首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fluoride (F?) is an indispensable element for the human’s skeletal and dental health at prescribed levels and becomes lethal at higher levels. Spatial–temporal variability of F? and its geochemical control/association with other dissolved ions in groundwater in the Dindigul district of Tamilnadu (India) were conducted to describe the geochemical dynamics of F in response to seasonal variability. High concentrations of fluoride (≥1.5 mg L?1) were observed in the northern region of the district. High levels of F? were observed in non-monsoon periods and low levels in monsoon, because of dilution by precipitation. Bicarbonate was well correlated with F? which explains that both ions were derived from the weathering. While F? has a very weak correlation with silica, this implies that the silicate weathering does not supply F? to the groundwater system. The F? pollution in Dindigul groundwaters is mainly driven by two factors: (1) the geogenic weathering inputs, the geology of this area mainly comprises fluoride bearing minerals (e.g. hornblende biotite gneiss and charnockite); (2) the anthropogenic inputs (agri-fertilizers and tannery waste). Further, F? in the study area is mainly attributed to geogenic sources during pre and postmonsoons and anthropogenic sources in monsoon periods.  相似文献   

2.
Riverbank sediment cores and pore waters, shallow well waters, seepage waters and river waters were collected along the Meghna Riverbank in Gazaria Upazila, Bangladesh in Jan. 2006 and Oct.–Nov. 2007 to investigate hydrogeochemical processes controlling the fate of groundwater As during discharge. Redox transition zones from suboxic (0–2 m depth) to reducing (2–5 m depth) then suboxic conditions (5–7 m depth) exist at sites with sandy surficial deposits, as evidenced by depth profiles of pore water (n = 7) and sediment (n = 11; diffuse reflectance, Fe(III)/Fe ratios and Fe(III) concentrations). The sediment As enrichment zone (up to ∼700 mg kg−1) is associated with the suboxic zones mostly between 0 and 2 m depth and less frequently between 5 and 7 m depth. The As enriched zones consist of several 5–10 cm-thick dispersed layers and span a length of ∼5–15 m horizontally from the river shore. Depth profiles of riverbank pore water deployed along a 32 m transect perpendicular to the river shore show elevated levels of dissolved Fe (11.6 ± 11.7 mg L−1) and As (118 ± 91 μg L−1, mostly as arsenite) between 2 and 5 m depth, but lower concentrations between 0 and 2 m depth (0.13 ± 0.19 mg L−1 Fe, 1 ± 1 μg L−1 As) and between 5 and 6 m depth (1.14 ± 0.45 mg L−1 Fe, 28 ± 17 μg L−1 As). Because it would take more than a few hundred years of steady groundwater discharge (∼10 m yr−1) to accumulate hundreds of mg kg−1 of As in the riverbank sediment, it is concluded that groundwater As must have been naturally elevated prior to anthropogenic pumping of the aquifer since the 1970s. Not only does this lend unequivocal support to the argument that As occurrence in the Ganges-Brahmaputra-Meghna Delta groundwater is of geogenic origin, it also calls attention to the fate of this As enriched sediment as it may recycle As into the aquifer.  相似文献   

3.
The groundwater abstracted at a well field near the Yamuna River in Central Delhi, India, has elevated ammonium (NH4 +) concentrations up to 35 mg/L and arsenic (As) concentrations up to 0.146 mg/L, constituting a problem with the provision of safe drinking and irrigation water. Infiltrating sewage-contaminated river water is the primary source of the NH4 + contamination in the aquifer, leading to reducing conditions which probably trigger the release of geogenic As. These conclusions are based on the evaluation of six 8–27-m deep drillings, and 13 surface-water and 69 groundwater samples collected during seven field campaigns (2012–2013). Results indicate that losing stream conditions prevail and the river water infiltrates into the shallow floodplain aquifer (up to 16 m thickness), which consists of a 1–2-m thick layer of calcareous nodules (locally known as kankar) overlain by medium sand. Because of its higher hydraulic conductivity (3.7 × 10?3 m/s, as opposed to 3.5 × 10?4 m/s in the sand), the kankar layer serves as the main pathway for the infiltrating water. However, the NH4 + plume front advances more rapidly in the sand layer because of its significantly lower cation exchange capacity. Elevated As concentrations were only observed within the NH4 + plume indicating a causal connection with the infiltrating reducing river water.  相似文献   

4.
This research was conducted at Samrak Park Delta of Nakdong River Basin in Busan Metropolitan City, Korea. The main objective of this study was to evaluate the interrelationship of geochemical elements in sediments and groundwater through multivariate statistical analyses and a multilayer perceptron artificial neural network model. The mean concentrations of chemical elements were Si (46%), Fe (16.9%), Al (15.7%), K (7.5%) and Ca (4.5%) in sediments, and Na (8650 mg/L), Mg (999 mg/L), Ca (432 mg/L), K (293 mg/L) and Cl (17,640 mg/L) in groundwater, respectively. The principal component analysis produced 3 kinds of factors with the variances of 63.37, 27.02 and 9.62%, respectively. It is suggested that the chemical components of sediments and groundwater were mainly originated from source rocks and seawater intrusion, with the minor impacts of irrigation and industry. Cluster analysis also showed that chemical elements were mainly controlled by the natural geogenic sources and seawater intrusion. Multilayer perceptron of artificial neural network (ANN) presented the good interrelationship between sediment and groundwater. The determination coefficients (R 2) between ANN predicted values and observed values in groundwater showed the high values of 0.61–0.97 except Mg, Mn and Sr. It is revealed that the chemical components of sediment and groundwater were derived from local geological origin and from the minor impact of anthropogenic sources. Multivariate analyses and ANN contributed to the identification of the mutual relationship between the geochemical elements of sediment and those of groundwater.  相似文献   

5.
Fluoride in drinking water has both beneficial and detrimental effects on public health, and a narrow range between .6 and 1.5 mg/L is optimal for consumption. However, natural groundwater sources exceed these guidelines affecting the entire population. This study aims to assess the distribution and controlling factors of fluoride concentration in the Tamiraparani River basin, South India. A total of 124 groundwater samples were analyzed for their fluoride content and other hydrogeochemical parameters. The fluoride concentration in the study area varied from .01 to 1.67 mg/L, and the highest concentrations were measured in the northern and central parts of the study area, which is underlain by charnockites and hornblende biotite gneiss. The sampling indicated (as per the Bureau of Indian Standards) that 53.9% of the area has fluoride concentrations below levels that are protective of teeth from dental caries (<.6 mg/L). .1% of the area is considered to be at risk of dental fluorosis, and the remaining 46% of the area is considered to have fluoride levels at desirable to permissible limit in groundwater. The groundwater in the study area belongs to Ca–Mg–Cl–SO4 and Ca–Mg–HCO3 types. A positive correlation between fluoride and TDS, Na+, K+ and HCO3 ? indicates its geogenic origin, and positive loading between pH and fluoride shows that alkaline environment enhances the dissolution of fluoride-bearing minerals into the groundwater. An empirical Bayesian kriging model was applied to interpolate the fluoride concentration in the study area. This geostatistical model is found to be better than other kriging methods, and it yielded an average standard error of .332 and root-mean-square standardized value of .986.  相似文献   

6.
The estuarine environment can serve as either a source or sink of carbon relative to the coastal ocean carbon budget. A variety of time-dependent processes such as sedimentation, carbon supply, and productivity dictate how estuarine systems operate, and Mobile Bay is a system that has experienced both natural and anthropogenic perturbations that influenced depositional processes and carbon cycling. Sediments from eight box cores provide a record of change in bulk sediment accumulation and carbon burial over the past 110 years. Accumulation rates in the central part of the basin (0.09 g cm?2) were 60–80 % less than those observed at the head (0.361 g cm?2) and mouth (0.564 g cm?2) of the bay. Sediment accumulation in the central bay decreased during the past 90 years in response to both anthropogenic (causeway construction) and natural (tropical cyclones) perturbations. Sediment accumulation inevitably increased the residence time of organic carbon in the oxic zone, as observed in modeled remineralization rates, and reduced the overall carbon burial. Such observations highlight the critical balance among sediment accumulation, carbon remineralization, and carbon burial in dynamic coastal environments. Time-series analysis based solely on short-term observation would not capture the long-term effects of changes in sedimentation on carbon cycling. Identifying these relationships over longer timescales (multi-annual to decadal) will provide a far better evaluation of coastal ocean carbon budgets.  相似文献   

7.
Although arsenic (As) contamination has been extensively investigated in the aquifers of the lower and middle Gangetic plains, less attention has been given to the distribution and fate of As in the groundwater of the upper Gangetic plain, India. In the current study, groundwater samples (n = 40) were collected from Moradabad district in the upper Gangetic plain and analyzed for several physicochemical parameters to characterize the groundwater chemistry and evaluate various geogenic and anthropogenic factors controlling the occurrence, mobilization, and fate of As in the plain. Arsenic concentrations in groundwater ranged from 0.17 μg/L to 139 μg/L, with the majority of high-As groundwater associated with high Fe, Mn, and HCO3 and low NO3, SO42−, and negative Eh values, implying that As was released via reductive dissolution of Fe and Mn oxyhydroxides in reducing conditions under the influence of organic matter degradation. Interrelationships between various geochemical variables and the natural background level (NBL) quantification of As suggested the influence of anthropogenic processes on the mobility of As in groundwater. Piper and Gibbs diagrams and various bivariate plots revealed that the majority of groundwater was of the Ca2+ − Mg2+ − HCO3 type and that the major ions in groundwater were derived from carbonate and silicate weathering, cation exchange and reverse ion exchange processes, and anthropogenic activities. Moreover, the results of principal component analysis (PCA), and hierarchical cluster analysis (HCA) also suggested geogenic and anthropogenic sources for the ion concentration in groundwater. The health risk assessment showed a higher non-carcinogenic risk for children and a higher carcinogenic risk for adults, respectively, due to the daily intake of As contaminated groundwater. Overall, this study represents the first systematic investigation of the distribution, geochemical behavior, and release process of As in groundwater in the study area and provides a strong base for future research in the alluvial aquifers of the upper Gangetic plain.  相似文献   

8.
《Applied Geochemistry》2003,18(9):1479-1496
Arsenic species were measured in a bundled-piezometer installed in the Holocene barrier of the Stuarts Point coastal sands aquifer, northern New South Wales, Australia. Vertical distribution shows two peaks of elevated As concentration. At a depth of 10–11 m, concentrations of AsTot, As(V) and As(III) are in the range of 52–85, 38–67 and 14–18 μg/l respectively and the ratio of As(V)/As(III) is well above 1 at 3.7–2.7. The second peak, at a depth of 25 m, shows the highest concentrations of AsTot, As(V) and As(III) with values reaching 337, 125 and 212 μg/l, respectively. The As(V)/As(III) ratio is below 1 at 0.6–0.7. High AsTot and As(V) concentrations at shallower depths are associated with acidic conditions and very low concentrations of all ions. Desorption of As from Al-hydroxides and As-enriched Fe-oxyhydroxides are plausible mechanisms releasing As into the groundwater system. The elevated concentration of AsTot and As(III) at 25 m is potentially related to the leaching of the clay surfaces. Elevated HCO3- and alkaline pH conditions at this depth cause desorption of As which is later present as As(III) species in the reducing environment. The high concentrations of HCO3- further reduce the possible extent of As sorption on Fe and Mn oxyhydroxides. The identification of As in a groundwater system associated with the coastal barrier sand-dune environment raises serious questions of the suitability of human consumption of untreated groundwater, drawn from these aquifer types. Further investigation both in Australia and globally are needed to classified the extent of this hydrogeochemical occurrence near coastal communities that rely on groundwater.  相似文献   

9.
An integrated framework that is comprised of field surveys of groundwater, surface water and soils, laboratory process experiments and hydrologic and geochemical modeling is used to identify the origin (anthropogenic versus geogenic sources), fate and transport of hexavalent Cr in Tertiary and Quaternary deposits of Oropos plain in Greece. Groundwater and soils were analyzed in May 2008 and exhibited considerable Cr concentrations. Mineralogical analysis and micro-XRF analysis of the heavy soil fractions (metallic components) showed Cr bearing phases like chromites, Cr-silicate phases with positive correlation between Si, Al, Fe and Cr soil concentrations. Column experiments showed the Cr(VI) desorption ability of soils, e.g. concentration of 20 μg L−1 was detected after the application of 50 mm of rain. The groundwater model simulated the variability of Cr concentrations emanating from both anthropogenic and geogenic sources, successfully using rate constants obtained from the laboratory experiments, e.g. 4.24 nM h−1 for serpentine soil and 0.77 nM h−1 for soil in alluvial deposits. The mineralogical and geochemical results support a geogenic origin for Cr in soils and groundwater of Oropos plain while modeling results suggest that contaminants transported by Asopos River have affected only the upper layers of the subsurface in the vicinity of the river. The framework can be used to establish background concentrations or clean up levels of Cr-contaminated soils and groundwater.  相似文献   

10.
The study was done to assess the effect of the river Sutlej on arsenic (As) contamination. Sampling was done from the alluvial plain with increasing distance from the river Sutlej in district Vehari and compared with the study done in the proximity of River Sutlej. Sixty (60) groundwater samples mostly from shallow depths were collected and analyzed for As concentrations. Multivariate statistical tools (PCA and CA), saturation index, piper plots and Gibbs diagrams were used to detect evidence about the interrelationship and sources of As and other water quality variables responsible for groundwater contamination. Results revealed that As concentration ranged from below detection limit to 156 µg/L indicating that 50% samples exceeding the WHO guidelines (10 µg/L) and 17% exceeding the Pakistan National Environmental Quality Standards (NEQS) limits (50 µg/L) Sutlej. The piper plot revealed that water chemistry of the study area was Ca–HCO3?, Ca–Mg–Cl, type. Correlations between As and HCO3? (r2?=?0.433) was positive, while negative correlations were observed between As–Mn2+ and As–Fe2+ (r2?=???0.102), (r2?=?0.107) respectively. Geochemical signatures of the groundwater in the study area showed that the As could be released by oxidative dissolution to some extent and elevated evaporation in the arid environment of the study area under the stimulus of alkaline water and high pH (range 7.1–8.4). Although the concentrations are exceeding the WHO limit in 50% of the water samples but, are less than the previous study done in Mailsi near River Sutlej. Further, the concentrations decreased as the distance from the River increased which shows the probable role of sediments deposited by the River Sutlej.  相似文献   

11.
Concentrations of trace elements such as As, Ba, Co, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn and Zr were studied in soils to understand metal contamination due to agriculture and geogenic activities in Chinnaeru River Basin, Nalgonda District, India. This area is affected by the geogenic fluoride contamination. The contamination of the soils was assessed on the basis of geoaccumulation index, enrichment factor (EF), contamination factor and degree of contamination. Forty-four soil samples were collected from the agricultural field from the study area from top 10–50 cm layer of soil. Soil samples were analyzed for trace elements using X-ray fluorescence spectrometer. Data revealed that soils in the study area are significantly contaminated, showing high level of toxic elements than normal distribution. The ranges of concentration of Ba (370–1,710 mg/kg), Cr (8.7–543 mg/kg), Cu (7.7–96.6 mg/kg), Ni (5.4–168 mg/kg), Rb (29.6–223 mg/kg), Sr (134–438 mg/kg), Zr (141.2–8,232 mg/kg) and Zn (29–478 mg/kg). The concentration of other elements was similar to the levels in the earth’s crust or pointed to metal depletion in the soil (EF < 1). The high EFs for some trace elements obtained in soil samples show that there is a considerable heavy metal pollution, which could be due to excessive use of fertilizers and pesticides used for agricultural or may be due to natural geogenic processes in the area. Comparative study has been made with other soil-polluted heavy metal areas and its mobility in soil and groundwater has been discussed. A contamination site poses significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may result in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems.  相似文献   

12.
A survey on quality of groundwater was carried out for assessing the geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India, where the area is underlain by Peninsular Gneissic Complex. The results of the groundwater chemistry show a variation in pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ? and F?. The chemical composition of groundwater is mainly characterized by Na+?HCO3 ? facies. Hydrogeochemical type transits from Na+–Cl?–HCO3 ? to Na+–HCO3 ?–Cl? along the flow path. Graphical and binary diagrams, correlation coefficients and saturation indices clearly explain that the chemical composition of groundwater is mainly controlled by geogenic processes (rock weathering, mineral dissolution, ion exchange and evaporation) and anthropogenic sources (irrigation return flow, wastewater, agrochemicals and constructional activities). The principal component (PC) analysis transforms the chemical variables into four PCs, which account for 87% of the total variance of the groundwater chemistry. The PC I has high positive loadings of pH, HCO3 ?, NO3 ?, K+, Mg2+ and F?, attributing to mineral weathering and dissolution, and agrochemicals (nitrogen, phosphate and potash fertilizers). The PC II loadings are highly positive for Na+, TDS, Cl? and F?, representing the rock weathering, mineral dissolution, ion exchange, evaporation, irrigation return flow and phosphate fertilizers. The PC III shows high loading of Ca2+, which is caused by mineral weathering and dissolution, and constructional activities. The PC IV has high positive loading of Mg2+ and SO4 2?, measuring the mineral weathering and dissolution, and soil amendments. The spatial distribution of PC scores explains that the geogenic processes are the primary contributors and man-made activities are the secondary factors responsible for modifications of groundwater chemistry. Further, geochemical modeling of groundwater also clearly confirms the water–rock interactions with respect to the phases of calcite, dolomite, fluorite, halite, gypsum, K-feldspar, albite and CO2, which are the prime factors controlling the chemistry of groundwater, while the rate of reaction and intensity are influenced by climate and anthropogenic activities. The study helps as baseline information to assess the sources of factors controlling the chemical composition of groundwater and also in enhancing the groundwater quality management.  相似文献   

13.
The Great Zab River catchment is a major left-bank tributary of the River Tigris and drains a substantial part of the Kurdistan Region, an autonomous region of Northern Iraq. Within Kurdistan, the water resources of the Great Zab River catchment are under pressure from population increase and are utilized for potable, domestic and agricultural and industrial supply. As with many parts of the world, effective management of water resources within Kurdistan is hindered by a lack of water quality data and established background concentrations. This study therefore represents the first regional survey of river water chemistry for the Great Zab River catchment and presents data on the spatial and temporal trends in concentrations of As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sr, Zn, NO3?, SO42?, F?, Cl? and PO43?, in addition to pH, electrical conductivity, dissolved oxygen and turbidity. As a tool for underpinning the management and monitoring of water quality, background concentrations were defined for the Great Zab catchment using three methods. The influences of geogenic and anthropogenic controls upon spatial and temporal trends in water chemistry are also evaluated. The influence of geogenic loading from underlying bedrock was identifiable within the observed spatial trends, with the most notable differences found between waters sampled from the relatively more volcanic-rich Zagros zone to the north and those sampled from the lower catchment underlain by younger clay-, sand- and siltstones. The greatest anthropogenic influence, identifiable through elements such as Cl? and NO3?, is present in the more highly populated lower catchment. The background concentrations identified in the Great Zab catchment would be those expected as a result of geogenic loading with some anthropogenic influence and represent a more conservative value when compared to those such as the World Health Organization Maximum Admissible Concentration. However, background concentrations represent a powerful tool for identifying potential anthropogenic impacts on water quality and informing management of such occurrences.  相似文献   

14.
The main aims of the present study are to identify the major factors affecting hydrogeochemistry of groundwater resources in the Marand plain, NW Iran and to evaluate the potential sources of major and trace elements using multivariate statistical analysis such as hierarchical clustering analysis (HCA) and factor analysis (FA). To achieve these goals, groundwater samples were collected in three sampling periods in September 2013, May 2014 and September 2014 and analyzed with regard to ions (e.g., Ca2+, Mg2+, Na+ and K+, HCO3 ?, SO4 2?, Cl?, F? and NO3 ?) and trace metals (e.g., Cr, Pb, Cd, Mn, Fe, Al and As). The piper diagrams show that the majority of samples belong to Na–Cl water type and are followed by Ca–HCO3 and mixed Ca–Na–HCO3. Cross-plots show that weathering and dissolution of different rocks and minerals, ion exchange, reverse ion exchange and anthropogenic activities, especially agricultural activities, influence the hydrogeochemistry of the study area. The results of the FA demonstrate that 6 factors with 81.7% of total variance are effective in the overall hydrogeochemistry, which are attributed to geogenic and anthropogenic impacts. The HCA categorizes the samples into two clusters. Samples of cluster C1, which appear to have higher values of some trace metals like Pb and As, are spatially located at the eastern and central parts of the plain, while samples of cluster C2, which express the salinization of the groundwater, are situated mainly westward with few local exceptions.  相似文献   

15.
Groundwater is a precious resource for humankind not only in Nepal but also across the globe due to its diverse functions. A total of 48 groundwater samples were collected from three villages of Nawalparasi district, Nepal, during pre-monsoon and monsoon to estimate the overall groundwater quality and to identify the sources of contamination with emphasis on arsenic (As). The average concentrations of all tested groundwater quality parameters (temp., pH, EC, ORP, Ca2+, Mg2+, Na+, K+, Cl?, F?,SO4 2?, PO4 3?, HCO3 ?, NO3 ?, Cu, Ni, Mn, Cd, Pb, Fe, Zn, Cr, and As) were well within permissible limits of WHO for drinking water, except for Ni, Cd, Pb, Cr, and As. Concentration of As ranged from 60 to 3,100 μg L?1 and 155 to 1,338 μg L?1 in pre-monsoon and monsoon, respectively. The Piper diagram of the groundwater chemistry showed groundwater of Nawalparasi belongs to Ca–Mg–HCO3 and Mg–HCO3 water type with HCO3 ? as dominant ions. As content in the study area was negatively correlated with Fe in pre-monsoon, while it was positively correlated in monsoon. Furthermore, As was negatively correlated with oxidation reduction potential suggesting reducing condition of groundwater. Principal component analysis revealed seven major factors that explained 81.996 and 83.763 % of total variance in water quality in pre-monsoon and monsoon, respectively. The variance of water quality was related mainly with the degree of water–rock interaction, mineralization, and anthropogenic inputs.  相似文献   

16.
The Daliao River System (DRS) is one of the major river systems in the northeastern China and receives substantial discharges from industrial, municipal, and agricultural effluents. In this study, the contents and partition of toxic trace elements in the DRS sediments were evaluated in terms of contamination levels and ecological risks using geoaccumulation index (Igeo), relative enrichment factor (REF), sediment pollution index (SPI), and potential effect concentration quotient (PECQ). Fourteen samples were collected and measured for trace and major elements and sediment properties. The following concentration ranges (mg kg?1) of toxic trace elements were found: As, 1.6–18.0; Cd 0.1–0.9; Co 3.8–23.4; Cr 12.9–151.6; Cu 4.6–86.1; Hg 0.01–0.35; Ni 8.4–64.4; Pb 11.6–67.1; Sb 0.13–1.77; V 18.5–153.3; and Zn 20.4–211.3. The proportions of soluble and exchangeable trace metals were less than 1 %, while the proportions of trace metals bound to carbonate, amorphous oxides, organic matter, and crystalline oxides were usually each <10 %. However, 28.8 % of Cd, on average, was associated with carbonate. The average proportions of trace metals in the residual fraction ranged 57.3 % for Cd to 85.4 % for Cr, indicating low mobility and bioavailability. Cr, Ni, V, and Co in the sediments mainly originated from natural sources, while Cd, As, Pb, Sb, and Hg partially originated from anthropogenic sources. The Igeo, REF, SPI, and PECQ values of the heavy metals in the sediment were not in agreement with each another. The average REF values of Cd and As were higher than those of the other metals. However, the average PECQ value was higher for Cr and Ni than for the other metals, indicating that these two metals would cause higher adverse biological effects than the other metals. In addition, the sediments located adjacent to cities were more contaminated. Therefore, it is suggested that future management and pollution control within the DRS might focus on As, Cd, Cr, and Ni in the sediments, particularly in the sediments adjacent to cities.  相似文献   

17.
18.
Arsenic is a natural component of the earth’s crust, and it is transported into surface water and groundwater through the dissolution of rocks, minerals and ores. In addition, arsenic leaching processes contaminate water sources and this geogenic arsenic contamination causes significant water quality problems in many parts of the world. In this study, water quality, arsenic contamination and human health risks of drinking water resources in the Tav?anl? District were determined and the origins were discussed. For this purpose, geological and hydrogeological properties were investigated. In situ measurements and chemical analyses were carried out on water samples taken from drinking water sources such as wells, springs and surface waters for hydrogeochemical studies. According to the obtained results, water resources are Ca–Mg–HCO3, Mg–HCO3 and Na–HCO3 type. Total As (AsT) concentration of the water samples sometimes exceeds the permissible limit given by the TSI-266 (Standards for drinking waters, Turkish Standards Institution, Ankara, 2005) and WHO (Guidelines for drinking-water quality, World Health Organization, Geneva, 2008) for drinking water. H3AsO 3 0 and HAsO4 2? are dominant arsenic species in groundwater and surface water, respectively. Typically high total arsenic concentrations can be found in regions characterized by magmatic rocks. In addition, As concentrations in surface waters were found to be higher than in groundwater in the region, due to the anthropogenic influence of mining activities in the region.  相似文献   

19.
Effects of sediment extraction and dam construction on changes of riverbed characteristics over yearly to decadal scales in the lower Tedori River of Japan are clarified. Over 1950–1991, the riverbed degraded in excess of 0.5–3.5 m. Concurrently, riverbed sediment volume of the 0–16 km reach decreased by 12.7 × 106 m3. Intensive sediment extraction was the dominant cause of riverbed degradation during the period. During 1991–2007, an increase in riverbed sediment volume of 0.6 × 106 m3 resulted in accretion of the riverbed by average depth 0.04 m. The cessation of sand and gravel mining (SGM), coupled with Tedorigawa Dam operation since 1980, was responsible for that accretion. Temporal change in riverbed elevation during 1950–2007 indicates that there were five phases of vertical adjustment. Combination of nonlinear regression models described four of these phases well. During 1950–1979, the first four modes of empirical orthogonal function analysis successfully captured temporal and spatial responses of the riverbed to natural and anthropogenic impacts. That is, the first mode explained the mean riverbed profile and temporal variation in riverbed sediment volume. The second through fourth spatial eigenfunctions reflected spatial variation in vertical adjustment rate for phases II, III and I, respectively. The corresponding temporal eigenfunctions explained the respective effects on the riverbed of SGM, of imbalance between sediment transport capacity and sediment supply, and of dredging activity.  相似文献   

20.
Core sediments from three disturbed boreholes (JOR, GHAT, and RAJ) and two undisturbed boreholes (DW1 and DW2) were collected in the study area of the Chapai-Nawabganj district of northwestern Bangladesh for geochemical analyses. In the study area, groundwater samples from fourteen As-contained private wells and five nested piezometers at both the DW1 and DW2 boreholes were also collected and analyzed. The groundwater arsenic concentrations in the uppermost aquifer (10–40 m of depth) range from 3 to 315 μg/L (mean 47.73 ± 73.41 μg/L), while the arsenic content in sediments range from 2 to 14 mg/kg (mean 4.36 ± 3.34 mg/kg). An environmental scanning electron microscope (ESEM) with an energy dispersive X-ray spectrometer was used to investigate the presence of major and trace elements in the sediments. Groundwaters in the study area are generally the Ca–HCO3 type with high concentrations of As, but low levels of Fe, Mn, NO3 ? and SO 4 ?2 . The concentrations of As, Fe, Mn decrease with depth in the groundwater, showing vertical geochemical variations in the study area. Statistical analysis clearly shows that As is closely associated with Fe and Mn in the sediments of the JOR core (r = 0.87, p < 0.05 for Fe and r = 0.78, p < 0.05 for Mn) and GHAT core (r = 0.95, p < 0.05 for Fe and r = 0.93, p < 0.05 for Mn), while As is not correlated with Fe and Mn in groundwater. The comparatively low Fe and Mn concentrations in some groundwater and the ESEM image revealed that siderite precipitated as a secondary mineral on the surface of the sediment particles. The correlations along with results of sequential extraction experiments indicated that reductive dissolution of FeOOH and MnOOH represents a mechanism for releasing arsenic into the groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号