with high cover of massive corals (m = 20.91) and low in islands dominated by branching corals (m = 0.61). Hierarchical regression analysis revealed black band disease (β = .59; p < .001) and algal interactions (β = .48; p < .001) to be major factors responsible for coral mortality caused by tissue loss in the region.  相似文献   

20.
Abstract. Changes in live and dead coral cover were documented at three localities off the Costa Rican central Pacific coast first in 1992 during the aftermath of the 1991–1992 El Niño; again in the period between 1994 and 1995, and last in January 2001. Recovery of coral communities after the 1991–1992 El Niño was expressed by a significant increase (~40 %) in 1994 of live coral cover at one locality (Manuel Antonio). A subsequent decrease (~50 %) in response to the very strong 1997–1998 episode was recorded at Manuel Antonio and Ballena, mainly due to partial tissue mortality of branching (Pocillopora spp.) and massive (Porites lobata) corals. Mortality of entire colonies associated to that event was scarce and confined to branching and nodular (Psammocora stellata) corals. This species was not found at one locality (Cambutal) in the 2001 survey and it is presumed locally extinct. The recovery of this coral and others will depend on recruits from surviving colonies in deeper waters and other coral communities in the vicinity. Within sites at a given locality, contrasting results in live coral cover variability were found. This is partially due to distinct coral assemblages, coral growth, physical exposure to tidal regime, and, related to the latter, variable duration and intensity of the warming event. In general, predominant meteorological conditions at the studied area are conducive to solar radiation (UV) stress during El Niño years and are related to changes in the atmosphere‐ocean interactions in response to the warming events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号