首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
Recently recognized solar millimetre-wave off-limb sources are interpreted as a special phenomenon of long-duration post- and inter-flare emission at coronal altitudes. We present, for the first time, information about the brightness and polarization spectrum in the centimetre range for one such event of September 22, 1980 by means of RATAN-600 observations.The brightness temperatures observed favour the interpretation of the bulk of the emission by thermal optically thin bremsstrahlung. The degree of polarization measured (p 0.1–0.2 in the range 7.5–15 GHz) implies quite strong magnetic fields of about 300 ± 100 G at a height z > 3 × l04km above the photosphere and indicates a possible contribution of gyromagnetic radiation and/or optically thick bremsstrahlung at longer wavelengths.  相似文献   

2.
Tu  C.-Y.  Marsch  E. 《Solar physics》1997,171(2):363-391
A model of the solar corona and wind is developed which includes for the first time the heating and acceleration effects of high-frequency Alfvén waves in the frequency range between 1 Hz and 1 kHz. The waves are assumed to be generated by the small-scale magnetic activity in the chromospheric network. The wave dissipation near the gyro-frequency, which decreases with increasing solar distance, leads to strong coronal heating. The resulting heating function is different from other artificial heating functions used in previous model calculations. The associated thermal pressure-gradient force and wave pressure-gradient force together can accelerate the wind to high velocities, such as those observed by Helios and Ulysses. Classical Coulomb heat conduction is also considered and turns out to play a role in shaping the temperature profiles of the heated protons. The time-dependent two-fluid (electrons and protons) model equations and the time-dependent wave-spectrum equation are numerically integrated versus solar distance out to about 0.3 AU. The solutions finally converge and settle on time-stationary profiles which are discussed in detail. The model computations can be made to fit the observed density profiles of a polar coronal hole and polar plume with the sonic point occurring at 2.4 R and 3.2 R , respectively. The solar wind speeds obtained at 63 R are 740 km s-1 and 540 km s-1; the mass flux is 2.1 and 2.2 × 108 cm-2 s-1 (normalized to 1 AU), respectively. The proton temperature increases from a value of 4 × 105 K at the lower boundary to 2 × 106 K in the corona near 2 R .  相似文献   

3.
Durrant  C.J.  Wilson  P.R. 《Solar physics》2003,214(1):23-39
We have used observations obtained by the National Solar Observatory at Kitt Peak to study the reversals of the polar magnetic fields in Cycle 23. We have compared them with corresponding data obtained by the Mt. Wilson Observatory, when these are available, testing both data sets against the locations of H filaments. Because of the unreliability of the data at extreme latitudes and because the apparent time of reversal varies with the degree of smoothing applied to the data, it is difficult to determine precise reversal time in each hemisphere from direct observations. However, we show that it is possible to obtain a better-defined and more precise reversal time using polar maps derived from simulations of the synoptic fields. These indirect values, however, depend critically on the diffusivity used in the simulations. We applied various tests to confirm an empirical value for the diffusivity parameter of about 600 km 2 s –1 and hence determined empirical reversal times of CR 1976 in the northern hemisphere and CR 1981 in the south.  相似文献   

4.
Erofeev  D.V. 《Solar physics》2001,203(1):9-25
The distribution of polar faculae with respect to latitude is investigated, using data obtained at the Ussuriysk Observatory during the years 1963–1994. To correct the data for the effect of visibility, a visibility function of polar faculae is derived. Corrected surface density of polar faculae is calculated as a function of latitude and time. During most part of each solar cycle, polar faculae exhibit pronounced concentrations at high latitudes with maxima of the surface density located near the poles. Such concentrations of polar faculae (below referred to as `polar condensations') are formed after a lapse of 1–2 years from the polar magnetic field reversals, and then they persist for 7–9 years, until the high-latitude magnetic fields again start to reverse. During several years after the sunspot minima, the polar condensations co-exist with the new latitudinal belts of polar faculae which appear at middle latitudes and then migrate toward the poles. To describe the evolution of the polar condensations quantitatively, the polar faculae density n at latitudes above 60° has been approximated by means of the power law nn 0 cosm where is polar angle. The parameters n 0 and m both are found to vary during the course of the solar cycle, reaching maximum values near or shortly after the minimum of sunspot activity. At the minimum phase of the solar cycle, on average, the surface density of polar faculae varies as cos14. In addition to the 11-yr variation, the latitude–time distribution of polar faculae exhibits short-term variations occurring on the time scale of 2–3 years.  相似文献   

5.
We compare solar X-ray observations from the UCSD experiment aboard OSO-7 with high resolution energetic electron observations from the UCAL experiment on IMP-6 for a small solar flare on 26 February 1972. A proportional counter and NaI scintillator covered the X-ray energy range 5–300 keV, while a semiconductor detector telescope covered electrons from 18 to 400 keV. A series of four non-thermal X-ray spikes were observed from 1805 to 1814 UT with average spectrum dJ/d (hv) (hv)–4.0 over the 14–64 keV range. The energetic electrons were observed at 1 AU beginning 1840 UT with a spectrum dJ/dE E –3.1. If the electrons which produce the X-ray emission and those observed at 1 AU are assumed to originate in a common source, then these observations are consistent with thin target X-ray production at the Sun and inconsistent with thick target production. Under a model consistent with the observed soft X-ray emission, we obtain quantitative estimates of the total energy, total number, escape efficiency, and energy lost in collisions for the energetic electrons.  相似文献   

6.
The gravitational radiation from a highly relativistic test particle spiralling inward toward a Kerr black hole along a conical surface is estimated. The spectra of several lowest multipoles depending on the polar angle of the falling particle at infinity are obtained for the frequency band c 3 GM–1.  相似文献   

7.
Simultaneous observations of a solar limb flare in the X-ray and ultraviolet regions of the spectrum are presented. Temporal and spectral X-ray observations were obtained for the 25–300 keV range while temporal, spectral, and spatial X-ray observations were obtained for the 30–0.3 keV range. The ultraviolet observations were images with a 10 spatial resolution in the lines of O v (T e 2.5 × 105 K) and Fe xxi (T e 1.1 × 107 K). The hard X-ray and O v data indicate that the impulsive phase began in the photosphere or chromosphere and continued for several minutes as material was ejected into the corona. Impulsive excitation was observed up to 30 000 km above the solar surface at specific points in the flare loop. The Fe xxi observations indicate a preheating before the impulsive phase and showed the formation of hot post-flare loops. This later formation was confirmed by soft X-ray observations. These observations provide limitations for current flare models and will provide the data needed for initial conditions in modeling the concurrent coronal transient.  相似文献   

8.
Cyclotron microwave emission from magnetic stars is considered, assuming that they have coronae with the temperatureT107 K and the emission measureEM1054 cm–3. It has been shown that the cyclotron radiation from a star with a dipole magnetic field has a specific spectrum with a maximum in the frequency rangesv o/2 >v >sv o/2 (s being the number of cyclotron harmonic, andv o the gyrofrequency corresponding to the polar magnetic field) and radiation flux decreasing towards lower frequencies asv 4/3. The frequency of the spectrum maximum depends on the angle between the line-of-sight and the magnetic axis of the star. The observed radiation from a rotating magnetic star can be modulated with a modulation depth of about 0.2 at frequencies near maximum. The radiation is partially circularly-polarized in the sense of an extraordinary mode. The degree of polarization is almost constant at frequenciesv >sv o/2 and increases with frequency atv >sv o/2. The estimation of cyclotron radio fluxes of the nearest magnetic stars shows that they are observable in microwaves by means of modern radio astronomy.  相似文献   

9.
The Monoceros ring, a circular optical nebulosity 3°.5 in diameter and centred at R.A.=6h37m, Dec.=6°30 (l ii =205°.5,b ii =0°.2) is in good structural agreement with radio observations. A neutral hydrogen shell is also accurately projected on the ring. These observations are consistent with the Monoceros ring being a supernova remnant 90–100 pc in diameter expanding at about 45 km s–1 and having an age of the order of a million years. Bright Hii regions containing early-type stars (e.g., galactic cluster NGC 2244 in the Rosette nebula) and extremely young stars of the OB association Mon OB2 lie at the edges of the ring. The positional and temporal coincidence of the Mon OB2 association with a supernova remnant suggests that probably the star formation in this region is induced or speeded up by the passage of a supernova shock wave through the clumpy interstellar medium.  相似文献   

10.
The absorption of cosmic radio noise passing through the ionosphere may be described as a function of radio wave frequencyA(f e ) f e -n , with n 2.0 for spatially uniform precipitation of electrons and n < 2.0 for spatially nonuniform precipitation. Using multifrequency riometer recordings at SANAE, the following observations are reviewed: (1) The frequency distribution of the power index, n, obtained from 4 min averaged absorptions during 1983, shows a most probable value around n 1.5, indicating that mostly energetic electrons are precipitated spatially structured onto the upper atmosphere, as in optical aurora. (2) Multifrequency riometer recordings suggest that field-aligned ionospheric irregularities have scattered additional cosmic radio waves from the central region of the Galaxy into the fields of views of the riometer antennae during an auroral absorption event in the early morning hours of 27 July, 1982. With the power reflectivity by ionospheric irregularities inversely proportional to the fourth power of radio wave frequency, as required by the Bragg condition, an estimated 70% increase in the 20 MHz radio flux at 01:22 UT, at the strong absorption peak, can explain the strongly reduced absorption observed in 20 MHz relative to 30 and 51.4 MHz. (3) Gradual increases in absorptions observed at all three riometer frequencies from onset at 11:50 UT of the largest solar proton ground level enhancement on 29 September, 1989, until 18:00 UT, suggest diffusion of the much more intense low energy protons from the polar cap to the L=4.0 geomagnetic field shell and subsequent precipitation at SANAE due to the South Atlantic Geomagnetic Anomaly. (4) The flux of electron energy deposited per second at SANAE is closely related to geomagnetic activity, but has a lower maximum during the years 1971 and 1980 of solar polar magnetic reversals than in the years 1976 and 1986/87 of minimum solar activity. (5) A significant correlation has been found between the arrival of single-hop whistlers and 30 MHz riometer absorption events, using point statistics. The maximum absorption at 30 MHz was 0.04 dB with a delay of 3 ± 2 s relative to the whistler.  相似文献   

11.
Medium resolution observations have been used to find the fractional emitting area in three transition region lines. It is found that is given by DI mg x k where k varies from 0.78 to 0.51 in the temperature range 2 × 105 to 7 × 105 K. The average emitting area in O vi deduced by this method is in good agreement with the results from ATM observations. The fractional emitting areas at different values of the Mg x intensity and at different temperatures are combined to find the variation of the areas with height. This variation is in good agreement with Giovanelli's model of the fractional area of cross-section of a magnetic tube of force in the transition region.  相似文献   

12.
He i 10830 Å synoptic maps, obtained at the Kitt Peak National Observatory during 1974–1979, show that the Sun's polar coronal holes have contracted significantly during 1977–1978. Prior to the accelerated increase of sunspot activity in mid-1977, the area of each polar cap was on the order of 8% of the Sun's total surface area (4R 2), whereas toward the end of 1978 these areas fell below 2% of 4R 2. Synoptic polar plots show that the vestigual holes had irregular shapes and were often well removed from the poles themselves. These results are consistent with the changes that one would expect when the polar magnetic fields are weakening just prior to sunspot maximum.  相似文献   

13.
Kress  J.M.  Wilson  P.R. 《Solar physics》2000,194(1):1-17
The revised Mount Wilson synoptic magnetic data for the period September 1987 through March 1996 are used as the basis of numerical simulations of the evolution of both the northern and southern polar magnetic fields during the reversal and declining phases of cycle 22. The simulations are based on numerical solutions of the flux-transport equation which involve, as parameters, the maximum meridional flow speed, v 0, and the supergranule diffusivity, . By matching characteristics of the observed and simulated fields, such as the observed reversal times, the evolution of the net flux above 60 °, and the migration of the polar crown, empirical values of these parameters, i.e., v 0=11 m s–1,=600 km2 s–1, may be determined. Further, the observed decrease in the mean net flux above 60 ° during the late declining phase of cycle 22 can be simulated only by increasing the diffusivity to 900 km2 s–1. However, direct observations of the supergranule velocities yield values of the diffusivity of order 200 km2 s–1, and we show that the inclusion of a pattern of emerging bipoles in the simulations can increase the diffusion of these fields and that, together with a more realistic value of the diffusivity, it is possible to reproduce qualitatively the features of the observed polar field reversals.  相似文献   

14.
D. McConnell 《Solar physics》1982,78(2):253-269
Observations of the solar radio spectrum have been made with high time and frequency resolution. Spectra were recorded over six 3-MHz bands between 30 and 82 MHz. The receivers used were capable of time and frequency resolutions of 1 ms and 2 kHz, respectively. A large number of radio bursts exhibiting a variety of find spectral structure were recorded.The bursts, referred to here as S bursts, were observed throughout the 30–82 MHz frequency range but were most numerous in the 33–44 MHz band and were very rare at 80 MHz. On a dynamic spectrum the bursts appeared as narrow sloping lines with the centre frequency of each burst decreasing with time. The rate of frequency drift was about 1/3 that of type III bursts. Most bursts were observed over only a limited frequency range (< 5 MHz) but some drifted for more than 10 MHz. The durations measured at a single frequency and the instantaneous bandwidths of S bursts were small; t = 49 ± 34 ms and f = 123 ± 56 kHz for bursts observed near 40 MHz. A significant number had t 20 ms. Flux densities of S burst sources were estimated to fall in the range 1023-5 × 1021 Wm–1 Hz–1.A small proportion (1–2%) of bursts showed a fine structure in which the burst source apparently only emitted at discrete, regularly spaced frequencies causing the spectrogram to exhibit a series of bands or fringes. The fringe spacing increased with wave frequency and was f - 90 kHz for fringes near 40 MHz. The bandwidths of fringes was narrow, often less than 30 kHz and in some cases down to 10–15 kHz.New address: Astronomy Program, University of Maryland, College Park, MD, U.S.A.  相似文献   

15.
Observations of V4334 Sgr have been made with the JCMT, MERLIN, ATCAand the VLA. Searches with JCMT for CO in and around the PNassociated with V4334 Sgr has provided upper limits for the peakemission of 20 mK and the line-flux of 0.17 K-km s-1. Thisgives an upper limit on the CO mass of 3 × 10-7D2 M at D kpc. VLA observations havedetected 2.7 ± 0.1 mJy of emission from the PN, which appears to beclumpy and extends to a radius of 17 arcsec. This indicates anoptically thick nebula, and suggests a range of distances of 1.83 to4.96 kpc for a reasonable range of masses for optically thick PN.Comparison with estimated total H emission gives E(B-V) =0.8 ±0.1. MERLIN observations do not detect the wind indicated tobe present in IR observations prior to dust obscuration. TheAustralia Telescope Compact Array did not detect OH maser emissionfrom either the main- or satellite-lines. Future VLA observationswill increase integration times and uv-coverage to significantlyimprove the radio imaging. MERLIN target-of-opportunity time isretained in order to attempt to image any fast wind as it develops.An independent estimate of the PN mass would allow the use of theradio observations to determine the distance; conversely anindependent distance measurement would lead to a PN mass estimate.The author urges the acquisition of an accurate measurement of thetotal H emission from the PN.  相似文献   

16.
An empirical model of atomic ion densities (H+, He+, N+, O+) is presented up to 4000 km altitude as a function of time (diurnal, annual), space (position, altitude) and solar flux (F10.7) — using observations of satellites (AE-B, AE-C, AE-D, AE-E, ISIS-2, OGO-6) and rockets during quiet geophysical conditions (K p 3). The numerical treatment is based upon harmonic functions for the horizontal pattern and cubic splines for the vertical structure.The ion densities increase with increasing height up to a maximum (depending roughly on the ion mass) and decrease beyond that with increasing altitude. Above 200 km, O+ is the main ionic constituent being replaced at approximately 800 km (depending on latitude, local time, etc.) by H+. Around polar regions the light ions, H+ and He+, are depleted (polar wind) and the heavier ones enhanced. During local summer conditions the ion densities increase around polar latitudes and correspondingly decrease during local winter, except He+ which reflects the opposite pattern. Diurnal variations are intrinsically coupled to the individual plasma layers: N+ and O+ peak, in general, during daytime, while the amplitudes and phases of H+ and He+ change strongly with altitude and latitude. Earth, Moon and Planets Review article.  相似文献   

17.
Using a 32 minutes sequence of observation, brightness and velocity fluctuations in the wings of the Mgi line at 5172.7 Å and Fe ii line at 5197.578 Å are analysed. The analysis of phase shifts and amplitude ratios leads to the following conclusions:
(1)  In the frequency range from (400s)–1 to (130s)–1, we find the existence of three modes of waves: internal gravity, evanescent and propagating acoustic waves which appear with increasing frequency. A satisfactory agreement for velocity between observations and theory in the range of horizontal wavelengths \s>5000km with a theoretically local relaxation time –180s-40s is obtained. The calculation of intensity fluctuations shows that the Mgi line is sensitive to temperature and density fluctuations while the Fe ii line is only sensitive to temperature perturbation. For the best fit with the same value of –1 to both lines (i.e., Fe ii and Mg i) it is found necessary that the density effect should be taken into account for the Mg i intensity fluctuations. The relaxation time deduced from observed intensity fluctuations seems to decrease with the period of oscillation. This suggests the presence of a dissipation process.  相似文献   

18.
    
Chuan-Yi Tu 《Solar physics》1971,109(1):149-186
A new solar wind model has been developed by including in the model the Alfvénic fluctuation power spectrum equation proposed by Tu et al. (1984). The basic assumptions of the model are as follows: (1) for heliocentric distances r > 10 R , the radial variation of the power spectrum of Alfvénic fluctuations is controlled by the spectrum equation (1), (2) for heliocentric distances r < 10 R , the radial variation of the fluctuation amplitude is determined by the Alfvén wave WKB solution, (3) no energy cascades from the low-frequency boundary of the Alfvénic fluctuation power spectrum into the fluctuation frequency range, and the energy which cascades from the high-energy boundary of the spectrum into the higher frequency range is transported to heat of the solar wind flow. Some solutions of this model which, on one hand, describe the major properties of the Alfvénic fluctuations and the high-speed flow observed by Helios in the space range between 0.3–1 AU and, on the other hand, are consistent with the observational constraints at the coronal base have been obtained under the following conditions: (1) the spectrum index of the fluctuations is near to -1 for almost the whole frequency range at 10 R , (2) the particle flux density at 1 AU is not greater than 3 × 108 cm–2 s–1, (3) the solution is for spherically-symmetric flow geometry or the solution passes through the outermost of the three critical points of the rapidly diverging flow geometry with f max = 7. Some solutions passing through the innermost critical point of the rapidly diverging flow geometry with f max = 7 have been found, however, with too low pressure at the coronal base to compare with the observational constraints. Heat addition or other kind of momentum addition for r < 10 R is required to modify this model to yield better agreement with observations. A cascade energy flux function which leads to Kolmogorov power law in the high-frequency range of Alfvénic fluctuations is presented in Appendix A. More detailed discussions about the characteristics, the boundary conditions and the solution of the spectrum equation (1) are given in Appendix B.Projects supported by the Science Fund of the Chinese Academy of Sciences.  相似文献   

19.
Results from new observations of pulsars using the Ooty Radio Telescope(ORT) are used for investigating the structure of the Local InterstellarMedium (LISM) and the nature of the plasma turbulence spectrum in theInterstellar Medium (ISM). The observations show anomalous scintillationtowards several nearby pulsars, and these are modelled in terms oflarge-scale spatial inhomogeneities in the distribution of plasma densityfluctuations in the LISM. A 3-component model, where the Solar neighborhoodis surrounded by a shell of enhanced plasma turbulence, is proposed for theLISM. The inferred scattering structure is strikingly similar to the LocalBubble. The nature of the plasma turbulence spectrum is found to be Kolmogorov-like in the spatial scale range 106 m to 1011 m,and there is evidence for excess power at larger spatial scales.  相似文献   

20.
All four large EUV bursts (peak 10–1030 Å flux enhancements 2 ergs cm–2 s–1 at 1 AU as deduced from sudden frequency deviations), for which there were available concurrent white light observations of at least fair quality, were detected as white light flares. The rise times and maxima of the white light emissions coincided with rise times and maxima of the EUV bursts. The frequency of strong EUV bursts suggests that white light flares may occur at the rate of five or six per year near sunspot maximum. All of the white light flare areas coincided with intense bright areas of the H flares. These small areas appeared to be sources of high velocity ejecta in H. The white light flares occurred as several knots or patches of 2 to 15 arc-sec diameter, with bright cores perhaps less than 2 arc-sec diameter (1500 km). They preferred the outer penumbral borders of strong sunspots within 10 arc-sec of a longitudinal neutral line in the magnetic field. The peak continuum flux enhancement over the 3500–6500 Å wavelength range is about the same order of magnitude as the peak 10–1030 Å flux enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号