首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We reconstruct the history of the cosmic star formation as well as the cosmic production of metals in the universe by means of detailed chemical evolution models for galaxies of different morphological types. We consider a picture of coeval, non-interacting evolving galaxies where ellipticals experience intense and rapid starbursts within the first Gyr after their formation, and spirals and irregulars continue to form stars at lower rates up to the present time. We show that spirals are the main contributors to the decline of the luminosity density in all bands between z=1 and z=0. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
We study the spatial orientation of 5 169 galaxies that have radial velocity 3 000 to 5 000 km s−1. The ‘position angle–inclination’ method is used to find the spin vector and the projections of spin vector of the galaxy rotation axes. The spatial isotropic distribution is assumed to examine the non-random effects. For this, we have performed chi-square, Fourier, and auto-correlation tests. We found a random alignment of spin vectors of total galaxies with respect to the equatorial coordinate system. The spin vector projections of total galaxies is found to be oriented tangentially with respect to the equatorial center. The spiral galaxies show a similar orientation as shown by the total sample. Five subsamples of barred spiral (late-type) galaxies show a preferred alignment. However, early-type barred spirals show a random orientation. A weak morphological dependence is noticed in the subsamples of late type barred spirals. A comparison with the previous works and the possible explanation of the results will be presented.  相似文献   

3.
We discuss the properties of the galaxies in about 60 rich, nearby clusters, using kinematic data from the ESO Nearby Abell Cluster Survey, combined with new imaging data. The images were used to classify the galaxies, and to recalibrate the galaxy types derived from the ENACS spectra; this yields galaxy-type estimates for about4800 galaxies. For about 1200 galaxies, a bulge/disk decomposition could be made, which yields sizes and luminosities of bulges and disks. From the projected radial distances and relative l.o.s.-velocities we derived the galaxy ensembles with significantly different phase-space distributions. We find that galaxies in and outside substructure must be distinguished. The morphological composition of the substructures appears to vary with projected radius. Outside substructures, 4 galaxy ensembles must be defined: viz. the brighest Es, the other early-type galaxies, the early spirals(Sa-Sb), and the late spirals (including the emission-line galaxies). We also study the morphology-density relation, and we find that the segregation of the late spirals is driven mostly by global factors, while the segregation of Es, S0s and early spirals is driven mostly by local density. The properties of early spirals and S0ssupport the picture in which early spirals transform into S0s, while the properties of the late spirals do not support such a relation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The radial distribution of globular clusters in galaxies is always less peaked to the centre than that of the halo stars. Extending previous work to a sample of Hubble Space Telescope globular cluster systems in ellipticals, we evaluate the number of clusters potentially lost to the galactic centre as the integrals of the difference between the observed globular cluster system distribution and the underlying halo light profile. In the sample of galaxies examined it is found that the initial populations of globular clusters may have been ∼30 per cent to 50 per cent richer than now. If these 'missing' globular clusters have decayed and have been partly destroyed in the very central galactic zones, they have carried there a significant quantity of mass that, plausibly, contributed to the formation and feeding of a massive object therein. It is relevant to note that the observed correlation between the core radius of the globular cluster system and the parent galaxy luminosity can be interpreted as a result of evolution.  相似文献   

5.
We discuss the problem of using stellar kinematics of early-type galaxies to constrain the orbital anisotropies and radial mass profiles of galaxies. We demonstrate that compressing the light distribution of a galaxy along the line of sight produces approximately the same signature in the line-of-sight velocity profiles as radial anisotropy. In particular, fitting spherically symmetric dynamical models to apparently round, isotropic face-on flattened galaxies leads to a spurious bias towards radial orbits in the models, especially if the galaxy has a weak face-on stellar disc. Such face-on stellar discs could plausibly be the cause of the radial anisotropy found in spherical models of intermediate luminosity ellipticals such as NGC 2434, 3379 and 6703.
In the light of this result, we use simple dynamical models to constrain the outer mass profiles of a sample of 18 round, early-type galaxies. The galaxies follow a Tully–Fisher relation parallel to that for spiral galaxies, but fainter by at least 0.8 mag ( I -band) for a given mass. The most luminous galaxies show clear evidence for the presence of a massive dark halo, but the case for dark haloes in fainter galaxies is more ambiguous. We discuss the observations that would be required to resolve this ambiguity.  相似文献   

6.
We use the innermost kinematics of spirals to investigate whether these galaxies could host the massive black hole remnants that once powered the quasi-stellar object (QSO) phenomenon. Hundreds of rotation curves of early- and late-type spirals are used to place upper limits on the central black hole (BH) masses. We find that (i) in late-type spirals, the central massive dark objects (MDOs) are about 10–100 times smaller than the MDOs detected in ellipticals, and (ii) in early-type spirals, the central bodies are likely to be in the same mass range as the elliptical MDOs. As a consequence, the contribution to the QSO/active galactic nuclei (AGN) phenomenon by the BH remnants eventually hosted in spirals is negligible: ρ BH(Sb–Im)<6×104 M Mpc−3 . We find several hints that the MDO mass versus bulge mass relationship is significantly steeper in spirals than in ellipticals, although the very issue of the existence of such a relation for late Hubble type objects remains open. The upper limits on the masses of the BHs resident in late-type spirals are stringent: M BH106–107 M, indicating that only low-luminosity activity could possibly have occurred in these objects .  相似文献   

7.
We present kinematic parameters and absorption line strengths for three brightest cluster galaxies, NGC 6166, 6173 and 6086. We find that NGC 6166 has a velocity dispersion profile which rises beyond 20 arcsec from the nucleus, with a halo velocity dispersion in excess of 400 km s−1. All three galaxies show a positive and constant h 4 Hermite moment. The rising velocity dispersion profile in NGC 6166 thus indicates an increasing mass-to-light ratio. Rotation is low in all three galaxies, and NGC 6173 and 6086 show possible kinematically decoupled cores. All three galaxies have Mg2 gradients similar to those found in normal bright ellipticals, which are not steep enough to support simple dissipative collapse models, but these could be accompanied by dissipationless mergers which would tend to dilute the abundance gradients. The [Mg/Fe] ratios in NGC 6166 and 6086 are higher than that found in NGC 6173, and if NGC 6173 is typical of normal bright ellipticals, this suggests that cDs cannot form from late mergers of normal galaxies.  相似文献   

8.
By using the SDSS spectra, we have studied the star formation properties of the nearby spiral galaxies selected from the Revised Bright Galaxy Sample, and tried to find the effect of bar structure on the star formation activity in the nuclear regions of nearby galaxies. The stellar population composition and the intensity of star formation activities of each sample galaxy are acquired by using the stellar population synthesis code—STARLIGHT, and the star formation properties of nuclear regions are compared with those of integral sample galaxies. We find that the star formation in barred spiral galaxies is more active than that of unbarred spirals, and that barred spirals have younger stellar populations.  相似文献   

9.
We have assembled a catalogue of relative ages, metallicities and abundance ratios for about 150 local galaxies in field, group and cluster environments. The galaxies span morphological types from cD and ellipticals, to late-type spirals. Ages and metallicities were estimated from high-quality published spectral line indices using Worthey & Ottaviani (1997) single stellar population evolutionary models.
The identification of galaxy age as a fourth parameter in the fundamental plane ( Forbes, Ponman & Brown 1998 ) is confirmed by our larger sample of ages. We investigate trends between age and metallicity, and with other physical parameters of the galaxies, such as ellipticity, luminosity and kinematic anisotropy. We demonstrate the existence of a galaxy age–metallicity relation similar to that seen for local galactic disc stars, whereby young galaxies have high metallicity, while old galaxies span a large range in metallicities.
We also investigate the influence of environment and morphology on the galaxy age and metallicity, especially the predictions made by semi-analytic hierarchical clustering models (HCM). We confirm that non-cluster ellipticals are indeed younger on average than cluster ellipticals as predicted by the HCM models. However we also find a trend for the more luminous galaxies to have a higher [Mg/Fe] ratio than the lower luminosity galaxies, which is opposite to the expectation from HCM models.  相似文献   

10.
We have determined a dust-free colour–magnitude (CM) relation for spiral galaxies, by using I  −  K colours in edge-on galaxies above the plane. We find that the scatter in this relation is small and approximately as large as can be explained by observational uncertainties. The slope of the near-IR CM relation is steeper for spirals than for elliptical galaxies. We suggest two possible explanations. First, the difference could be caused by vertical colour gradients in spiral galaxies. In that case these gradients should be similar for all galaxies, on average ∼0.15 dex in [Fe/H] per scaleheight, and should increase for later galaxy types. The most likely explanation, however, is that spirals and ellipticals have intrinsically different CM relations. This means that the stars in spirals are younger than those in ellipticals. The age, however, or the fraction of young stars in spiral galaxies would be determined solely by the luminosity of the galaxy, and not by its environment.  相似文献   

11.
Galaxies can be classified in two broad sequences which are likely to reflect their formation mechanism. The 'main sequence', consisting of spirals, irregulars and all dwarf galaxies, is probably produced by gas settling within dark matter haloes. We show that the sizes and surface densities along this sequence are primarily determined by the distributions of the angular momentum and formation time of dark haloes. They are well reproduced by current cosmogonies provided that galaxies form late, at z  ≲ 2. In this scenario, dwarf ellipticals were small 'discs' at z  ∼ 1 and become 'ellipticals' after they fall into cluster environments. The strong clustering of dwarf ellipticals is then a natural by-product of the merging and transformation process. The number of dwarf galaxies predicted in a cluster such as Virgo is in good agreement with the observed number. On the other hand, the 'giant branch', consisting of giant ellipticals and bulges, is probably produced by the merging of disc galaxies. Based on the observed phase-space densities of galaxies, we show that the main bodies of all giant ellipticals can be produced by dissipationless mergers of high-redshift discs. However, high-redshift discs, although denser than present-day ones, are still not compact enough to produce the high central phase-space density of some low-luminosity ellipticals. Dissipation must have occurred in the central parts of these galaxies during the merger which formed them.  相似文献   

12.
We use semi-analytical modelling of galaxy formation to predict the mix of elliptical galaxies with boxy and disky isophotes, assuming they originated from major mergers of different mass ratios. Numerical simulations of merging spiral galaxies indicate equal mass mergers leading to boxy and merger with a mass ratio of 3:1 to disky ellipticals. Assigning isophotal shapes to elliptical galaxies in our model we find bright disky ellipticals being as frequent or more frequent as bright boxy ellipticals, in contrast to observations which indicate that most of the bright ellipticals should be boxy. The precursors of bright ellipticals in our model are mainly also ellipticals which merge with each other later. Assuming that the merger of two ellipticals results in boxy ellipticals increases the fraction of bright boxy ellipticals. By defining a disky as a bulge dominated galaxy with an additional disk mass of more than 20% the total baryonic mass, increases the fraction of low mass disky ellipticals and reproduces the observed trend of a steep increase in the fraction of low mass disky ellipticals. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
We use semi-analytical modelling of galaxy formation to predict the mix of elliptical galaxies with boxy and disky isophotes, assuming they originated from major mergers of different mass ratios. Numerical simulations of merging spiral galaxies indicate equal mass mergers leading to boxy and merger with a mass ratio of 3:1 to disky ellipticals. Assigning isophotal shapes to elliptical galaxies in our model we find bright disky ellipticals being as frequent or more frequent as bright boxy ellipticals, in contrast to observations which indicate that most of the bright ellipticals should be boxy. The precursors of bright ellipticals in our model are mainly also ellipticals which merge with each other later. Assuming that the merger of two ellipticals results in boxy ellipticals increases the fraction of bright boxy ellipticals. By defining a disky as a bulge dominated galaxy with an additional disk mass of more than20% the total baryonic mass, increases the fraction of low mass disky ellipticals and reproduces the observed trend of a steep increase in the fraction of low mass disky ellipticals. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
We present a study focusing on the nature of compact groups through the study of their elliptical galaxies. We determine central velocity dispersions (σo) for 18 bright elliptical galaxies located in the core of Hickson compact groups and a control sample of 12 brightbona fide ellipticals located in the field or very loose groups. Several tests are carried out to avoid systematic effects in σ measurements. We use these velocity dispersions to compare the position of 11 compact group galaxies in the Fundamental Plane to that of a large and homogeneous sample of elliptical galaxies (Burstein et al., 1987).We find that little or no significant difference exists, as far as the Fundamental Plane is concerned, between ellipticals in compact groups and their counterparts in other environments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We present new Planetary Nebula Spectrograph observations of the ordinary elliptical galaxy NGC 4494, resulting in positions and velocities of 255 planetary nebulae out to seven effective radii (25 kpc). We also present new wide-field surface photometry from MMT/Megacam, and long-slit stellar kinematics from VLT/FORS2. The spatial and kinematical distributions of the planetary nebulae agree with the field stars in the region of overlap. The mean rotation is relatively low, with a possible kinematic axis twist outside  1 R e  . The velocity dispersion profile declines with radius, though not very steeply, down to  ∼70 km s−1  at the last data point.
We have constructed spherical dynamical models of the system, including Jeans analyses with multi-component Λ cold dark matter (CDM) motivated galaxies as well as logarithmic potentials. These models include special attention to orbital anisotropy, which we constrain using fourth-order velocity moments. Given several different sets of modelling methods and assumptions, we find consistent results for the mass profile within the radial range constrained by the data. Some dark matter (DM) is required by the data; our best-fitting solution has a radially anisotropic stellar halo, a plausible stellar mass-to-light ratio and a DM halo with an unexpectedly low central density. We find that this result does not substantially change with a flattened axisymmetric model.
Taken together with other results for galaxy halo masses, we find suggestions for a puzzling pattern wherein most intermediate-luminosity galaxies have very low concentration haloes, while some high-mass ellipticals have very high concentrations. We discuss some possible implications of these results for DM and galaxy formation.  相似文献   

16.
利用SDSS光谱,研究了IRAS卫星亮红外源星表中的盘状星系中的恒星形成性质,并着重探讨了棒对星系核区恒星形成活动的影响.利用星族合成的方法得到了每个样本星系核区的恒星组成性质、恒星形成活动的强度等信息,并比较了星系整体和核区恒星形成性质的差异.得到的结论:除去相互作用,样本中的棒星系显示出比非棒旋星系更强的核区恒星形成活动和更多的年轻星族成分.  相似文献   

17.
We investigate the process of galaxy formation as can be observed in the only currently forming galaxies - the so-called Tidal Dwarf Galaxies, hereafter TDGs - through observations of the molecular gas detected via its CO (Carbon Monoxide) emission. These objects are formed of material torn off of the outer parts of a spiral disk due to tidal forces in a collision between two massive galaxies. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a bona fide galaxy. We have detected CO in 8 TDGs (Braine, Lisenfeld, Duc and Leon, 2000: Nature 403, 867; Braine, Duc, Lisenfeld, Charmandaris, Vallejo, Leon and Brinks: 2001, A&A 378, 51), with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few 108 M . The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H2. Although TDGs share many of the properties of small irregulars, their CO luminosity is much greater (factor ∼ 100) than that of standard dwarf galaxies of comparable luminosity. This is most likely a consequence of the higher metallicity (≳sim 1/3 solar) of TDGs which makes CO a good tracer of molecular gas. This allows us to study star formation in environments ordinarily inaccessible due to the extreme difficulty of measuring the molecular gas mass. The star formation efficiency, measured by the CO luminosity per Hα flux, is the same in TDGs and full-sized spirals. CO is likely the best tracer of the dynamics of these objects because some fraction of the HI near the TDGs may be part of the tidal tail and not bound to the TDG. Although uncertainties are large for individual objects, as the geometry is unknown, our sample is now of eight detected objects and we find that the ‘dynamical’ masses of TDGs, estimated from the CO line widths, seem not to be greater than the ‘visible’ masses (HI + H2 + a stellar component). Although higher spatial resolution CO (and HI) observations would help reduce the uncertainties, we find that TDGs require no dark matter, which would make them the only galaxy-sized systems where this is the case. Dark matter in spirals should then be in a halo and not a rotating disk. Most dwarf galaxies are dark matter-rich, implying that they are not of tidal origin. We provide strong evidence that TDGs are self-gravitating entities, implying that we are witnessing the ensemble of processes in galaxy formation: concentration of large amounts of gas in a bound object, condensation of the gas, which is atomic at this point, to form molecular gas and the subsequent star formation from the dense molecular component. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

18.
We study the mass distribution in six nearby  ( z < 0.06)  relaxed Abell clusters of galaxies A0262, A0496, A1060, A2199, A3158 and A3558. Given the dominance of dark matter in galaxy clusters, we approximate their total density distribution by the Navarro, Frenk & White (NFW) formula characterized by virial mass and concentration. We also assume that the anisotropy of galactic orbits is reasonably well described by a constant and that galaxy distribution traces that of the total density. Using the velocity and position data for 120–420 galaxies per cluster we calculate, after removal of interlopers, the profiles of the lowest order even velocity moments, dispersion and kurtosis. We then reproduce the velocity moments by jointly fitting the moments to the solutions of the Jeans equations. Including the kurtosis in the analysis allows us to break the degeneracy between the mass distribution and anisotropy and constrain the anisotropy as well as the virial mass and concentration. The method is tested in detail on mock data extracted from the N -body simulations of dark matter haloes. We find that the best-fitting Galactic orbits are remarkably close to isotropic in most clusters. Using the fitted pairs of mass and concentration parameters for the six clusters, we conclude that the trend of decreasing concentration for higher masses found in the cosmological N -body simulations is consistent with the data. By scaling the individual cluster data by mass, we combine them to create a composite cluster with 1465 galaxies and perform a similar analysis on such sample. The estimated concentration parameter then lies in the range  1.5 < c < 14  and the anisotropy parameter in the range  −1.1 < β < 0.5  at the 95 per cent confidence level.  相似文献   

19.
Dynamical studies of local elliptical galaxies and the Fundamental Plane point to a strong dependence of the total mass-to-light ratio ( M / L ) on luminosity with a relation of the form   M / L ∝ L γ  . The 'tilt'γ may be caused by various factors, including stellar population properties (metallicity, age and star formation history), initial mass function, rotational support, luminosity profile non-homology and dark matter (DM) fraction. We evaluate the impact of all these factors using a large uniform data set of local early-type galaxies from Prugniel & Simien. We take particular care in estimating the stellar masses, using a general star formation history, and comparing different population synthesis models. We find that the stellar M / L contributes little to the tilt. We estimate the total M / L using simple Jeans dynamical models, and find that adopting accurate luminosity profiles is important but does not remove the need for an additional tilt component, which we ascribe to DM. We survey trends of the DM fraction within one effective radius, finding it to be roughly constant for galaxies fainter than   M B∼−20.5  , and increasing with luminosity for the brighter galaxies; we detect no significant differences between S0s and fast- and slow-rotating ellipticals. We construct simplified cosmological mass models and find general consistency, where the DM transition point is caused by a change in the relation between luminosity and effective radius. A more refined model with varying galaxy star formation efficiency suggests a transition from total mass profiles (including DM) of faint galaxies distributed similarly to the light to near-isothermal profiles for the bright galaxies. These conclusions are sensitive to various systematic uncertainties which we investigate in detail, but are consistent with the results of dynamical studies at larger radii.  相似文献   

20.
Hubble Space Telescope observations of distant clusters have suggested a steep increase in the proportion of S0 galaxies between clusters at high redshifts and similar systems at the present day. It has been proposed that this increase results from the transformation of the morphologies of accreted field galaxies from spirals to S0s. We have simulated the evolution of the morphological mix in clusters based on a simple phenomenological model where the clusters accrete a mix of galaxies from the surrounding field, the spiral galaxies are transformed to S0s (through an unspecified process) and are added to the existing cluster population. We find that in order to reproduce the apparently rapid increase in the ratio of S0 galaxies to ellipticals in the clusters, our model requires that: (1) the galaxy accretion rate has to be high (typically, more than half of the present-day cluster population must have been accreted since z ∼0.5) , and (2) most of the accreted spirals, with morphological types as late as Scdm, must have transformed to S0s. Although the latter requirement may be difficult to meet, it is possible that such bulge-weak spirals have already been 'pre-processed' into the bulge-strong galaxies prior to entering the cluster core and are eventually transformed into S0s in the cluster environment. On the basis of the evolution of the general morphological mix in clusters our model suggests that the process responsible for the morphological transformation takes a relatively long time (∼ 1–3 Gyr) after the galaxy has entered the cluster environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号