首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fumarolic encrustations and natrocarbonatite lava from the active crater of Oldoinyo Lengai volcano, Tanzania, were sampled and analysed. Two types of encrustation were distinguished on the basis of their REE content, enriched (~ 2800–5600 × [REEchondrite]) and depleted (~ 100–200 × [REEchondrite]) relative to natrocarbonatite (1700–1900 × [REEchondrite]. REE-enriched encrustations line the walls of actively degassing fumaroles, whereas REE-depleted encrustations occur mainly along cracks in and as crusts on cooling natrocarbonatite lava flows; one of the low REE encrustation samples was a stalactite from the wall of a possible fumarole. The encrustations are interpreted to have different origins, the former precipitating from volcanic gas and the latter from meteoric/ground water converted to steam by the heat of the overlying lava flow(s). REE-profiles of encrustations and natrocarbonatite are parallel, suggesting that there was no preferential mobilization of specific REE by either volcanic vapour or meteoric water vapour. The elevated REE-content of the first group of encrustations suggests that direct REE-transport from natrocarbonatite to volcanic vapour is possible. The REE trends observed in samples precipitating directly from the volcanic vapour cannot be explained by dry volatility based on the available data as there is no evidence in the encrustation compositions of the greatly enhanced volatility predicted for Yb and Eu. The observed extreme REE-fractionation with steep La/Sm slopes parallel to those of the natrocarbonatite reflects solvation and complexation reactions in the vapour phase that did not discriminate amongst the different REE or similar transport of REE in both the natrocarbonatite magma and its exsolving vapour. The low concentrations of REE in the encrustations produced by meteoric vapour suggest that the temperature was too low or that this vapour did not contain the ligands necessary to permit significant mobilization of the REE.  相似文献   

2.
This paper describes a methodology for the monitoring of fumarole temperatures at medium ranges (~ 6 km) using a handheld infrared camera (wavelength range: 8–13.5 µm). As a relationship between fumarole temperatures, gas flux and volcanic activity has been demonstrated by a number of studies, fumarole temperature data has a potential use as a monitoring tool. Volcán de Colima is an andesitic stratovolcano with a 300 m diameter summit crater formed by the destruction of the 2004 lava dome by a series of explosions in 2005. Between January 2006 and August 2007, sequences of thermal images were recorded from a viewpoint 6 km to the north during regular 24–48 hour monitoring excursions. The temperatures of fumaroles on the crater rim and the ground surface on the volcano's flanks were measured. A methodology was developed to remove data affected by clouds or volcanic water vapour based on rates of temperature change and scatter within the data. For the remaining data, it is demonstrated mathematically that at this range, typical variations in atmospheric transmissivity will affect the apparent temperatures by +/− 2 °C, while a 25% change in fumarole heat flux would change it by 5–10 °C. The mean night-time apparent temperature of the fumaroles was calculated for each excursion and showed an irregular decline over the 19 month period. Subtracting the radiant heat flux of flank rocks from those of the fumaroles removes seasonal variations and gives the clearest view of trends in the fumarole heat flux. A sharp drop in fumarole temperature during February 2007 coincided with the emergence of a lava dome in the crater. The declining fumarole temperature is interpreted to reflect decreasing gas flux from the crater in line with a change in eruptive regime from frequent, small, ash-rich explosions to slow effusion of lava.  相似文献   

3.
Fugen-dake, the main peak of Unzen Volcano, began a new eruption sequence on November 17, 1990. On May 20, 1991, a new lava dome appeared near the eastern edge of the Fugen-dake summit. Small-scale, 104–106 m3 in volume, Merapi-type block and ash flows were frequently generated from the growing lava dome during May–June, 1991. These pyroclastic flows were accompanied by co-ignimbrite ash plumes that deposited ash-fall deposits downwind of the volcano. Three examples of co-ignimbrite ash-fall deposits from Unzen pyroclastic flows are described. The volume of fall deposits was estimated to be about 30% by volume of the collapsed portions of the dome that formed pyroclastic flows. This proportion is smaller than that described for other larger co-ignimbrite ash-fall deposits from other volcanoes. Grain size distributions of the Unzen co-ignimbrite ash-fall deposits are bi-modal or tri-modal. Most ashes are finer than 4 phi and two modes were observed at around 4–7 phi and 9 phi. They are composed mainly of groundmass fragments. Fractions of another mode at around 2 phi are rich in crystals derived from dome lava. Some of the fine ash component fell as accretionary lapilli from the co-ignimbrite ash cloud indicating either moisture or electrostatic aggregation. We believe that the co-ignimbrite ash of Unzen block and ash flows were formed by the mechanical fracturing of the cooling lava blocks as they collapsed and moved down the slope. These ashes were entrained into the convective plumes generated off the tops of the moving flows.  相似文献   

4.
After the March–April 1986 explosive eruption a comprehensive gas study at Augustine was undertaken in the summers of 1986 and 1987. Airborne COSPEC measurements indicate that passive SO2 emission rates declined exponentially during this period from 380±45 metric tons/day (T/D) on 7/24/86 to 27±6 T/D on 8/24/87. These data are consistent with the hypothesis that the Augustine magma reservoir has become more degassed as volcanic activity decreased after the spring 1986 eruption. Gas samples collected in 1987 from an 870°C fumarole on the andesitic lava dome show various degrees of disequilibrium due to oxidation of reduced gas species and condensation (and loss) of H2O in the intake tube of the sampling apparatus. Thermochemical restoration of the data permits removal of these effects to infer an equilibrium composition of the gases. Although not conclusive, this restoration is consistent with the idea that the gases were in equilibrium at 870°C with an oxygen fugacity near the Ni–NiO buffer. These restored gas compositions show that, relative to other convergent plate volcanoes, the Augustine gases are very HCl rich (5.3–6.0 mol% HCl), S rich (7.1 mol% total S), and H2O poor (83.9–84.8 mol% H2O). Values of D and 18O suggest that the H2O in the dome gases is a mixture of primary magmatic water (PMW) and local seawater. Part of the Cl in the Augustine volcanic gases probably comes from this shallow seawater source. Additional Cl may come from subducted oceanic crust because data by Johnston (1978) show that Cl-rich glass inclusions in olivine crystals contain hornblende, which is evidence for a deep source (>25km) for part of the Cl. Gas samples collected in 1986 from 390°–642°C fumaroles on a ramp surrounding the inner summit crater have been oxidized so severely that restoration to an equilibrium composition is not possible. H and O isotope data suggest that these gases are variable mixtures of seawater, FMW, and meteoric steam. These samples are much more H2O-rich (92%–97% H2O) than the dome gases, possibly due to a larger meteoric steam component. The 1986 samples also have higher Cl/S, S/C, and F/Cl ratios, which imply that the magmatic component in these gases is from the more degassed 1976 magma. Thus, the 1987 samples from the lava dome are better indicators than the 1986 samples of degassing within the Augustine magma reservoir, even though they were collected a year later and contain a significant seawater component. Future gas studies at Augustine should emphasize fumaroles on active lava domes. Condensates collected from the same lava-dome fumarole have enrichments ot 107–102 in Cl, Br, F, B, Cd, As, S, Bi, Pb, Sb, Mo, Zn, Cu, K, Li, Na, Si, and Ni. Lower-temperature (200°–650°C) fumaroles around the volcano are generally less enriched in highly volatile elements. However, these lower-termperature fumaroles have higher concentration of rock-forming elements, probably derived from the wall rock.  相似文献   

5.
Oldoinyo Lengai in the Northern Tanzania rift is the only active nephelinite–carbonatite stratovolcano. We report the discovery of thermonatrite, aphthitalite, halite and sylvite fumarole deposits on recent natrocarbonatite lava flows erupted in the summit crater during the wet season. These salt deposits occur as delicate, concave fringes or tubes that line the cooling cracks in the lava flows and consist of intergrowths of euhedral crystals. The presence of a dark altered zone, depleted in halides and alkalies, adjacent to cooling cracks and observations of steam fumaroles emanating from the fractures suggest that the salts are formed by sublimation from saturated vapours generated by the extrusion of lavas over meteoric water. The crystallisation sequence recorded in the salts suggests that mixing between meteoric steam and magmatic CO2 and H2S occurs at high temperatures resulting in the sublimation of carbonates and sulphates. At lower temperatures the vapours are dominated by meteoric steam and sublimate halides. The high solubility of the fumarole salts within meteoric water and their formation only during the wet season implies that these are ephemeral deposits that are unlikely to be preserved in the geological record.  相似文献   

6.
The February 1963 to January 1964 eruption of Gunung Agung, Indonesia’s largest and most devastating eruption of the twentieth century, was a multi-phase explosive and effusive event that produced both basaltic andesite tephra and andesite lava. A rather unusual eruption sequence with an early lava flow followed by two explosive phases, and the presence of two related but distinctly different magma types, is best explained by successive magma injections and mixing in the conduit or high level magma chamber. The 7.5-km-long blocky-surfaced andesite lava flow of ~0.1?km3 volume was emplaced in the first 26?days of activity beginning on 19 February. On 17 March 1963, a major moderate intensity (~4?×?107?kg?s?1) explosive phase occurred with an ~3.5-h-long climax. This phase produced an eruption column estimated to have reached heights of 19 to 26?km above sea level and deposited a scoria lapilli to fine ash fall unit up to ~0.2?km3 (dense rock equivalent—DRE) in volume, with Plinian dispersal characteristics, and small but devastating scoria-and-ash flow deposits. On 16 May, a second intense 4-h-long explosive phase (2.3?×?107?kg?s?1) occurred that produced an ~20-km-high eruption column and deposited up to ~0.1?km3 (DRE) volume of similar ash fall and pyroclastic flow deposits, the latter of which were more widespread than in the March phase. The two magma types, porphyritic basaltic andesite and andesite, are found as distinct juvenile scoria populations. This indicates magma mixing prior to the onset of the 1963 eruption, and successive injections of the more mafic magma may have modulated the pulsatory style of the eruption sequence. Even though a total of only ~0.4?km3 (DRE volume) of lava, scoria and ash fall, and scoria-and-ash pyroclastic flow deposits were produced by the 1963 eruption, there was considerable local damage caused mainly by a combination of pyroclastic flows and lahars that formed from the flow deposits in the saturated drainages around Agung. Minor explosive activity and lahar generation by rainfall persisted into early 1964. The climactic events of 17 March and 16 May 1963 managed to inject ash and sulfur-rich gases into the tropical stratosphere.  相似文献   

7.
 Volcanic breccias form large parts of composite volcanoes and are commonly viewed as containing pyroclastic fragments emplaced by pyroclastic processes or redistributed as laharic deposits. Field study of cone-forming breccias of the andesitic middle Pleistocene Te Herenga Formation on Ruapehu volcano, New Zealand, was complemented by paleomagnetic laboratory investigation permitting estimation of emplacement temperatures of constituent breccia clasts. The observations and data collected suggest that most breccias are autoclastic deposits. Five breccia types and subordinate, coherent lava-flow cores constitute nine, unconformity-bounded constructional units. Two types of breccia are gradational with lava-flow cores. Red breccias gradational with irregularly shaped lava-flow cores were emplaced at temperatures in excess of 580  °C and are interpreted as aa flow breccias. Clasts in gray breccia gradational with tabular lava-flow cores, and in some places forming down-slope-dipping avalanche bedding beneath flows, were emplaced at varying temperatures between 200 and 550  °C and are interpreted as forming part of block lava flows. Three textural types of breccia are found in less intimate association with lava-flow cores. Matrix-poor, well-sorted breccia can be traced upslope to lava-flow cores encased in autoclastic breccia. Unsorted boulder breccia comprises constructional units lacking significant exposed lava-flow cores. Clasts in both of these breccia types have paleomagnetic properties generally similar to those of the gray breccias gradational with lava-flow cores; they indicate reorientation after acquisition of some, or all, magnetization and ultimate emplacement over a range of temperatures between 100 and 550  °C. These breccias are interpreted as autoclastic breccias associated with block lava flows. Matrix-poor, well-sorted breccia formed by disintegration of lava flows on steep slopes and unsorted boulder breccia is interpreted to represent channel-floor and levee breccias for block lava flows that continued down slope. Less common, matrix-rich, stratified tuff breccias consisting of angular blocks, minor scoria, and a conspicuously well-sorted ash matrix were generally emplaced at ambient temperature, although some deposits contain clasts possibly emplaced at temperatures as high as 525  °C. These breccias are interpreted as debris-flow and sheetwash deposits with a dominant pyroclastic matrix and containing clasts likely of mixed autoclastic and pyroclastic origin. Pyroclastic deposits have limited preservation potential on the steep, proximal slopes of composite volcanoes. Likewise, these steep slopes are more likely sites of erosion and transport by channeled or unconfined runoff rather than depositional sites for reworked volcaniclastic debris. Autoclastic breccias need not be intimately associated with coherent lava flows in single outcrops, and fine matrix can be of autoclastic rather than pyroclastic origin. In these cases, and likely many other cases, the alternation of coherent lava flows and fragmental deposits defining composite volcanoes is better described as interlayered lava-flow cores and cogenetic autoclastic breccias, rather than as interlayered lava flows and pyroclastic beds. Reworked deposits are probably insignificant components of most proximal cone-forming sequences. Received: 1 October 1998 / Accepted: 28 December 1998  相似文献   

8.
Dark aeolian deposits on Mars are thought to consist of volcanic materials due to their mineral assemblages, which are common to basalts. However, the sediment source is still debated. Basaltic dunes on Earth are promising analogs for providing further insights into the assumed basaltic sand dunes on Mars. In our study we characterize basaltic dunes from the Ka'u Desert in Hawaii using optical microscopes, electron microprobe, and spectral analyses. We compare the spectra of terrestrial and Martian dune sands to determine possible origins of the Martian dark sediments. Our results show that the terrestrial sands consist primarily of medium to coarse sand‐sized volcanic glass and rock fragments as well as olivine, pyroxene, and plagioclase minerals. Grain shapes range from angular to subrounded. The sample composition indicates that the material was derived from phreatomagmatic eruptions partially with additional proportions of rock fragments from local lava flows. Grain shape and size indicate the materials were transported by aeolian processes rather than by fluvial processes. Spectral analyses reveal an initial hydration of all terrestrial samples. A spectral mineralogical correlation between the terrestrial and Martian aeolian sands shows a similarity consistent with an origin from volcanic ash and lava. We suggest that the Martian deposits may contain similar abundances of volcanic glass, which has not yet been distinguished in Martian spectral data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The chronology of deposits of the 1976 eruption of Augustine volcano, which produced pyroclastic falls, pyroclastic flows, and lava domes, is determined by correlating the stratigraphy with published records of seismicity, plume observations, and distant ash falls. Three thin air-fall ash beds (unit A1, A2 and A3) correlate with events near the beginning of the 1976 eruption on 22 and 23 January. On 24 January a small-volume, ash-cloud-surge deposit (unit S) accumulated over the north half of Augustine Island. A series of pumiceous pyroclastic flows represented by the lobate pumiceous deposits (unit F) occurred on 24 January and locally melted the snowpack to cause small pumice-laden floods. A thin ash bed (unit A4) was deposited on 24 January, and the main plinian eruption (unit P) occurred on 25 January. In middle to late February and again in mid April, lava domes were extruded at the summit accompanied by incandescent block-and-ash flows down the north flank. A hut near the north coast of the island was mechanically and thermally damaged by the small-volume ash-cloud surge of unit S before the eruption of the pumice flow of unit F; the metal roof was then penetrated by lithic fragments of the plinian fall of 25 January. Explosive eruptions in the early stage of an eruption-like that which deposited unit S — are important hazards at Augustine Island, as are infrequent debris avalanches and attendant tsunamis.deceased on 18 May 1980  相似文献   

10.
In this paper we present densely sampled fumarole temperature data, recorded continuously at a high-temperature fumarole of Mt. Merapi volcano (Indonesia). These temperature time series are correlated with continuous records of rainfall and seismic waveform data collected at the Indonesian–German multi-parameter monitoring network. The correlation analysis of fumarole temperature and precipitation data shows a clear influence of tropical rain events on fumarole temperature. In addition, there is some evidence that rainfall may influence seismicity rates, indicating interaction of meteoric water with the volcanic system. Knowledge about such interactions is important, as lava dome instabilities caused by heavy-precipitation events may result in pyroclastic flows. Apart from the strong external influences on fumarole temperature and seismicity rate, which may conceal smaller signals caused by volcanic degassing processes, the analysis of fumarole temperature and seismic data indicates a statistically significant correlation between a certain type of seismic activity and an increase in fumarole temperature. This certain type of seismic activity consists of a seismic cluster of several high-frequency transients and an ultra-long-period signal (<0.002 Hz), which are best observed using a broadband seismometer deployed at a distance of 600 m from the active lava dome. The corresponding change in fumarole temperature starts a few minutes after the ultra-long-period signal and simultaneously with the high-frequency seismic cluster. The change in fumarole temperature, an increase of 5 °C on average, resembles a smoothed step. Fifty-four occurrences of simultaneous high-frequency seismic cluster, ultra-long period signal and increase of fumarole temperature have been identified in the data set from August 2000 to January 2001. The observed signals appear to correspond to degassing processes in the summit region of Mt. Merapi.  相似文献   

11.
Lithic-rich breccias are described from within a sequence of young (2000–3000 yrs B.P.) scoria and ash flow deposits erupted from Mount Misery and an older pumice and ash flow deposit (ignimbrite) on St. Kitts. Cross sections constructed through pyroclastic flow fans in well-exposed sea cliffs 4–6 km from the vent show that the lithic breccias are lensoid deposits which seem to occur as channel-shaped accumulations (up to > 20 m thick and > 150 m wide) within flow units. The best-developed example infills a deeply incised channel cut into older flow units. The coarsest lithic breccias are clast supported and fines depleted and grade laterally and vertically through finer-grained, matrix-supported breccias into scoria and ash flow deposits. Coarse scoria-concentration zones mainly occur at the tops of scoria and ash flow units but also at the bases, and gas-segregation pipes are common. The lithic breccias are a type of body-concentration deposit as they pass laterally into normal scoria and ash flow deposits and, where best developed, clearly occur above a reversely graded basal shear zone or layer. Grain-size studies indicate the lithic breccias and parent flows are strongly fines depleted and were highly fluidized. We suggest this may be a feature of many Lesser Antillean pyroclastic flows because of increased turbulence-induced fluidization resulting from a high degree of surface roughness caused by the steep (up to 40 °) irregular slopes, densely vegetated sinuous gullies of the tropical volcanoes, and ingestion and ignition of large amounts of lush vegetation. Accumulation of batches of lithics concentrated in the highly fluidized flows began at the break in slope where flows moved from gullies across hydraulic jumps onto the outer coastal flanks. The accumulations of breccias continued to move and be channelled down the central parts of the flows. Initially, on crossing onto the lower slopes, some of these flows seem to have had very powerfully erosive, nondepositional heads, and in the extreme example a deep channel as long as 1–2 km may have cut through underlying flow units at least as far as the present coastline. Much of the overriding remainder of the flow then drained away laterally. Thin, fine-grained ash flow deposits may form a marginal overbank facies to the pyroclastic flow fans.  相似文献   

12.
Between 1986 and 1990 the eruptive activity of Erebus volcano was monitored by a video camera with on-screen time code and recorded on video tape. Corresponding seismic and acoustic signals were recorded from a network of 6 geophones and 2 infrasonic microphones. Two hundred Strombolian explosions and three lava flows which were erupted from 7 vents were captured on video. In December 1986 the Strombolian eruptions ejected bombs and ash. In November 1987 large bubble-bursting Strombolian eruptions were observed. The bubbles burst when the bubble walls thinned to ∼ 20 cm. Explosions with bomb flight-times up to 14.5 s were accompanied by seismic signals with our local size estimate, “unified magnitudes” (mu), up to 2.3. Explosions in pools of lava formed by flows in the Inner Crater were comparatively weak.  相似文献   

13.
Three magmatic units (Grande Cascade pyroclastic deposits, Grande Cascade lava flow, Durbise nuée ardente deposits) from the Quaternary volcano Sancy (Mont-Dore area, Auvergne, France) show textural evidences of magma mixing between a silica undersaturated basic magma (alkali basalt and hawaiite) and an acid magma (quartz-bearing trachyte). Three kinds of mixed rock types are described: basic inclusions within an acid host, « emulsified rocks » showing infracentimetric basic globules disseminated within an acid groundmass, and « banded rocks » in which elongated acid and basic zones alternate. The chemical compositions of mixed rocks plot systematically onto linear trends in petrographic diagrams. Microprobe analyses of the groundmass show similar linear variations between basic and acid end-members. The mineralogical associations of these mixed rocks are highly complex and present many disequilibrium features. Olivine is stable in the basic component and becomes rimmed by orthopyroxene in the acid one. Zoning patterns of feldspars are complex. Clinopyroxene, kaersutite and phlogopite phenocrysts have increasing component Mg contents from core to rim both in the basic and the acid. Titanomagnetite and hemoilmenite phenocrysts were equilibrated at 900-800° C under high oxygen fugacities.Mixing results primarily from a mechanical disintegration of partly liquid basic inclusions within their acid host, and also from a mechanical transfer of phenocrysts from one component to the other, in which they often remain surrounded by a coating of their original groundmass. Chemical data on the groundmass indicates that some « true » hybridization between coexisting acid and basic liquids may also have occurred. The extent of mixing is controlled by the type of emplacement. For pyroclastic deposits a chemical gap exists between basic inclusions and their acid hosts; in contrast, mechanical mixing was enhanced during the emplacement of the viscous Grande Cascade lava flow, and complete transitions occur between basic and acid components. The two end-members are genetically associated, the latter deriving from the former by crystal fractionation. Mixing appears as a late-stage phenomenon in the petrogenetic history of the Mont-Dore series; in the case of the Grande Cascade lava flow, its extent is primarily dependent on emplacement modalities.  相似文献   

14.
Relatively homogeneous trachytes have been erupted for approximately 3800 years at la Fossa di Vulcano. From the Punte Nere eruptive cycle up to the Palizzi cycle the products varied little, while after the Palizzi cycle (1600 + 1000 a B.P.) to the latest eruption, 1888–1890 AD, a spectrum of compositions, with rhyolite dominating, characterized the erupted products.A stratigraphic sequence, starting with the Palizzi lava flow, has been studied, focussing the attention on lavas and volcanic bombs, to define the role that magma mixing processes have played in the recent history of La Fossa di Vulcano. Textural and chemical analyses of whole rocks, glass, groundmass, and mineral phases indicate that only the breadcrust bombs, erupted during the 1888–1890, show evidence of mixing between trachytic and rhyolitic end-members. Interestingly, in the deposits of the same eruption, trachytic bombs also occur.The lava flows erupted before 1888–1890 display general features suggesting that they entrained crystals and lava fragments during magma ascent. During the 1888–1890 eruption the trachytic bombs were erupted before the breadcrust bombs, which have a more evolved and hybrid composition. These characteristics, together with the change of the nature of the products after the Palizzi cycle, require a complex volcanological model for the recent history of la Fossa di Vulcano.  相似文献   

15.
Explosive activity at Arenal and associated tephra fall that has occurred over the 14-year period from 1987–2001 is described. Explosions have been notably variable in both frequency and size. A marked decrease in both frequency and quantity of tephra fallout occurred in early 1998 until the end of 2001. Grainsize distributions of cumulative tephra samples collected once a month are typically bimodal. Aggregation causing premature fallout of fine ash and possibly fallout from ash plumes produced by pyroclastic flows are considered responsible for the bimodality of fallout. Scanning electron microscopy of the glass component of tephra from single explosions show predominantly blocky and blocky/fluidal clast types, interpreted as being the product of vulcanian type explosions. Fragmentation of a mainly rigid, degassed magma body, and a minor molten component is inferred for these explosions. Pyroclastic flows were produced either associated with the larger explosions by a mechanism of column collapse (1987–1990), or unrelated to explosions by partial collapse of the crater wall (1993, 1998, 2000, 2001). Pyroclastic flow activity has migrated from west to north during the period reported. Pyroclastic flow deposits are variable in the quantity of juvenile material and any associated surge component. Large juvenile blocks were partially molten on emplacement and many have a typical cauliform texture. Blocks with both juvenile and lithic textures indicate that at the summit magma was in intimate contact with the pre-existing edifice, rather than as a simple open crater or lava pool. Crater wall collapse may have been promoted by the reduction in explosive activity, which has increased the lava accumulation at the summit and in turn increased instability of the summit region. Thus although explosive activity has waned, if the lava output is maintained, the hazard of pyroclastic flows is likely to continue.Editorial responsibility: R. Cioni  相似文献   

16.
The Kula volcanic field in Western Turkey comprises about 80 cinder cones and associated basaltic lava flows of Quaternary age. Based on geomorphological criteria and K-Ar dating, three eruption phases, β2–β4, were distinguished in previous studies. Human footprints in ash deposits document that the early inhabitants of Anatolia were affected by the volcanic eruptions, but the age of the footprints has been poorly constrained. Here we use 3He and 10Be exposure dating of olivine phenocrysts and quartz-bearing xenoliths to determine the age of the youngest lava flows and cinder cones. In the western part of the volcanic field, two basalt samples from a 15-km-long block lava flow yielded 3He ages of 1.5 ± 0.3 ka and 2.5 ± 0.4 ka, respectively, with the latter being in good agreement with a 10Be age of 2.4 ± 0.3 ka for an augen gneiss xenolith from the same flow. A few kilometers farther north, a metasedimentary xenolith from the top of the cinder cone Çakallar Tepe gave a 10Be age of 11.2 ± 1.1 ka, which dates the last eruption of this cone and also the human footprints in the related ash deposits. In the center of the volcanic field, a basalt sample and a metasedimentary xenolith from another cinder cone gave consistent 3He and 10Be ages of 2.6 ± 0.4 ka and 2.6 ± 0.3 ka, respectively. Two β4 lava flows in the central and eastern part of the volcanic province yielded 3He ages of 3.3 ± 0.4 ka and 0.9 ± 0.2 ka, respectively. Finally, a relatively well-preserved β3 flow gave a 3He age of ∼13 ka. Taken together, our results demonstrate that the penultimate eruption phase β3 in the Kula volcanic field continued until ∼11 ka, whereas the youngest phase β4 started less than four thousand years ago and may continue in the future.  相似文献   

17.
The Senyama volcanic products of the late Pliocene to early Pleistocene O’e Takayama volcano overlie a 100-m-thick, late Pliocene coastal quartz-sandstone and are intruded by an early Pleistocene dacite dome. The Senyama volcanic products are the remains of a cone that retains a basal part 1.5 km across and 150–250 m high from the substrate. The cone comprises dacite block-and-ash flow deposits and minor base-surge deposits occur at the base. Single beds of the block-and-ash flow deposits are 1–16 m thick and dip inward 20–40° at the base of the cone and inward or outward 10–20° at the summit. Juvenile fragments in the block-and-ash flow deposits are non- to poorly vesicular and commonly have curviplanar surfaces and prismatic joints extending inward from the surfaces, which imply quenching and brittle fracturing of dacite lava. They are variably hydrothermally altered. Nevertheless, juvenile blocks appear to retain a uniform direction of the magnetization vector residual during thermal demagnetization between 280°C and 625°C. At the time of the eruption, the well-sorted sand of the substrate was at the coast and a good aquifer that facilitated explosive interaction of water and the ascending dacite lava. The mechanism of the explosion perhaps involved thermal contraction cracking of the dacite lava, water-inflow into the interior of the lava, and explosive expansion of the water. Initial phreatomagmatic explosions opened the vent. Succeeding phreatomagmatic or phreatomagmatic–vulcanian explosions produced block-and-ash flow deposits around the vent. Hydrothermal silver-ore deposits and manganese-oxide deposits occur in the Senyama volcanic products and the underlying sandstone, respectively. They could represent post-eruptive activity of the hydrothermal system developed in and around the cone.  相似文献   

18.
New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber 7000 yr B.P.The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between 22,000 and 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is 25,000 yr old. These relatively silicic lavas commonly contain traces of hornblende and record early stages in the development of the climatic magma chamber.Some 15,000 to 40,000 yr were apparently needed for development of the climactic magma chamber, which had begun to leak rhyodacitic magma by 7015 ± 45 yr B.P. Four rhyodacitic lava flows and associated tephras were emplaced from an arcuate array of vents north of the summit of Mount Mazama, during a period of 200 yr before the climactic eruption. The climactic eruption began 6845 ± 50 yr B.P. with voluminous airfall deposition from a high column, perhaps because ejection of 4−12 km3 of magma to form the lava flows and tephras depressurized the top of the system to the point where vesiculation at depth could sustain a Plinian column. Ejecta of this phase issued from a single vent north of the main Mazama edifice but within the area in which the caldera later formed. The Wineglass Welded Tuff of Williams (1942) is the proximal featheredge of thicker ash-flow deposits downslope to the north, northeast, and east of Mount Mazama and was deposited during the single-vent phase, after collapse of the high column, by ash flows that followed topographic depressions. Approximately 30 km3 of rhyodacitic magma were expelled before collapse of the roof of the magma chamber and inception of caldera formation ended the single-vent phase. Ash flows of the ensuing ring-vent phase erupted from multiple vents as the caldera collapsed. These ash flows surmounted virtually all topographic barriers, caused significant erosion, and produced voluminous deposits zoned from rhyodacite to mafic andesite. The entire climactic eruption and caldera formation were over before the youngest rhyodacitic lava flow had cooled completely, because all the climactic deposits are cut by fumaroles that originated within the underlying lava, and part of the flow oozed down the caldera wall.A total of 51−59 km3 of magma was ejected in the precursory and climactic eruptions, and 40−52 km3 of Mount Mazama was lost by caldera formation. The spectacular compositional zonation shown by the climactic ejecta — rhyodacite followed by subordinate andesite and mafic andesite — reflects partial emptying of a zoned system, halted when the crystal-rich magma became too viscous for explosive fragmentation. This zonation was probably brought about by convective separation of low-density, evolved magma from underlying mafic magma. Confinement of postclimactic eruptive activity to the caldera attests to continuing existence of the Mazama magmatic system.  相似文献   

19.
The basaltic Kaupulehu 1800–1801 lava flow of Hualalai Volcano, Hawaii contains abundant ultramafix xenoliths. Many of these xenoliths occur as bedded layers of semi-rounded nodules, each thinly coated with a veneer (typically 1 mm thick) of lava. The nodule beds are analogous to cobble deposits of fluvial sedimentary systems. Although several mechanisms have been proposed for the formation of the nodule beds, it was found that, at more than one locality, the nodule beds are overbank levee deposits. The geological occurrence of the nodules, certain diagnostic aspects of the flow morphology and consideration of the inferred emplacement process indicate that the Kaupulehu flow had an exceptionally low viscosity on eruption and that the flow of the lava stream was extremely rapid, with flow velocities of at least 10 m s-1 (more than 40 km h-1). This flow is the youngest on Hualalai Volcano and future eruptions of a similar type would pose considerable hazard to life as well as property.  相似文献   

20.
This paper presents a new method of analysing lava flow deposits which allows the velocity, discharge rate and rheological properties of channelled moving lavas to be calculated. The theory is applied to a lava flow which was erupted on Kilauea in July 1974. This flow came from a line of fissures on the edge of the caldera and was confined to a pre-existing gully within 50 m of leaving the vent. The lava drained onto the floor of the caldera when the activity stopped, but left wall and floor deposits which showed that the lava banked up as it flowed around each of the bends. Field surveys established the radius of curvature of each bend and the associated lava levels, and these data, together with related field and laboratory measurements, are used to study the rheology of the lava. The results show the flow to have been fast moving but still laminar, with a mean velocity of just over 8 m s–1; the lava had a low or negligible yield strength and viscosities in the range 85–140 Pa s. An extension of the basic method is considered, and the possibility of supercritical flow discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号