首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Air sparging is a relatively new technique for the remediation of ground water contaminated with petroleum hydrocarbons. In this technique, air is injected below the water table, beneath the contaminated soil. Remediation occurs by a combination of contaminant partitioning into the vapor phase and enhanced biodegradation. The air is usually removed by vacuum extraction in the vadose zone.
The efficiency of remediation from air sparging is a function of the air flow pattern, although the distribution of the injected air is still poorly understood. Cross-borehole resistivity surveys were performed at a former service station in Florence, Oregon, to address this unknown. The resistivity measurements were made using six wells, one of which was the sparge well. Data were collected over a two-week period during and after several air injections, or sparge events. Resistivity images were calculated between wells using an algorithm that assumes axially symmetric structures. The movement of the injected air through time was defined by regions of large increases in resistivity, greater than 100 percent from the background. During early sparge times, air moved outward and upward from the injection point as it ascended to the unsaturated zone. At later sparge times, the air flow reached a somewhat stable cone-shaped pattern radiating out and up from the injection point. Two days after sparging was discontinued, a residue of entrained air remained in the saturated zone, as indicated by a zone of 60 to 80 percent water saturation.  相似文献   

2.
Air sparging was evaluated for remediation of tetrachloroethylene (PCE) present as dense nonaqueous phase liquid (DNAPL) in aquifers. A two-dimensional laboratory tank with a transparent front wall allowed for visual observation of DNAPL mobilization. A DNAPL zone 50 cm high was created, with a PCE pool accumulating on an aquitard. Detailed process control and analysis yielded accurate mass balances and insight into the mass-transfer limitations during air sparging. Initial PCE recovery rates were high, corresponding to fast removal of residual DNAPL within the zone influenced directly by air channels. The vadose zone DNAPL was removed within a few days, and the recovery in the extracted soil vapors decreased to low values. Increasing the sparge rate and pulsing the air injection led to improved mass recovery, as the pulsing induced water circulation and increased the DNAPL dissolution rate. Dissolved PCE concentrations both within and outside the zone of air channels were affected by the pulsing. Inside the sparge zone, aqueous concentrations decreased rapidly, matching the declining effluent PCE flux. Outside the sparge zone, PCE concentrations increased because highly contaminated water was pushed away from the air injection point. This overall circulation of water may lead to limited spreading of the contaminant, but accelerated the time-weighted average mass removal by 40% to 600%, depending on the aggressiveness of the pulsing. For field applications, pulsing with a daily or diurnal cycling time may increase the average mass removal rate, thus reducing the treatment time and saving in the order of 40% to 80% of the energy cost used to run the blowers. However, air sparging will always fail to remove DNAPL pools located below the sparge point because the air will rise upward from the top of a screen, unless very localized geological layers force the air to migrate horizontally. Unrecognized presence of DNAPL at chlorinated solvent sites residual and pools could potentially hamper success of air sparging cleanups, since the presence of small DNAPL pools, ganglia or droplets can greatly extend the treatment time.  相似文献   

3.
Strawberry Point, located on Hinchinbrook Island, Alaska, is the site of a Federal Aviation Administration air navigation facility that is contaminated with gasoline- and diesel-range hydrocarbons in soil and ground water. An air sparging system was installed to promote bioremediation in the zone of seasonal ground water fluctuation where the contaminant is concentrated. The sparge wells were placed in a homogeneous formation, consisting of fine-grain beach and eolian sands. The system was then evaluated to determine the ground water region of influence and optimum frequency of operation. Neutron probe borehole measurements of percentage; of fluid displacement during sparging at two wells revealed dynamic air distributions defined by an initial and relatively rapid expansion phase followed by a consolidation phase. Air distribution was stable within 12 hours after startup, reaching a peak air saturation of greater than 50 percent. The radius of peak expansion varied with time and depth, with measurable fluid displacement occurring beyond 12 feel from the sparge well near the water table. The percentage of air saturation stabilized within one hour following cutoff of the air flow, leaving pockets of entrapped air near the water table. When air injection was resumed, air saturation levels were found to be repeatable. The observations at this site indicated that the effective region of influence is relatively small and that frequent pulsing is needed to optimize oxygen distribution.  相似文献   

4.
An important operation parameter in the design of a pulsed air sparging (PAS) system is the pulse duration (PD). To study the effect of the PD on the remediation process, a series of laboratory experiments and numerical simulations were performed. The experimental apparatus was a cylindrical tank, packed with fine sand and partially filled by water contaminated with toluene. Toluene concentrations in water and in effluent air were measured over time during the application of PAS, which was applied with three different PD. Next, the T2VOC model, an extension of the TOUGH2 simulation program, was used to simulate the two-phase flow and transport processes for these cases. The simulation model was calibrated to the experimental results, and then run with a range of PD values. Results showed that there exists an optimal PD which yields the highest remediation efficiency. Next, it was shown that this PD may be obtained by performing a PAS pilot test and measuring the groundwater pressure response in a monitoring well. The characteristic time which describes the exponential decay of the pressure response was shown to provide an adequate estimate for the optimal PD. The estimation improved by taking a number of injection cycles.  相似文献   

5.
Air sparging experiments were conducted in a laboratory column to investigate air flow and mass transfer behavior in different types of sand at different air injection rates. Methyl tertiary butyl ether (MTBE) was applied as a tracer, and by measuring the volatilization and the mean air content during the experiments, the air flow pattern and its influence on mass transfer were assessed. The experimental results showed large differences among the sand types. In fine sand, the mean air content was high and the volatilization of MTBE was rapid with total recovery after a few hours. In coarse sand, the mean air content was low and the volatilization of MTBE was limited. The results indicate two different air flow distributions. In fine-grained materials, a uniform air distribution can be expected compared to coarse-grained materials where isolated air channels will limit the mass transfer. Afterwards, the experiments were simulated using the numerical multiphase flow code T2VOC, and the results compared to those obtained in the laboratory. The experiments with fine sand were simulated well, while for coarser sand types the volatilization was highly overestimated. The differences between model and laboratory results were mainly attributed to the nonuniformity of the air saturation and the neglection of kinetics in the mass transfer formulation.  相似文献   

6.
Horizontal air sparging (HASP) wells offer several potential advantages compared to linear arrays of vertical air sparging wells. For some of these advantages to be realized, however, HASP wells must be able to deliver air uniformly along the length of the well. HASP wells can fail to deliver air uniformly for either engineering or geological reasons.
A 58 m (190-foot) long HASP well, with a 15 m (50-foot) long screen interval, was designed, installed, and tested in eolian dune sand. The relative uniformity of the geologic medium allowed specific evaluation of the impact of the well design on air delivery. A variety of monitoring approaches were used during a six-day pilot test. Pressure drop within the sparge well was found to be negligible through the screen interval of the well. Soil gas pressure and ground water mounding responses were very similar at both ends of the well screen, suggesting relatively uniform air delivery throughout. Electrical resistance tomography results confirmed that airflow in the formation was similar at both ends of the screen interval and that the principal region of airflow was within 1.5 m (5 feet) of the axis of the well. Increased dissolved oxygen was primarily limited to a region within 2.3 m (7.5 feet) of the well and occurred throughout the length of the screen interval. These monitoring results show that HASP wells, properly constructed and installed, can supply air in a generally uniform manner along their length.  相似文献   

7.
Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination.
An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system.
In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels.  相似文献   

8.
A new steady‐state analytical solution to the two‐dimensional radial‐flow equation was developed for drawdown (head) conditions in an aquifer with constant transmissivity, no‐flow conditions at the top and bottom, constant head conditions at a known radial distance, and a partially completed pumping well. The solution was evaluated for accuracy by comparison to numerical simulations using MODFLOW. The solution was then used to estimate the rise of the salt water‐fresh water interface (upconing) that occurs under a pumping well, and to calculate the critical pumping rate at which the interface becomes unstable, allowing salt water to enter the pumping well. The analysis of salt water‐fresh water interface rise assumed no significant effect on upconing by recharge; this assumption was tested and supported using results from a new steady‐state analytical solution developed for recharge under two‐dimensional radial‐flow conditions. The upconing analysis results were evaluated for accuracy by comparison to those from numerical simulations using SEAWAT for salt water‐fresh water interface positions under mild pumping conditions. The results from the equation were also compared with those of a published numerical sharp‐interface model applied to a case on Cape Cod, Massachusetts. This comparison indicates that estimating the interface rise and maximum allowable pumping rate using the analytical method will likely be less conservative than the maximum allowable pumping rate and maximum stable interface rise from a numerical sharp‐interface model.  相似文献   

9.
We derive an analytical model of soil-gas contamination sparged into an imlined unsaturated zone. A nonaqueous phase liquid (NAPL) source lies in the capillary fringe, with an exponential sparge constant within the radius of influence and a constant ambient evaporation rate beyond. Advection, diffusion, and dispersion govern the conservative soil-gas response, expressed as a quasi-steady series solution with radial Bessel and hyperbolic vertical dependence. Simulations suggest that sparged contamination initially spreads beyond the radius of influence down a negative gradient. This gradient eventually reverses, leading to a subsequent influx of ambient contamination. Soil-gas concentrations accordingly reflect slowly varying source conditions as well as slowly varying diffusive transport through the radius of influence. The two time scales are independent: One depends on NAPL, airflow, and capillary fringe characteristics, the other on soil moisture, gaseous diffusivity, and unsaturated zone thickness. The influx of ambient contamination generates an asymptotic soil-gas concentration much less than the initial source concentration. The simple model is applied to a pilot-scale sparging study at Plattsburgh Air Force Base in upstate New York, with physically plausible results.  相似文献   

10.
In situ air sparging is used to remediate petroleum fuels and chlorinated solvents present as submerged contaminant source /ones and dissolved contaminant plumes, or to provide barriers to dissolved contaminant plume migration. Contaminant removal occurs through a combination of volatilization and aerobic biodegradation: thus, the performance at any given site depends on the contaminant and oxygen mass transfer rates induced by the air injection. It has been hypothesized that these rates are sensitive to changes in process flow conditions and site lithology, but no data is available to identify trends or the magnitude of the changes. In this work, oxygenation rates were measured for a range of air injection rates, ground water flow rates, and pulsing frequencies using a laboratory-scale two-dimensional physical model constructed to simulate a homogeneous hydrogeologic setting. Experiments were conducted with water having low chemical and biochemical oxygen demand. Results suggest the following: that there is an optimum air injection rate: advective How of ground water can be a significant factor when ground water velocities are > 0.3 m/d: and pulsing the air injection had little effect on the oxygenation rate relative lo the continuous air injection case.  相似文献   

11.
The basic physics of air flow through saturated porous media are reviewed and implications arc drawn for the practical application of air sparging. A conceptual model of the detailed behavior of an air sparging system is constructed using elements of multiphase flow theory and the results of recent experimental work. Implications of the conceptual model on air sparging topics are discussed. The meaning of radius of influence in the context of air sparging is found to be ambiguous. The hydrodynamic effects of air sparging such as mounding of ground water and flow impedance are explored. Limitations on rates of remediation and operational strategics for improving sparging effectiveness are examined.  相似文献   

12.
Analysis of the vapor in passive vapor samplers retrieved from a streambed in fractured rock terrain implied that volatile organic carbon (VOC) discharge from ground water to surface water substantially increased following installation of a contaminant recovery well using air rotary drilling. The air rotary technique forced air into the aquifer near the stream. The injection produced an upward hydraulic gradient that appears to have transported water and contaminants from deeper parts of the aquifer through fractures into shallow parts of the aquifer. Once in the shallow flow regime, the contamination was transported to the stream, where it discharged during the next several weeks following well installation. After the recovery well was activated and began continuously pumping contaminated ground water to a treatment facility, the VOC concentrations in the stream bottom passive vapor samplers decreased to below detectable concentrations, suggesting that the withdrawal had captured the contaminated ground water that previously had discharged to the stream.  相似文献   

13.
Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical reactive transport simulations were performed to investigate the relevance of different filter operation modes on biodegradation and/or volatilization of the contaminants and to evaluate the potential limitation of such remediation mean due to volatile emissions. On the basis of the data from a pilot‐scale vertical flow filter intermittently fed with domestic waste water, model predictions on the system’s performance for the treatment of contaminated groundwater were derived. These simulations considered the transport and aerobic degradation of ammonium and two VOCs, benzene and methyl tertiary butyl ether (MTBE). In addition, the advective‐diffusive gas‐phase transport of volatile compounds as well as oxygen was simulated. Model predictions addressed the influence of depth and frequency of the intermittent groundwater injection, degradation rate kinetics, and the composition of the filter material. Simulation results show that for unfavorable operation conditions significant VOC emissions have to be considered and that operation modes limiting VOC emissions may limit aerobic biodegradation. However, a suitable combination of injection depth and composition of the filter material does facilitate high biodegradation rates while only little VOC emissions take place. Using such optimized operation modes would allow using vertical flow filter systems as remediation technology suitable for groundwater contaminated with volatile compounds.  相似文献   

14.
Analytical Model for Contaminant Mass Removal by Air Sparging   总被引:2,自引:0,他引:2  
An analytical model was developed lo predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicted tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.  相似文献   

15.
An Overview of In Situ Air Sparging   总被引:3,自引:0,他引:3  
In situ air sparging (IAS) is becoming a widely used technology for remediating sites contaminated by volatile organic materials such as petroleum hydrocarbons. Published data indicate that the injection of air into subsurface water saturated areas coupled with soil vapor extraction (SVE) can increase removal rates in comparison to SVE alone for cases where hydrocarbons are distributed within the water saturated zone. However, the technology is still in its infancy and has not been subject to adequate research, nor have adequate monitoring methods been employed or even developed. Consequently, most IAS applications are designed, operated, and monitored based upon the experience of the individual practitioner.
The use of in situ air sparging poses risks not generally associated with most practiced remedial technologies: air injection can enhance the undesirable off-site migration of vapors and ground water contamination plumes. Migration of previously immobile liquid hydrocarbons can also be induced. Thus, there is an added incentive to fully understand this technology prior to application.
This overview of the current state of the practice of air sparging is a review of available published literature, consultation with practitioners, a range of unpublished data reports, as well as theoretical considerations. Potential strengths and weaknesses of the technology are discussed and recommendations for future investigations are given.  相似文献   

16.
Groundwater elevation fluctuation has been recognized as one mechanism causing temporal indoor air volatile organic chemical (VOC) impacts in vapor intrusion risk assessment guidance. For dissolved VOC sources, groundwater table fluctuation shortens/lengthens the transport pathway, and delivers dissolved contaminants to soils that are alternating between water saturated and variably saturated conditions, thereby enhancing volatilization potential. To date, this mechanism has not been assessed with field data, but enhanced VOC emission flux has been observed in lab-scale and modeling studies. This work evaluates the impact of groundwater elevation changes on VOC emission flux from a dissolved VOC plume into a house, supplemented with modeling results for cyclic groundwater elevation changes. Indoor air concentrations, air exchange rates, and depth to groundwater (DTW) were collected at the study house during an 86-d constant building underpressurization test. These data were used to calculate changes in trichloroethylene (TCE) emission flux to indoor air, during a period when DTW varied daily and seasonally from about 3.1 to 3.4 m below the building foundation (BF). Overall, TCE flux to indoor air varied by about 50% of the average, without any clear correlation to changes in DTW or its change rate. To complement the field study, TCE surface emission fluxes were simulated using a one-dimensional model (HYDRUS 1D) for conditions similar to the field site. Simulation results showed time-averaged surface TCE fluxes for cyclic water-table elevations were greater than for stationary water-table conditions at an equivalent time-averaged water-table position. The magnitudes of temporal TCE emission flux changes were generally less than 50% of the time-averaged flux, consistent with the field site observations. Simulation results also suggested that TCE emission flux changes due to groundwater fluctuation are likely to be significant at sites with shallow groundwater (e.g., < 0.5 m BF) and permeable soil types (e.g., sand).  相似文献   

17.
18.
Horizontal and Vertical Well Comparison for In Situ Air Sparging   总被引:1,自引:0,他引:1  
A laboratory study was conducted to determine the effectiveness ol vertical and horizontal well configurations for ground water remediation using in situ air sparging. A lexan lank was designed and constructed to allow both the visualization of air flow and quantitative measurement of the distribution of air flow. Two media, sand and glass beads. were tested with both Vertical and horizontal air sources. In each case, most of the air traveled through preferential channels as continuous flow rather than as discrete bubbles as reported in other studies. Liven though glass beads were selected to have the same grain-size distribution as the sand, air flow was quite different through the two media. Results show that glass beads are not a suitable material for modeling air flow through natural sediments. In this study, the horizontal well proved to be more effective than the vertical well by impacting more of the media with a uniform distribution of air throughout the media. The vertical well resulted in a nonuniform distribution of air flow with most of the air concentrated directly above the well.  相似文献   

19.
Bair ES  Metheny MA 《Ground water》2002,40(6):657-668
Remediation of ground water and soil contamination at the Wells G & H Superfund Site, Woburn, Massachusetts, uses technologies that reflect differences in hydrogeologic settings, concentrations of volatile organic compounds (VOCs), and costs of treatment. The poorly permeable glacial materials that overlie fractured bedrock at the W.R. Grace property necessitate use of closely spaced recovery wells. Contaminated ground water is treated with hydrogen peroxide and ultraviolet (UV) oxidation. At UniFirst, a deep well completed in fractured bedrock removes contaminated ground water, which is treated by hydrogen peroxide, UV oxidation, and granular activated carbon (GAC). The remediation system at Wildwood integrates air sparging, soil-vapor extraction, and ground water pumping. Air stripping and GAC are used to treat contaminated water; GAC is used to treat contaminated air. New England Plastics (NEP) uses air sparging and soil-vapor extraction to remove VOCs from the unsaturated zone and shallow ground water. Contaminated air and water are treated using separate GAC systems. After nine years of operation at W.R. Grace and UniFirst, 30 and 786 kg, respectively, of VOCs have been removed. In three years of operation, 866 kg of VOCs have been removed at Wildwood. In 15 months of operation, 36 kg of VOCs were removed at NEP. Characterization work continues at the Olympia Nominee Trust, Whitney Barrel, Murphy Waste Oil, and Aberjona Auto Parts properties. Risk assessments are being finalized that address heavy metals in the floodplain sediments along the Aberjona River that are mobilized from the Industri-Plex Superfund Site located a few miles upstream.  相似文献   

20.
Air sparging has proven to be an effective remediation technique for treating saturated soils and ground water contaminated by volatile organic compounds (VOCs). Since little is known about the system variables and mass transfer mechanisms important to air sparging, several researchers have recently performed laboratory investigations to study such issues. This paper presents the results of column experiments performed to investigate the behavior of dense nonaqueous phase liquids (DNAPFs). specifically trichloroethylene (TCE), during air sparging. The specific objectives of the study were (1) to compare the removal of dissolved TCE with the removal of dissolved light nonaqueous phase liquids (LNAPLs). such as benzene or toluene; (2) to determine the effect of injected air-flow rate on dissolved TCE removal; (3) to determine the effect of initial dissolved TCE concentration on removal efficiency; and (4) to determine the differences in removal between dissolved and pure-phase TCE. The test results showed that (1) the removal of dissolved TCE was similar to that of dissolved LNAPL: (2) increased air-injection rates led to increased TCE removal at lower ranges of air injection, but further increases at higher ranges of air injection did not increase the rate of removal, indicating a threshold removal rate had been reached; (3) increased initial concentration of dissolved TCE resulted in similar rates of removal: and (4) the removal of pure-phase TCE was difficult using a low air-injection rate, but higher air-injection rates led to easier removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号