首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Geochemistry》2005,20(2):383-396
Potential contamination of rivers by trace elements can be controlled, among others, by the precipitation of oxyhydroxides. The streambed of the studied area, located in “La Châtaigneraie” district (Lot River Basin, France), is characterised by iron-rich ochreous deposits, acidic pH (2.7–4.8) and SO4–Mg waters. Beyond the acid mine drainage, the presence of As both in the dissolved fraction and in the deposits is also a problem. Upstream, at the gallery outlet, As concentrations are high (Asmax = 2.6 μmol/l and up to 5 wt% locally, respectively, in the dissolved and in the solid fractions). Downstream, As concentrations decrease below 0.1 μmol/l in the dissolved fraction and to 1327 mg/kg in the solid fraction. This natural attenuation is related to the As retention within ochreous precipitates (amorphous to poorly crystalline Fe oxyhydroxides, schwertmannite and goethite), which have great affinities for this metalloid. Upstream, schwertmannite is dominant while downstream, goethite becomes the main mineral. The transformation of schwertmannite into goethite is observed in the upstream deposits as schwertmannite is unstable relative to goethite. Furthermore, thermodynamic calculations indicate that the downstream goethite is not able to precipitate in situ according to the water chemistry. Goethite mainly results from the transformation of schwertmannite and its solid transport downstream.Moreover, as highlighted by leaching experiments carried out on the ochreous precipitates, this transformation does not seem to affect the As-retention in solids as no release of As was observed in the solution. Arsenic may either be strongly trapped by co-precipitation in the present minerals or it may be quickly released and re-adsorbed on the precipitate surface.  相似文献   

2.
The subsurface acid mine drainage (AMD) environment of an abandoned underground uranium mine in Königstein/Saxony/Germany, currently in the process of remediation, is characterized by low pH, high sulfate concentrations and elevated concentrations of heavy metals, in particular uranium. Acid streamers thrive in the mine drainage channels and are heavily coated with iron precipitates. These precipitates are biologically mediated iron precipitates and related to the presence of Fe-oxidizing microorganisms forming copious biofilms in and on the Fe-precipitates. Similar biomineralisations were also observed in stalactite-like dripstones, called snottites, growing on the gallery ceilings.The uranium speciation in these solutions of underground AMD waters flowing in mine galleries as well as dripping from the ceiling and forming stalactite-like dripstones were studied by time resolved laser-induced fluorescence spectroscopy (TRLFS). The fluorescence lifetime of uranium species in both AMD water environments were best described with a mono-exponential decay, indicating the presence of one major species. The detected positions of the emission bands and by comparing it in a fingerprinting procedure with spectra obtained for acid sulfate reference solutions, in particular Fe(III) - SO42− - UO22+ reference solutions, indicated that the uranium speciation in the AMD environment of Königstein is dominated in the pH range of 2.5-3.0 by the highly mobile aquatic uranium sulfate species UO2SO4(aq) and formation of uranium precipitates is rather unlikely as is retardation by sorption processes. The presence of iron in the AMD reduces the fluorescence lifetime of the UO2SO4(aq) species from 4.3 μs, found in iron-free uranium sulfate reference solutions, to 0.7 μs observed in both AMD waters of Königstein and also in the iron containing uranium sulfate reference solutions.Colloids were not observed in both drainage water and dripping snottite water as photon correlation spectroscopy analyses and centrifugation experiments at different centrifugal accelerations between 500g and 46000g revealed. Thus transport and uranium speciation at the investigated AMD sites is neither influenced by U(IV) or U(VI) eigencolloids nor by uranium adsorbed on colloidal particles.This study shows that TRLFS is a suitable spectroscopic technique to identify the uranium speciation in bulk solutions of AMD environments.  相似文献   

3.
Spatial variations of historical and ongoing pyrite oxidation rates were quantified near the Nanisivik Mine on Baffin Island in northern Canada. The variations observed depend mainly on the degree of water saturation, pH and temporal trends in mineral reactivity. Maximum oxidation rates were observed in an untreated tailings spill, while minimum oxidation rates were noted for tailings deposited under water. Spatial trends in oxidation rates were in the order of three orders of magnitude. Spatial trends were only possible to quantify by a combination of closed chambers (well-drained conditions) and micro sensors (water-covered conditions). Oxygen uptake rates in tailings at various ages (up to 7 years) indicate a decrease by more than a factor of 3 over time. Total oxygen uptake over 7 years was calculated and found to be in a fair agreement with the overall pyrite depletion evaluated as high-resolution mineral mass balance (by quantitative powder X-ray diffraction).  相似文献   

4.
Acid mine drainage discharged from the abandoned Daduk mine towards the Daduk creek has a pH of 3.3, and concentrations of Al, Mn, Fe, Zn and SO4 of 18, 41, 45, 38 and 1940 mg/L, respectively. In particular, As concentration in acid mine drainage is 1000 μg/L. Removing order of metal ions normalized by SO4 concentration downstream from discharge point is Fe > As > Al > Cu > Zn > Mn > Cd > Pb. In the Daduk creek, Fe and As are the most rapidly depleted downstream from acid mine drainage because As adsorbs, coprecipitates and forms compounds with ferric oxyhydroxide. From the results of geochemical modeling using the Phreeq C program, goethite (FeOOH) is oversaturated, and schwertmannite (Fe8O8(OH)4.5(SO4)1.75) is the most stable solid phase at low pH in the Daduk creek. Yellowish red (orange ochre) precipitates that occurred in the study area are probably composed of goethite or schwertmannite.  相似文献   

5.
Acid Mine Drainage (AMD) is a great concern in many abandoned mines because of its adverse effect on the environment. In mining processes, many kinds of wastes are produced. These wastes may become eventually sources of environmental degradation. The focus of this study is the geochemical characterization of the end-processed tailings generated by Akara Gold Mine, the biggest gold mine in Thailand. Tailing samples were systematically collected for analyses of chemical and mineralogical compositions. As a result, their quantitative chemical analyses are slightly different from place to place, but mineral components cannot be clearly differentiated. For instance, it may be assumed that the end-processed tailings, which were a mixture between high and low grade concentrates, would have similar mineral components. However, the little variation of chemical composition may be caused by the ore refining processes that are somehow varied in proportion to chemical additives, alkali cyanide and quick lime in particular. In addition, clay composition in ore-bearing layers may also influence alumina content of tailings, accordingly. Distribution of the tailings is not related to depth and distance of the tailing storage pond because the disposal has sped them over the pond during operation. Total heavy metals of the tailing samples were analyzed on the basis of the EPA 3052 method. Consequently, the most toxic elements (e.g., Co, Cu, Cd, Cr, Pb, Ni and Zn) were found falling within the standard of Thailand Soil Quality Standards for Habitat and Agriculture. Only Mn appears to have higher content than the standard. In addition, leaching tests proved that these tailings contain low metal concentrations. As a result, at pH 2, Mn can leach out exceeding the Thailand Surface Water Quality Standard for Agricultural (Mn <1 ppm) and the Thailand Industrial Effluent Standard (<5 ppm). Although leachate at pH 4 and neutral conditions contains lower Mn than the Industrial Effluent Standard it still exceeds the surface water quality standard. Interestingly, Pb can be leached out exceeding both standards (0.2 ppm for the industrial effluent standard and 0.05 ppm for the surface water quality standard). For Ni leaching, its concentration is lower than the Industrial Effluent Standard at all pH conditions but still exceeds the Surface Water Standard at pH 2 and 4. This information should be taken into consideration for further environmental monitoring. Acid generating potential of the tailings was estimated using acid–base accounting (ABA) and net acid generation (NAG) tests. The results of ABA and NAG tests show that the tailing samples contain a high amount of sulfur. However, they also contain high acid neutralization capacity. Consequently, these tailings may not have potential to generate acid drainage; in the other words, they can be classified as a non-acid forming (NAF) material. However, since these tailings contain some heavy metals (e.g., Ni, Mn and Pb) that are observed in leachates exceeding the standards at low pH, the AMD conditions may lead to heavy metal release. Therefore, prevention of oxidizing process and dissolution should be considered with great care. In addition, Mn and Pb can also be leached at neutral conditions. Barrier of air and water, clay layer for example, should be placed over the tailings pound before covering by topsoil for re-vegetation. Growing native grass is recommended for stabilization of the surface and reducing erosion rate. Monitoring of water quality should also be carried out annually.  相似文献   

6.
地质灾害与不同尺度降雨时空分布关系   总被引:2,自引:0,他引:2  
降雨是地质灾害最重要的诱发因素之一,开展地质灾害与不同尺度降雨的时空分布研究,分析降雨诱发地质灾害的特点规律,对于提升地质灾害区域预警水平和防灾减灾实践具有重要意义。本文以2006~2007年汛期地质灾害的实际发生情况为例,通过统计分析方法,对区域地质灾害与年降雨量、月降雨量、月暴雨日数、典型降雨过程之间的时空分布关系开展系统分析,研究表明:降雨是群发型地质灾害发生的重要诱发因素,地质灾害的发育密度与年均雨量成正比,地质灾害发育密度最大的区域,其年均雨量最大;地质灾害分布与月降雨量、月暴雨日数的分布总体上具备一定的对应关系,但并不是完全对应的,主要受到典型强降雨过程的落区控制;在地质灾害多发区出现典型强降雨过程时,地质灾害群发。  相似文献   

7.
8.
《Geochimica et cosmochimica acta》1999,63(19-20):3395-3406
Transmission electron microscopy (TEM), with energy dispersive X-ray (EDX) analysis and energy filtered transmission electron microscopy/electron energy loss spectroscopy (EFTEM/EELS), as well as powder X-ray diffraction (XRD) and scanning electron microscopy (SEM), have been used to study bed sediments from two acid mine drainage (AMD) sites in western Montana, USA. TEM and associated techniques, including sample preparation via epoxy impregnation and ultramicrotome sectioning, afford the opportunity to better interpret and understand complex water-rock interactions in these types of samples. For the sample taken from the first site (Mike Horse mine), ferrihydrite is the dominant phase, Si and Zn are the most abundant elements sorbed to ferrihydrite surfaces, and Pb is notably absent from ferrihydrite association. Three additional important metal-containing phases (gahnite, hydrohetaerolite, and plumbojarosite), that were not apparent in the powder XRD pattern because of their relatively low concentration, were identified in the TEM. The presence of these phases is important, because, for example, gahnite and plumbojarosite act as sinks for Zn and Pb, respectively. Therefore, the mobility of Pb from this part of the drainage system depends on the stability of plumbojarosite and the ability of ferrihydrite to sorb the released Pb. From thermodynamic data in the literature, we predict that Pb will be released by the dissolution of plumbojarosite above a pH of 4 to 5, but it will then be recaptured by ferrihydrite if the pH continues to rise to 5.5 and higher, irrespective of competition effects from other metals. Therefore, only a relatively narrow pH window exists in which Pb can escape this portion of the system as an aqueous species. For the sample taken from the other site included in this study (the Carbonate mine), jarosite and quartz are the dominant phases. Interestingly, however, the jarosites are both Pb-poor and Pb-enriched. In addition, TEM reveals the presence of microcrystalline hematite with Si, S, and P sorbed to its surfaces, a nearly pure amorphous Si, Al oxyhydroxide, and an amorphous silica phase containing minor amounts of Al, Ca, and Fe. Pb will probably be released from these mixed K-Pb jarosites above pH 4 to 5, but the Pb may be retarded by the strongly adsorbing microcrystalline hematite in this pH range. The sink for Al in this system is the amorphous Si, Al oxyhydroxide, not Al(OH)3 which is typically used in AMD modeling schemes.  相似文献   

9.
Spatial and seasonal variations of the oxidation of Fe(II) and As(III) have been previously documented in the Carnoulès (Gard, France) Acid Mine Drainage (AMD) by bulk analyses. These variations may be correlated with the variations in the activity of indigenous As(III)- and Fe(II)-oxidizing bacteria living in the As-rich Carnoulès water. The activity of these bacteria indeed plays an important role in the nature and composition of the solid phases that sequester arsenic at this site. In order to better understand the interactions of microbes with Fe and As in the Carnoulès AMD, we combined Transmission Electron Microscopy (TEM) and Scanning Transmission X-ray Microscopy (STXM) to collect near-edge X-ray absorption fine structure (NEXAFS) spectra at high spatial and energy resolution and to perform high spatial resolution imaging at the 30-50 nm scale. Spectromicroscopy was performed at the C K-edge, Fe L2,3-edge, and As L2,3-edge, which allowed us to locate living and/or mineralized bacterial cells and to characterize Fe and As oxidation states in the vicinity of those cells. TEM was used to image the same areas, providing higher resolution images and complementary crystallographic and compositional information through electron diffraction and EDXS analysis. This approach provides unique information on heterogeneous geochemical processes that occur in a complex microbial community in an AMD environment at the micrometer and submicrometer-scale. Bacterial cells in the Carnoulès AMD were frequently associated with mineral precipitates, and a variety of biomineralization patterns were observed. While many mineral precipitates were not associated with bacterial cells, they were associated with pervasive organic carbon. Finally, abundant biomineralized organic vesicles were observed in the Carnoulès AMD. Such vesicles may have been overlooked in highly mineralized extreme environments in the past and may represent an important component in a common biomineralization process in such environments.  相似文献   

10.
安徽铜陵狮子山硫化物矿山酸矿水中微生物功能群的研究   总被引:3,自引:1,他引:3  
从安徽铜陵狮子山硫化物矿山酸矿水溪流获得样品,采用YE、Feo、FeSo、FeTo 4种选择性培养基,利用overlay分离技术,获得7株细菌菌株.利用16S rRNA基因序列同源性分析,与目前已分离得到的酸矿水微生物进行了比较.利用分离菌株16S rRNA基因序列构建系统进化树,结果表明获得的菌株可分为3个功能群:嗜酸性异养菌、嗜酸性自养菌、中度嗜酸性铁氧化细菌.嗜酸性异养菌主要与酸矿水中三价铁的异化还原和寡营养状态的维持有关;嗜酸性自养菌与酸矿水中铁、硫元素的氧化有关,是酸水中的生产者;中度嗜酸性铁氧化细菌能将二价铁氧化成三价铁,并产生难溶性的矿物,可实现酸矿水与酸矿水底泥之间铁元素的动态平衡.  相似文献   

11.
12.
为了探究平朔矿区所在流域不同水体同位素的时空变化规律,揭示采煤活动下区域水循环规律,于2020年8月和12月对流域内地表水、地下水和矿井水进行采样,测试样品的D和18O同位素组成,并利用贝叶斯混合模型MixSIAR计算了矿井水不同来源的贡献率。结果表明:(1)地表水和矿井水δD和δ18O夏季较冬季高;地下水δD和δ18O季节差异不明显。地表水氢氧同位素值沿程呈增加趋势,但局部受到矿井水的补给,出现贫化;地下水氢氧同位素值沿径流方向呈逐渐增加趋势。(2)采煤区氢氧同位素值较非采煤区明显增加。受季节效应影响,在空间分布上8月浅层地下水氢氧同位素高值区域较12月明显增多。(3)δ18O与δD关系图表明,地表水在接受大气降水的补给之后受到了蒸发分馏作用的影响;浅层地下水的补给源较复杂,深层地下水由于采煤形成的导水裂隙带受到了浅层地下水和地表水的补给;矿井水受地表水、浅层地下水和深层地下水的补给。(4) MixSIAR模型揭示出深层地下水是矿井水的主要补给来源,占61.60%~67.20%,且补给比例冬季大于...  相似文献   

13.
酸性矿山废水(acid mine drainage,AMD)是一类pH低并含有大量有毒金属元素的废水。AMD及受其影响的环境中次生高铁矿物类型主要包括羟基硫酸高铁矿物(如黄铁矾和施威特曼石等)和一些含水氧化铁矿物(如针铁矿和水铁矿等),而且这些矿物在不同条件下会发生相转变,如施氏矿物向针铁矿或黄铁矾矿物相转化。基于酸性环境中生物成因次生矿物的形成会"自然钝化"或"清除"废水中铁和有毒金属这一现象所获得的启示,提出利用这些矿物作为环境吸附材料去除地下水中砷,不但吸附量大(如施氏矿物对As的吸附可高达120mg/g),而且可直接吸附As(III),还几乎不受地下水中其他元素影响。利用AMD环境中羟基硫酸高铁矿物形成的原理,可将其应用于AMD石灰中和主动处理系统中,构成"强化微生物氧化诱导成矿-石灰中和"的联合主动处理系统,以提高AMD处理效果和降低石灰用量。利用微生物强化氧化与次生矿物晶体不断生长的原理构筑生物渗透性反应墙(PRB)并和石灰石渗透沟渠耦联,形成新型的AMD联合被动处理系统,这将有助于大幅度增加处理系统的寿命和处理效率。此外,文中还探讨了上述生物成因矿物形成在AMD和地下水处理方面应用的优点以及今后需要继续研究的问题。  相似文献   

14.
青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义   总被引:22,自引:14,他引:22  
对西藏拉萨地块超钾质岩石的研究是近10年来青藏高原研究的重要进展之一。本文对西藏拉萨地块中部当若雍错和许如错地区的超钾质火山岩进行了透长石和黑云母的~(40)Ar/~(39)Ar定年。当若雍错粗面岩的黑云母~(40)Ar/~(39)Ar等时线年龄为13.2±0.3Ma,3个透长石的等时线年龄分别为13.0±0.3Ma、13.7±0.3Ma和13.0±0.3Ma;许如错辉石粗面岩黑云母的~(40)Ar/~(39)Ar等时线年龄为11.2±0.3Ma。结合已有研究结果,探讨了拉萨地块碰撞后钾质和超钾质岩石的分布特征。超钾质岩石产出于大约东经87度以西的地区,岩石年龄介于8~25Ma之间,而钾质岩石则在东部和西部都有产出,时代为9~24Ma。超钾质和钾质岩石在野外产出的构造背景上,显示了与南北向裂谷、新生代盆地、南北延长的湖泊等分布的密切关系。拉萨地块碰撞后岩浆作用的时间与裂谷发育、岩脉侵入、埃达克岩形成等岩浆-构造事件的时间相互重叠不是偶然的,预示着可能存在一个深部岩石圈演化的统一事件,而最为可能的是高原南部岩石圈地幔的减薄作用。超钾质岩浆作用在拉萨地块与羌塘地区同时发育表明拉萨地块与藏北在构造和岩石圈演化方面具有一致性。  相似文献   

15.
Acid mine drainage (AMD) is one of the severe environmental problems that coal mines are facing. Generation of AMD in the northeastern part of India due to the coal mining activities has long been reported. However detailed geochemical characterization of AMD and its impact on water quality of various creeks, river and groundwater in the area has never been reported. Coal and coal measure rocks in the study area show finely disseminated pyrite crystals. Secondary solid phases, resulted due to oxidation of pyrite, occur on the surface of coal, and are mainly consisting of hydrated sulphate complexes of Fe and Mg (copiapite group of minerals). The direct mine discharges are highly acidic (up to pH 2.3) to alkaline (up to pH 7.6) in nature with high concentration of SO42−. Acidic discharges are highly enriched with Fe, Al, Mn, Ni, Pb and Cd, while Cr, Cu, Zn and Co are below their maximum permissible limit in most mine discharges. Creeks that carrying the direct mine discharges are highly contaminated; whereas major rivers are not much impacted by AMD. Ground water close to the collieries and AMD affected creeks are highly contaminated by Mn, Fe and Pb. Through geochemical modeling, it is inferred that jarosite is stable at pH less than 2.5, schwertmannite at pH less than 4.5, ferrihydrite above 5.8 and goethite is stable over wide range of pH, from highly acidic to alkaline condition.  相似文献   

16.
17.
《Applied Geochemistry》2001,16(14):1641-1652
Euglena mutabilis, a benthic photosynthetic protozoan that intracellularly sequesters Fe, is variably abundant in the main effluent channel that contains acid mine drainage (AMD) discharging from the Green Valley coal mine site in western Indiana. Samples of effluent (pH 3.0–4.6) taken from the main channel and samples of contaminated stream water (pH 3.3 to 8.0) collected from an adjacent stream were analyzed to evaluate the influence of water chemistry on E. mutabilis distribution. E. mutabilis communities were restricted to areas containing unmixed effluent with the thickest (up to 3 mm) benthic communities residing in effluent containing high concentrations of total Fe (up to 12110 mg/l), SO4 (up to 2940 mg/l), Al (up to 1846 mg/l), and Cl (up to 629 mg/l). Communities were also present, but much less abundant, in areas with effluent containing lower concentrations of these same constituents. In effluent where SO4 was most highly concentrated, E. mutabilis was largely absent, suggesting that extremely high concentrations of SO4 may have an adverse effect on this potentially beneficial Fe-mediating, acidophilic protozoan.  相似文献   

18.
宋炫颖  刘勇勤 《冰川冻土》2018,40(2):395-403
湖泊中浮游病毒的丰度在105~108 mL-1,是浮游微生物中丰度较高的组分,在湖泊水生态系统中扮演着重要角色。病毒对宿主的侵染和裂解可以调节微生物群落的丰度、生产力、组成和种群多样性,同时还可以将宿主细胞的大量物质释放到湖泊中,改变碳循环和营养物质流通,进而影响生物地球化学循环。高寒地区湖泊水生态系统结构简单,主要以微生物为主,浮游病毒对微生物具有重要的调节作用,但目前研究较少。综述了近几年国内外对高寒地区湖泊病毒生态学的相关研究进展,主要包括病毒的时空分布以及与生物和非生物因子的关系、病毒与宿主的相互作用关系以及病毒对湖泊碳循环和微生物食物环的作用,发现高寒湖泊浮游病毒分布较广、多样性较高以及溶原性是病毒重要的生活策略,同时也得出由病毒裂解作用释放的有机碳对微生物活性和微生物食物环具有重要的作用。在此基础上,对今后我国青藏高原湖泊浮游病毒的研究提出了展望。  相似文献   

19.
Sedimentary methane (CH4) fluxes and oxidation rates were determined over the wet and dry seasons (four measurement campaigns) in Pulicat lake, an extensive shallow estuary in south India. Dissolved CH4 concentrations were measured at 52 locations in December 2000. The annual mean net CH4 flux from Pulicat lake sediments was 3.7 × 109 g yr-1 based on static chamber measurements. A further 1.7 × 109g yr-1 was estimated to be oxidized at the sediment-water interface. The mean dissolved concentration of CH4 was 242nmol |-1 (ranging between 94 and 501 nmol |-1) and the spatial distribution could be explained by tidal dynamics and freshwater input. Sea-air exchange estimates using models, account only for ∼13% (0.5 × 109 g yr-1) of the total CH4 produced in sediments, whereas ebullition appeared to be the major route for loss to the atmosphere (∼ 63% of the net sediment flux). We estimated the total atmospheric source of CH4 from Pulicat lake to be 0.5 to 4.0 × 109g yr-1.  相似文献   

20.
The effects of acid mine drainage (AMD) in a stream and groundwater near an abandoned copper mine were characterized by physicochemical properties, bacterial community structure using denaturing gel gradient electrophoresis (DGGE), and microbial activity/diversity using Ecoplate technique. Based on DGGE fingerprints, the eubacterial community structures grouped into the stream water (GRS1, GRS2 and GRS3) and groundwater samples (GW1 and GW2), apparently based on differences in water temperature and the concentrations of dissolved oxygen, nitrate and sulfate. The most highly AMD-contaminated sample (GRS1) had additional α-Proteobacteria whereas the groundwater samples included additional β-Proteobacteria, suggesting the development of populations resistant to AMD toxicity under aerobic and anaerobic conditions, respectively. Community level physiological activities on the 31 Ecoplate substrates suggested that the activities decreased with increasing concentrations of sulfate and heavy metals derived from AMD. The Shannon index showed that microbial diversity was greatest in GRS2, and lowest in GRS1, and was probably related to the level of AMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号