首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the effect of various environmental factors on algal blooms is essential for proper management of water resources. Eight weirs were constructed on the Nakdong River in South Korea between 2010 and 2011 to manage water resources and deal with possible floods and droughts. In this study, water quality observation data were collected from eight representative monitoring sites in the Nakdong River between 2001 and 2016. Particularly, the effect of the weirs construction on water retention time was statistically analyzed in terms of algal growth and other important water quality parameters. While there was slight increase of water temperature (0.8 °C) over 16 years, the concentrations of total phosphorous (TP) and total nitrogen (TN) decreased by 62.3, and 12.9%, respectively, after the construction of weirs. This TP decrease was noticeable, but still high enough to maintain the eutrophic state of the river. Correlation statistical analysis suggests that the Chl-a concentration is positively affected by the changes of TP, TN and chemical oxygen demand. However, there was no direct correlation between Chl-a concentration and the increased water retention time from the weir construction.  相似文献   

2.
In the present study, the performance of three moving bed biofilm reactors (MBBRs) has been evaluated in series with anaerobic/anoxic/oxic (A2O) units for simultaneous removal of organic matter and nutrients (nitrogen and phosphorous) from a synthetic wastewater with characteristics similar to those of a typical municipal wastewater. Response surface methodology based on central composite design was used to investigate the effects of nitrate recycle ratio, hydraulic retention time (HRT), and influent chemical oxygen demand (COD) on the organic and nutrient removal and optimization process. The optimized values of influent COD, HRT, and R were 462 mg/L, 10 h, and 3.52, respectively. The predicted and observed values at optimized conditions were 92.8% and 93 ± 1.3%, 84.3% and 84 ± 1.3%, 71.7% and 68 ± 1.6% for COD, TN, and TP removals and 100 and 97 ± 1.2 mL/g for sludge volume index, respectively. After that, the influent COD, TN, and TP were increased to 550, 48, and 12 mg/L, respectively, to partly simulate the organics and nutrient variations of real wastewater treatment plants. The COD, TN, and TP removals were 91 ± 1.3, 82 ± 1.1, and 71 ± 0.8%, respectively. The influent COD, TN, and TP were increased again to 650, 56, and 14 mg/L, respectively. After this phase, the COD, TN, and TP removals were 90 ± 0.8, 80 ± 1.2, and 70 ± 1.0%, respectively. Obtained results indicated the good stability of the optimized system and the ability of MBBRs to remain stable at influent organics and nutrient variations. The ratio of attached volatile solids to mixed liquor volatile suspended solids was 1.90 ± 0.10, 2.07 ± 0.09, and 2.25 ± 0.14 in phases 1, 2, and 3, respectively. These high ratios indicate that the microorganisms had favored the attached growth to the suspended growth within the whole operation time.  相似文献   

3.
A combined ABR–MBR process consisting of an anaerobic baffled reactor (ABR) combined with an aerobic membrane bioreactor (MBR) treating municipal wastewater was investigated at controlled pH range 6.5–8.5 and at constant temperature 25 ± 1 °C. Total nitrogen (TN), ammonia (NH4 +–N), total phosphorus (TP), and chemical oxygen demand (COD) removal performances were evaluated by analyzing the mechanism for efficient nutrient removal. The results showed that the average removal rates of COD, NH4 +–N, TN, and TP reached 93, 99, 79, and 92 %, respectively, corresponding with the COD, NH4 +–N, TN, and TP effluent of 24 (18–31), 0.4 (0–0.8), 10.6 (8.8–12.9), and 0.31 (0.1–0.5) mg/L under the operational condition of hydraulic retention time (HRT) 7.5 h, recycle ratio 200 %, and dissolved oxygen 3 mg/L. The MBR enhanced NH4 +–N, TN, and TP removal rates of 13, 10, and 18 %, respectively, and the membrane retention reduced TP 0.17 mg/L. The process was able to maintain a stable performance with high-quality effluent. Analysis of the results by fluorescence in situ hybridization showed that the abundance of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and phosphorus accumulating organisms as percentages of all bacteria in each compartment was stable. The enriched microorganisms in the system appear to be the main drivers of the process efficient for nutrient removal.  相似文献   

4.
The Changjiang Estuary is one of the largest estuaries in the world, where hypoxia frequently occurs during the summer season. Recent routine surveys in the observed area found that the low dissolved oxygen (DO) in the summer bottom water was not rapidly expanding with increasing nutrient loads in Changjiang diluted waters. Based on the remote sensing data and in situ data, we examined the historic seasonal hypoxia observations for the bottom waters of the Changjiang Estuary and investigated the short- and long-term effects that runoff had on variations in DO and chlorophyll-a (Chl-a). Our analysis indicated that the recent areal variation in hypoxia was due to the changing Chl-a distribution and stratification conditions. The correspondence between hypoxia and surface Chl-a concentration showed that remotely sensed Chl-a larger than 3.0 mg L?1 was an essential condition for the formation of hypoxia off the Changjiang Estuary. The trend of Chl-a concentration was significantly impacted by the Three Gorges Dam (TGD), and the inter-annual variation of Chl-a was weakly affected by global-scale climate variability. After the TGD impoundment, the sediment loading in the Changjiang runoff and suspended sediments in Changjiang Estuary in August decreased, and the high Chl-a concentration moved landward. These shifted the hypoxia from its optimal forming conditions.  相似文献   

5.
Soil samples from 0 to 100 cm depth were collected in four sampling sites (Sites A, B, C and D) along a 250-m length of sampling zone from the Yellow River channel to a tidal creek in a seasonal flooding wetland of the Yellow River Delta of China in fall of 2007 and spring of 2008 to investigate spatial and seasonal distribution patterns of total phosphorous (TP) and available phosphorus (AP) and their influencing factors. Our results showed that TP contents in spring and AP contents in both seasons in surface soils increased with increasing distances away from the Yellow River channel. TP contents in surface soils (0–10 cm) followed the order Site A (698.6 mg/kg) > Site B (688.0 mg/kg) > Site C (638.8 mg/kg) > Site D (599.2 mg/kg) in fall, while Site C (699.6 mg/kg) > Site D (651.7 mg/kg) > Site B (593.6 mg/kg) > Site A (577.5 mg/kg) in spring. Generally, lower TP content (630.6 mg/kg) and higher AP level (6.2 mg/kg) in surface soils were observed in spring compared to fall (656.2 mg/kg for TP and 5.2 mg/kg for AP). Both TP and AP exhibited similar profile distribution patterns and decreased with depth along soil profiles with one or two accumulation peaks at the depth of 40–80 cm. Although the mean TP content in soil profiles was slightly higher in spring (635.7 mg/kg) than that in fall (628.0 mg/kg), the mean TP stock was obviously lower in spring (959.9 g/m2) with an obvious accumulation at the 60–80 cm soil depth compared to fall (1124.6 g/m2). Topsoil concentration factors also indicated that TP and AP had shallower distribution in soil profiles. Correlation analysis showed that AP had significant and positive correlation with these soil properties such as soil organic matter, salinity, total nitrogen and Al (p < 0.01), but TP was just significantly correlated with TN and Al (p < 0.05).  相似文献   

6.
Nutrient inputs have degraded estuaries worldwide. We investigated the sources and effects of nutrient inputs by comparing water quality at shallow (< 2m deep) nearshore (within 200 m) locations in a total of 49 Chesapeake subestuaries and Mid-Atlantic coastal bays with differing local watershed land use. During July–October, concentrations of total nitrogen (TN), dissolved ammonium, dissolved inorganic N (DIN), and chlorophyll a were positively correlated with the percentages of cropland and developed land in the local watersheds. TN, DIN, and nitrate were positively correlated with the ratio of watershed area to subestuary area. Total phosphorus (TP) and dissolved phosphate increased with cropland but were not affected by developed land. The relationships among N, P, chlorophyll a, and land use suggest N limitation of chlorophyll a production from July–October. We compared our measurements inside the subestuaries to measurements by the Chesapeake Bay Program in adjacent estuarine waters outside the subestuaries. TP and dissolved inorganic P concentrations inside the subestuaries correlated with concentrations outside the subestuaries. However, water quality inside the subestuaries generally differed from that in adjacent estuarine waters. The concentration of nitrate was lower inside the subestuaries, while the concentrations of other forms of N, TP, and chlorophyll a were higher. This suggests that shallow nearshore waters inside the subestuaries import nitrate while exporting other forms of N as well as TP and chlorophyll a. The importance of local land use and the distinct biogeochemistry of shallow waters should be considered in managing coastal systems.  相似文献   

7.
Urban soil nitrogen and phosphorus have significant implications for the soil and water quality in urban areas. The concentrations of total nitrogen (TN) and total phosphorus (TP) of soil samples collected from six types of land use, which included residential area (RA), business area (BA), classical garden (CG), culture and education area (CEA), public green space (PGS) and roadside area (RSA) of Beijing urban area, were investigated. Results showed that the geometric mean of TP (857 mg/kg) in urban soils was slightly higher than that (745 mg/kg) in rural soils of Beijing. The concentration of soil TP was higher in the center of the city, and showed an increasing trend with the age of the urban area. The TP concentrations in the six types of land use followed the sequence of CG > BA > RSA > RA > CEA > PGS, which were affected by the use and disposal of phosphorus-containing materials in each type of land use. However, the geometric mean of TN (753.8 mg/kg) in urban soils was much lower than that (1,933.3 mg/kg) in rural soils. TN level in urban soils of Beijing had no correlation with the city’s urbanization history, and was influenced by the coverage of natural vegetation and human activities in each type of land use. This study suggested that the city’s urbanization history and land use were the main factors affecting the distribution of nitrogen and phosphorus in urban soils.  相似文献   

8.
Concentrations and vertical distributions of total nitrogen (TN), total phosphorus (TP) and their different forms in sediments obtained from nine locations of Lake Dalinouer in September 2008 were analyzed. The results demonstrated that TP in surface sediments ranged from 0.493 to 0.904 g/kg, and inorganic phosphorus was the main fraction of total phosphorus, ranging from 335 to 738 mg/kg. Simultaneously, the autogenetic calcium phosphorus (ACa-P) was the main fraction of inorganic phosphorus, ranging from 145.4 to 543.2 mg/kg. Vertical distribution of different phosphorus forms in different sediment cores was distinguishing, and most of them tended to increase toward the surface sediment, indicated that the phosphorus concentration was related to the humanity with a certain extent. The relationships between TP and occluded phosphorus and ACa-P were significant. Nitrogen in the sediment was composed mainly of organic nitrogen, accounting for grater than 80 % of TN. NO3 ?-N was the dominate fraction of inorganic nitrogen in the surface sediment, ranging between 51 and 346 mg/kg (151.1 ± 104.4 mg/kg), and accounting for between 2.2 and 17.7 % of total sediment nitrogen (6.2 ± 5.6 %). The ratio of organic carbon and TN in sediment was in range of 6.0–25.8 and presented a tendency of lake centre >lake sides, indicating that nitrogen accumulated in the sediments from lake sides came mainly from terrestrial source and nitrogen was mainly autogenetic in lake centre. Ratio of N:P in all sampling sites was below 14, indicated that N was the limiting nutrient for algal growth in this lake.  相似文献   

9.
The Cuatrociénegas area is useful for the investigation of the effect of groundwater extraction in the Chihuahuan freshwater xeric ecoregion. It has been investigated at this time using a selection of geochemical indicators (major, minor and trace elements) and δ34S data, to characterize the origin of groundwater, the main geochemical processes and the mineral/groundwater interactions controlling the baseline geochemistry. The area is composed of limestones of Mesozoic age, with a composite thickness of about 500 m, overlaid by basin fill (poorly consolidated young sediments). Substantial water extraction and modification of natural discharges from the area along the last century have produced a detrimental impact on ecosystem structure and function. Water–rock interactions, mixing and evaporative processes dominate the baseline groundwater quality. Natural recharge is HCO3–Ca type in equilibrium with calcite, low salinity (TDS?<?500 mg/L), Cl? lower than 11 mg/L and average Li+ concentration of 0.005 mg/L. Along the groundwater flow systems, δ34S evidence and mass transfer calculations indicate that Cretaceous gypsum dissolution and dedolomitization reactions adjust water composition to the SO4–Ca type. The increase of water–rock interaction is reflected by Cl? values increase (average 68 mg/L), TDS up to about 1500 mg/L and an average Li+ concentration of 0.063 mg/L. Calculations with chemical geothermometers indicate that temperature at depth could be at maximum of 15–20 °C higher than field-measured temperature for pozas. After groundwater is discharged to the surface, chemical evolution continues; water evaporation, CO2 degassing and precipitation of minerals such as gypsum, calcite and kaolinite represent the final processes and reactions controlling water chemical composition.  相似文献   

10.
Assessment of chemistry of groundwater infiltrated by pit-toilet leachate and contaminant removal by vadose zone form the focus of this study. The study area is Mulbagal Town in Karnataka State, India. Groundwater level measurements and estimation of unsaturated permeability indicated that the leachate recharged the groundwater inside the town at the rate of 1 m/day. The average nitrate concentration of groundwater inside the town (148 mg/L) was three times larger than the permissible limit (45 mg/L), while the average nitrate concentration of groundwater outside the town (30 mg/L) was below the permissible limit. The groundwater inside the town exhibited E. coli contamination, while groundwater outside the town was free of pathogen contamination. Infiltration of alkalis (Na+, K+) and strong acids (Cl?, SO4 2?) caused the mixed Ca–Mg–Cl type (60 %) and Na–Cl type (28 %) facies to predominate groundwater inside the town, while, Ca–HCO3 (35 %), mixed Ca–Mg–Cl type (35 %) and mixed Ca–Na–HCO3 type (28 %) facies predominated groundwater outside/periphery of town. Reductions in E. coli and nitrate concentrations with vadose zone thickness indicated its participation in contaminant removal. A 4-m thickness of unsaturated sand + soft, disintegrated weathered rock deposit facilitates the removal of 1 log of E. coli pathogen. The anoxic conditions prevailing in the deeper layers of the vadose zone (>19 m thickness) favor denitrification resulting in lower nitrate concentrations (28–96 mg/L) in deeper water tables (located at depths of ?29 to ?39 m).  相似文献   

11.
In 2005 a Cylindrospermopsis raciborskii bloom occurred in the Rio Verde Lake Basin (Brazil). To address this concern, a field analysis was performed to measure physicochemical variables and flows in 14 sub-basins, between 2008 and 2009. Measurements of mean total P (0.039 mg/L ± 0.018 mean SD), mean total Kjeldahl N (0.260 mg/L ± 0.226 mean SD), and mean BOD (1.2 mg/L ± 0.4 mean SD) concentrations were low in most streams, while COD reached a high of 27.1 mg/L (±4.9 mean SD). One tributary was responsible for 85 % of TP load, 77.1 % of TKN load, 78 % of t-BOD load, and 79 % of t-COD load. These concentrations and loads were used to develop the pollution potential assessment matrix (2PAM), which considered three different perspectives: stream water quality, reservoir ecosystem equilibrium, and sub-basin management. Each factor (TP, TKN, BOD and COD) was weighted based on concentration, total load and unit-area load. Pollution potential differed depending on which perspective was considered. The matrix developed, 2PAM, provides a new way to analyze concentrations and loads, enabling basin managers to prioritize action plans according to desired use within the basin.  相似文献   

12.
The effects of inactivation agents, including common polymeric aluminium (Al) chloride (CPAC) and Ecological Type PAC (UNIC), on phosphorus (P) released from sediment are unclear. To determine these effects, we performed seven experiments using various inactivation agent additions. The experimental schemes used were as follows: (1) CPAC, 15 mg Al L?1; (2) CPAC (15 mg Al L?1) + polyacrylamide (PAM) (0.5 mg L?1); (3) UNIC, 5 mg Al L?1; (4) UNIC, 15 mg Al L?1; (5) UNIC, 60 mg Al L?1; (6) control set without any inactivation agent addition; and (7) alkali shock load (the pH value of overlying water in the scheme 7 was adjusted to 11 by addition of sodium hydroxide to simulate alkali shock load at 13 days after CPAC addition). The experiments were conducted in glass columns, each containing 0.3 L sediment from Lake Dianchi and 3 L of overlying water. The results showed that P release rate decreased as the amount of inactivation agent added increased. P release rate was calculated according to each inactivation agent and the amount of inactivation agent added. Release rate found was in the decreasing order: (6) > (3) > (4) > (1) > (5) > (2). The corresponding rate was calculated to be 7.11, 6.16, 4.55, 1.76, 1.46 and 1.00 mg P m?2 day?1, respectively. Dissolved total P (DTP) was the main form of total P (TP) in the overlying water. After the addition of PAM, the DTP:TP ratio decreased while the dissolved inorganic P (DIP):DTP ratio increased. With increasing the amount of inactivation agents added, both DTP:TP and DIP:TP ratios decreased. Experimental group 3 had similar DTP:TP and DIP:TP ratios to experimental group 6. These results are significant in terms of the large-scale application of inactivation agents for reducing levels of bioreactive P. Alkali shock load (experimental group 7) caused failure in the inactivation of P by CPAC.  相似文献   

13.
选择长江中下游49个湖泊进行不同季节的水体溶解无机氮(DIN)、总氮(TN)、总磷(TP),溶解性无机磷(DIP)以及叶绿素a(Chla)等环境参数分析,开展不同营养水平湖泊水体环境变化特征及生物响应机制研究。结果表明:DIN、TN/TP随TP的变化规律反映了不同营养水平和季节下地球化学作用的影响;氨氮(NH4-N)、TP、DIP、Chla尤其是NH4-N的季节性变化规律与营养水平关系密切;TP<0.05 mg/L时,NH4-N随总磷升高的趋势夏季大于其他季节,TN/TP与硝态氮(NO3-N)、TN相关性好,营养源组成和氨化作用是主要影响因素;0.05 mg/L4-N随总磷升高的趋势基本相同,TN/TP与亚硝态氮(NO2-N)、NO3-N、TN相关好,水生植物利用、氨化和反硝化作用是主要影响因素。TP>0.1 mg/L,冬季NH4-N随总磷升高的趋势明显大于其他季节,TN/TP在冬季和春季与TN、NO3-N相关性好,夏季和秋季与TP相关性好,其主要原因在于夏季和秋季水生植物对DIN的利用量、反硝化作用和湖泊内源释放的显著增强。  相似文献   

14.
Tibetan Plateau (TP) is the highest and most extensive plateau in the world and has been known as the roof of the world, and it is sensitive to climate change. The researches of CO2 fluxes (F C) in the TP region play a significant role in understanding regional and global carbon balance and climate change. Eddy covariance flux measurements were conducted at three sites of south-eastern TP comprising Dali (DL, cropland ecosystem), LinZhi (LZ, alpine meadow ecosystem) and Wenjiang (WJ, cropland ecosystem); amongst those DL and LZ are located in plateau region, while WJ is in plain region. Dynamics of F C and influences of vegetation, meteorological (air temperature, photosynthetically active radiation, soil temperature and soil water content) and terrain factors (altitude) were analysed on the basis of data taken during 2008. The results showed that, in the cool sub-season (March, April, October and December), carbon sink appeared even in December with fluxes of (?0.021 to ?0.05) mg CO2 m?2 s?1 and carbon source only in October (0.03 ± 0.0048) mg CO2 m?2 s?1 in DL and WJ site. In LZ site, carbon sink was observed in April: (?0.036 ± 0.0023) mg COm?2 s?1 and carbon sources in December and March (0.008–0.010 mg CO2 m?2 s?1). In the hot sub-season (May–August), carbon source was observed only in May with (0.011 ± 0.0022), (0.104 ± 0.0029) and (0.036 ± 0.0017) fluxes in LZ, DL and WJ site, respectively, while carbon sinks with (?0.021 ± 0.0041), (?0.213 ± 0.0007) and (?0.110 ± 0.0015) mg CO2 m?2 s?1 fluxes in LZ, DL, and WJ, respectively. Comparing with plain region (WJ), carbon sinks in plateau region (DL and LZ) lasted for a longer time, and the absorption sum was large and up to (–357.718 ± 0.0054) and (?371.111 ± 0.0039) g C m?2 year?1, respectively. The LZ site had the weakest carbon sink with (?178.547 ± 0.0070) g C m?2 year?1. Multivariate analysis of covariance showed that altitude (AL) as an independent factor explained 39.5 % of F C (P < 0.026). F C had a quadratic relationship with Normalized difference vegetation index (NDVI) (R 2 ranges from 0.485 to 0.640 for three sites), an exponential relationship with soil temperature at 5-cm depth (ST 5) at night time and a quadratic relationship with air temperature (T a) at day time. Path analysis indicated that photosynthetically active radiation (PAR), sensible heat fluxes (H) and other factors all had direct or indirect effects on F C in all of the three tested sites around the south-eastern TP.  相似文献   

15.
High Arsenic (As) concentrations have been reported in superficial water in the Yamuna flood plains (YFP), Delhi, which is being extensively used for agriculture. The concentration of As in some common vegetables such as Solanum lycopersicum (tomato), Abelmoschus esculentus (lady’s finger), Solanum melongena (brinjal), Lagenaria siceraria (bottle gourd), Raphanus sativus (radish), Zea mays (corn), and Luffa acutangula (ridge gourd) has been studied in this work. The range of As concentrations (dry weight) varies from 0.6 to 2.52 mg/kg with the highest accumulation of 2.52 mg/kg in radish followed by tomato (2.36 mg/kg). The order of As concentration in the decreasing order is R. sativus > S. lycopersicum > Z. mays > L. acutangula > L. siceraria > S. melongena > A. esculentus. Thus, As accumulation is the highest in roots and the lowest in least juicy fruits. The daily dietary intake of As through the consumption of various vegetables was also calculated. Though the mean As concentration was the highest in radish (2.52 mg/kg) but the highest amount of As is being consumed through tomato (0.383 mg/day), which is nearly three times the World Health Organization’s provisional maximum tolerable daily intake limit of 0.126 mg/day for a 60 kg person. High concentration of As in vegetables grown in YFP, Delhi is being reported here. This high contamination is primarily due to the presence of As in irrigation water having its source from coal-based thermal power plants in the vicinity of the area. If not checked properly, it will pose a serious health risk to people living in these densely populated areas surrounding YFP.  相似文献   

16.
The physicochemical qualities of a typical rural-based river were assessed over a 12-month period from August 2010 to July 2011 spanning the spring, summer, autumn and winter seasons. Water samples were collected from six sampling sites along Tyume River and analysed for total nitrogen, orthophosphate, biochemical oxygen demand (BOD), temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), total dissolved solids (TDS) and turbidity. BOD regimes did not differ significantly between seasons and between sampling points and ranged from 0.78 to 2.76 mg/L across seasons and sampling points, while temperature ranged significantly (P < 0.05) between 6 and 28 °C. Turbidity varied significantly (P < 0.05) from 6 to 281 nephelometric turbidity units while TDS (range 24–209 ppm) and conductivity (range 47.6–408 mg/L) also varied significantly (P < 0.05) across sampling points with a remarkable similarity in their trends. Orthophosphate concentrations varied from 0.06 to 2.72 mg/L across seasons and sampling points. Negative correlations were noted between temperature and the nutrients, DO and temperature (r = ?0.56), and TDS and DO (r = ?0.33). Positive correlations were noted between TDS and temperature (r = 0.41), EC and temperature (r = 0.15), and DO and pH (r = 0.55). All nutrients were positively correlated to each other. Most measured parameters were within prescribed safety guidelines. However, the general trend was that water quality tended to deteriorate as the river flows through settlements, moreso in rainy seasons.  相似文献   

17.
In the present study, the effectiveness of physicochemical treatment processes (coagulation and Fenton’s oxidation) was investigated for simulated dairy wastewater (pH = 7.3, chemical oxygen demand (COD) = 3600 mg/l, 5-day biochemical oxygen demand (BOD5) = 1950 mg/l, total Kjeldahl nitrogen (TKN) = 87 mg/l, and total phosphorous (TP) = 14 mg/l). Plain and ballasted coagulation runs were carried out in a jar apparatus, while Fenton’s oxidation was performed in a three-neck glass reactor. Ballasted coagulation caused an enhancement in the settling rate of sludge though no significant enhancement in the removal of organics was observed. Individually, coagulation and Fenton’s oxidation processes resulted in ~67 and 80 % COD removals, respectively, from the wastewater. The sequential treatment exploring coagulation followed by Fenton’s oxidation showed overall COD, BOD5, TKN, and TP reductions of ~93, 97, 84, and 70 %, respectively, from the wastewater. However, a biological post-treatment would be required to achieve the effluent discharge standards. The removal of proteins, fats, and amino acids from wastewater was confirmed from Fourier transform infrared analysis of the settled sludge (obtained after coagulation process). Preliminary cost analysis suggested coagulation and the sequential treatment (i.e. coagulation followed by Fenton’s oxidation) as the preferred options.  相似文献   

18.
In the present study the removal of nitrates from wastewater using Pseudomonas stutzeri microorganism in a Gas–Liquid–Solid bioreactor at the concentration of 200 ppm was studied for a period of 12 h. The response surface methodology with the help of central composite design and genetic algorithm were employed to optimize the process parameters such as airflow rate, biofilm carrier, carbon source, temperature and pH which are responsible for the removal of nitrates. The optimized values of parameters found from RSM are airflow rate 2.41 lpm, biofilm carrier 15.15 g/L, carbon source 85.0 mg/L, temperature 29.74 °C, pH 7.47 and nitrate removal 193.16. The optimized parameters obtained from genetic algorithm are airflow rate 2.42 lpm, biofilm carrier 15.25 g/L, carbon source 84.98 mg/L, temperature 29.61 °C, pH 7.51 and nitrate removal is 194.14. The value of R2 > 0.9831 obtained for the present mathematical model indicates the high correlation between observed and predicted values. The optimal values for nitrate removal at 200 ppm are suggested according to genetic algorithm and at these optimized parameters more than 96 % of nitrate removal was estimated, which meets the standards for drinking water.  相似文献   

19.
We investigated spatial and temporal changes in spectral irradiance, phytoplankton community composition, and primary productivity in North Inlet Estuary, South Carolina, USA. High concentrations of colored dissolved organic matter (CDOM) were responsible for up to 84 % of the attenuation of photosynthetically available radiation (PAR). Green-yellow wavelengths were the predominant colors of light available at the two sampling sites: Clam Bank Creek and Oyster Landing. Vertical attenuation coefficients of PAR were 0.7–2.1 m?1 with corresponding euphotic zone depths of 1.5–6.7 m. Phytoplankton biomass (as chlorophyll a [chl a]) varied seasonally with a summer maximum of 16 μg chl a l?1 and a winter minimum of 1.4 μg chl a l?1. The phytoplankton community consisted mainly of diatoms, prasinophytes, cryptophytes and haptophytes, with diatoms and prasinophytes accounting for up to 67 % of total chl a. Changes in phytoplankton community composition showed strongest correlations with temperature. Light-saturated chl a-specific rates of photosynthesis and daily primary productivity varied with season and ranged from 1.6 to 14 mg C (mg chl a) ?1?h?1 (32–803 mg C m?3?day?1). Calculated daily rates added up to an annual carbon fixation rate of 84 g C m?3?year?1. Overall, changes in phytoplankton community composition and primary productivity in North Inlet showed a strong dependence on temperature, with PAR and spectral irradiance playing a relatively minor role due to short residence times, strong tidal forcing and vertical mixing.  相似文献   

20.
In this study, the performance of moving-bed biofilm sequencing batch reactor in operating the anaerobic/anoxic/oxic (A2O) process for treatment of wastewaters containing nitrogen and phosphorous was evaluated. For this purpose, a pilot system with two bench-scale sequencing batch reactors with a total volume of 30 L and functional volume of 10 L was used. The installation was elaborated using plexiglass, in which 60% of the functional volume consisted of PVC suspended carriers (Kaldnes K3) with a specific surface area of 560 m2/m3. The independent variables used in this study were hydraulic retention time (HRT) (1.5, 2, 2.5, 3, and 3.5 h) and the initial organic load (300, 500, 800, 1000 mg O2/L). The results showed impressive performance in the case of an initial organic load of 300 mg O2/L and HRT of 3 h with maximum removal of COD and TN, respectively, by 95.1 and 89.8%. In the case of an initial organic load of 1000 mg O2/L and HRT of 3.5 h, the maximum total phosphorus removal was 72.3%. Therefore, according to the analysis of data obtained by different HRTs, it was revealed that the system of A2O has greater efficiency in removing organic matter from wastewater in the shortest possible time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号