首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our investigation is centred on the continental slope of the Antarctic Peninsula and adjacent basin. Type of sediments, sedimentary stratigraphy, and physical and geotechnical characterization of the sediments have been integrated. Four different types of sediments have been defined: diamictons, silty and muddy turbidites, muddy, silty and muddy matrix embedded clast contourites. There is a close correspondence between the physical properties (density, magnetic susceptibility and p-wave velocity) and the texture and/or fabric as laminations and stratification. From a quantitative point of view, only a few statistical correlations between textural and physical properties have been found. Within the geotechnical properties, only water content is most influenced by texture. This slope, with a maximum gradient observed (20°), is stable, according to the stability under gravitational loading concepts, and the maximum stable slope that would range from 22° to 29°. Nevertheless, different instability features have been observed. Volcanic activity, bottom currents, glacial loading-unloading or earthquakes can be considered as potential mechanisms to induce instability in this area.  相似文献   

2.
Our investigation is centred on the continental slope of the Antarctic Peninsula and adjacent basin. Type of sediments, sedimentary stratigraphy, and physical and geotechnical characterization of the sediments have been integrated. Four different types of sediments have been defined: diamictons, silty and muddy turbidites, muddy, silty and muddy matrix embedded clast contourites. There is a close correspondence between the physical properties (density, magnetic susceptibility and p-wave velocity) and the texture and/or fabric as laminations and stratification. From a quantitative point of view, only a few statistical correlations between textural and physical properties have been found. Within the geotechnical properties, only water content is most influenced by texture. This slope, with a maximum gradient observed (20°), is stable, according to the stability under gravitational loading concepts, and the maximum stable slope that would range from 22° to 29°. Nevertheless, different instability features have been observed. Volcanic activity, bottom currents, glacial loading-unloading or earthquakes can be considered as potential mechanisms to induce instability in this area.  相似文献   

3.
Progress in understanding the structural evolution of the Pannonian Basin is reported. This has been driven by the application of seismic stratigraphy constrained by magnetostratigraphic data and the recent release of a great amount of hydrocarbon exploration data. This has led to a redefinition and better understanding of the syn-rift period and style of rifting. In addition, a complex structural evolution history during the post-rift phase has been recognized. Two compressive events are defined: one in the early stage and another in the late stage of evolution. The importance of these findings for hydrocarbon exploration includes an improved knowledge of the timing of trap formations and a possible explanation for remarkably variable reservoir pressures in pools of the Great Hungarian Plain.  相似文献   

4.
The North Gabon coastal rift basins consist of a set of 130–150 long-segment asymmetrically tilted half grabens (Interior Basin) and 000–020 short-segment en échelon half grabens (N'Komi Basin) separated by 040–060 major transverse faults. Tectono-sedimentary analysis of field and subsurface data reveals the control exerted by extensional tectonism over continental sedimentation. During Berriasian to early Barremian times, uniform uniaxial 040–060 extension was responsible for the stretching of the brittle upper crust over a 100-km wide domain. During late Barremian–early Aptian times, the main locus of extension stepped westward resulting in severe end-rift uplift and erosion of the failed Interior and N'Komi rift basins. Early Cretaceous coastal rifts in North Gabon display a wide range of styles from oblique rifting (N'Komi Basin), normal rifting (Interior Basin) to transform rifting. The pre-existing Precambrian tectonic fabric exerts a strong control over the mode and over the 100–300 km-scale segmentation of the rifting.  相似文献   

5.
A detailed multibeam coverage of the eastern offshore of Lipari Island(Aeolian arc) has permitted its subdivision into two sectors with differentmorphobathymetric features. In the northern one, numerous, large, previouslyundetected rhyolitic lava flows have been identified. In the southern one, aconical pyroclastic and epiclastic edifice built on top of afan-shaped lava field has been discovered. Since some of theseoffshore features have no analogues on land, their recognition has furnishednew information about the volcanic processes that built the eastern portionof Lipari Island. In particular, the finding of a huge volume of offshorerhyolitic lava flows, largely exceeding the amount of this kind of lavas onland, shows that the contribution of rhyolitic products in the building ofthe Lipari apparatus has been up to now underestimated. More generally, thecomparison between the land and the offshore units of Lipari volcanicapparatus indicates that a better investigation of the submarine portions ofvolcanic islands can reveal new, unforeseen aspects and greatly enhance ourknowledge about their evolution.  相似文献   

6.
The Central Spreading Ridge (CSR) is located in the central part of the North Fiji Basin, a complex back-arc basin created 12 Ma ago between the Pacific and Indo-Australian plates. The 3.5 Ma old CSR is the best developed, for both structure and magmatism, of all the spreading centers identified in the basin, and may be one of the largest spreading systems of the west Pacific back-arc basins. It is more than 800 km long and 50–60 km wide, and has been intensively explored during the French-Japanese STARMER project (1987–1991).The CSR is segmented into three first order segments named, from north to south, N160°, N15° and N-S according to their orientation. This segmentation pattern is similar to that found at mid-ocean ridges. The calculated spreading rate is intermediate and ranges from 83 mm/yr at 20°30 S to 50 mm/yr at 17°S. In addition, there is a change in the axial ridge morphology and gravity structure between the northern and southern sections of the CSR. The axial morphology changes from a deep rift valley (N160° segment), to a dome split by an axial graben (N15° segment) and to a rectangular flat top high (N-S segment). The Mantle Bouguer Anomalies obtained on the northern part of the CSR (N160°/N15° segments) show bull's eye structures associated with mantle upwelling at the 16°50S triple junction and also in the middle of the segments. The Mantle Bouguer Anomalies of the southern part of the ridge (N-S segment) are more homogeneous and consistent with the observed smooth topography associated with axial isostatic compensation.At these intermediate spreading rates the contrast in bathymetry and gravity structure between the segments may reflect differences in heat supply. We suggest that the N160° and N15° segments are cold with respect to the hot N-S segment. We use a non-steady-state thermal model to test this hypothesis. In this model, the accretion is simulated as a nearly steady-state seafloor spreading upon which are superimposed periodic thermal inputs. With the measured spreading rate of 50 mm/yr, a cooling cycle of 200,000 yr develops a thermal state that permits to explain the axial morphology and gravity structure observed on the N160° segment. A spreading rate of 83 mm/yr and a cooling cycle of 120,000 yr would generate the optimal thermal structure to explain the characteristics of the N-S segment. The boundaries between the hot N-S segment and its cold bounding segments are the 18°10 S and 20°30 S propagating rifts. A heat propagation event along the N-S segment at the expense of the adjacent colder failing segments, can explain the sharp changes in the observed morphology and structure between the segments.  相似文献   

7.
Magnetic data collected in conjunction with a Sea Beam bathymetric survey of the Mid-Atlantic Ridge south of the Kane Fracture Zone are used to constrain the spreading history of this area over the past 3 Ma. Two-dimensional forward modeling and inversion techniques are carried out, as well as a full three-dimensional inversion of the anomaly field along a 90-km-long section of the rift valley. Our results indicate that this portion of the Mid-Atlantic Ridge, known as the MARK area, consists of two distinct spreading cells separated by a small, zero-offset transform or discordant zone near 23°10′ N, The youngest crust in the median valley is characterized by a series of distinct magnetization highs which coalesce to form two NNE-trending bands of high magnetization, one on the northern ridge segment which coincides with a large constructional volcanic ridge, and one along the southern ridge segment that is associated with a string of small axial volcanos. These two magnetization highs overlap between 23° N and 23°10° N forming a non-transform offset that may be a slow spreading ridge analogue of the small ridge axis discontinuities found on the East Pacific Rise. The crustal magnetizations in this overlap zone are generally low, although an anomalous, ESE-trending magnetization high of unknown origin is also present in this area. The present-day segmentation of spreading in the MARK area was inherited from an earlier ridge-transform-ridge geometry through a series of small (∼ 10 km) eastward ridge jumps. These small ridge jumps were caused by a relocation of the neovolcanic zone within the median valley and have resulted in an overall pattern of asymmetric spreading with faster rates to the west (14 mm yr−1) than to the east (11 mm yr−1). Although the detailed magnetic survey described in this paper extends out to only 3 Ma old crust, a regional compilation of magnetic data from this area by Schoutenet al. (1985) indicates that the relative positions and dimensions of the spreading cells, and the pattern of asymmetric spreading seen in the MARK area during the past 3 Ma, have characterized this part of the Mid-Atlantic Ridge for at least the past 36 Ma.  相似文献   

8.
In 1979, the General Bathymetric Chart of the Oceans (GEBCO) published Sheet 5.17 in the Fifth Edition of its series of global bathymetric maps. Sheet 5.17 covered the northern polar region above 64° N, and was for long the authoritative portrayal of Arctic bathymetry. The GEBCO compilation team had access to an extremely sparse sounding database from the central Arctic Ocean, due to the difficulty of mapping in this permanently ice covered region. In the past decade, there has been a substantial increase in the database of central Arctic Ocean bathymetry, due to the declassification of sounding data collected by US and British Navy nuclear submarines, and to the capability of modern icebreakers to measure ocean depths in heavy ice conditions. From these data sets, evidence has mounted to indicate that many of the smaller (and some larger) bathymetric features of Sheet 5.17 were poorly or wrongly defined. Within the framework of the project to construct the International Bathymetric Chart of the Arctic Ocean (IBCAO), all available historic and modern data sets were compiled to create a digital bathymetric model. In this paper, we compare both generally and in detail the contents of GEBCO Sheet 5.17 and version 1.0 of IBCAO, two bathymetric portrayals that were created more than 20 years apart. The results should be helpful in the analysis and assessment of previously published studies that were based on GEBCO Sheet 5.17. Ron Macnab: Retired.  相似文献   

9.
The morphotectonic features and their evolution of the central Southwest Indian Ridge (SWIR) are dis- cussed on the base of the high-resolution flfll-coverage bathyraetric data on the ridge between 49°-51°E. A comparative analysis of the topographic features of the axial and flank area indicates that the axial topogra- phy is alternated by the ridge and trough with en echelon pattern and evolved under a spatial-temporal mi- gration especially in 49°-50.17°E. It is probably due to the undulation at the top of the mantle asthenosphere, which is propagating with the mantle flow. From 50.17° to 50.7°E, is a topographical high terrain with a crust much thicker than the global average of the oceanic crust thickness. Its origin should be independent of the spreading mechanism of ultra-slow spreading ridges. The large numbers of volcanoes in this area indicate robust magmatic activity and may be related to the Crozet hot spot according to RMBA (residual mantle Bouguer anomaly). The different geomorphological feature between the north and south flanks of the ridge indicates an asymmetric spreading, and leading to the development of the OCC (oceanic core complex). The tectonic activity of the south frank is stronger than the north and is favorable to develop the OCC. The first found active hydrothermal vent in the SWIR at 37°47'S, 49°39'E is thought to be associated with the detach- ment fault related to the OCC.  相似文献   

10.
Swath bathymetric, sonar imagery and seismic reflection data collected during the SOPACMAPS cruise Leg 3 over segments of the Vitiaz Trench Lineament and adjacent areas provide new insights on the geometry and the stuctural evolution of this seismically inactive lineament. The Vitiaz Trench Lineament, although largely unknown, is one of the most important tectonic feature in the SW Pacific because it separates the Cretaceous crust of the Pacific Plate to the north from the Cenozoic lithosphere of the North Fiji and Lau Basins to the south. The lineament is considered to be the convergent plate boundary between the Pacific and Australian Plates during midde to late Tertiary time when the Vitiaz Arc was a continuous east-facing are from the Tonga to the Solomon Islands before the development of the North Fiji and Lau Basins. Progressive reversal and cessation of subduction from west to east in the Late Miocene-Lower Plioene have been also proposed. However, precise structures and age of initiation and cessation of deformation along the Vitiaz Trench Lineament are unknown.The lineament consists of the Vitiaz Trench and three discontinuous and elongated troughs (Alexa, Rotuma and Horne Troughs) which connect the Vitiaz Trench to the northern end of the Tonga Trench. Our survey of the Alexa and Rotuma Troughs reveals that the lineament is composed of a series of WNW-ESE and ENE-WSW trending segments in front of large volcanic massifs belonging to the Melanesian Border Plateau, a WNW trending volcanic belt of seamounts and ridges on Pacific crust. The Plateau and Pacific plate lying immediately north of the lineament have been affected by intense normal faulting, collapse, and volcanism as evidenced by a series of tilted blocks, grabens, horsts and ridges trending N 120° to N100° and N60°–70°. This tectonism includes several normal faulting episodes, the latest being very recent and possibly still active. The trend of the fault scarps and volcanic ridges parallels the different segments of the Vitiaz Trench Lineament, suggesting that tectonics and volcanism are related to crustal motion along the lineament.Although the superficial observed features are mainly extensional, they are interpreted as the result of shortening along the Vitiaz Trench Lineament. The fabric north of the lineament would result from subduction-induced normal faulting on the outer wall of the trench and the zig-zag geometry of the Vitiaz Trench Lineament might be due to collision of large volcanic edifices of the Melanesian Border Plateau with the trench, provoking trench segmentation along left-lateral ENE-WSW trending transform zones. The newly acquired bathymetric and seismic data suggest that crustal motion (tectonism associated with volcanism) continued up to recent times along the Vitiaz Trench Lineament and was active during the development of the North Fiji Basin.  相似文献   

11.
High-resolution Sea Beam bathymetry and Sea MARC I side scan sonar data have been obtained in the MARK area, a 100-km-long portion of the Mid-Atlantic Ridge rift valley south of the Kane Fracture Zone. These data reveal a surprisingly complex rift valley structure that is composed of two distinct spreading cells which overlap to create a small, zero-offset transform or discordant zone. The northern spreading cell consists of a magmatically robust, active ridge segment 40–50 km in length that extends from the eastern Kane ridge-transform intersection south to about 23°12′ N. The rift valley in this area is dominated by a large constructional volcanic ridge that creates 200–500 m of relief and is associated with high-temperature hydrothermal activity. The southern spreading cell is characterized by a NNE-trending band of small (50–200 m high), conical volcanos that are built upon relatively old, fissured and sediment-covered lavas, and which in some cases are themselves fissured and faulted. This cell appears to be in a predominantly extensional phase with only small, isolated eruptions. These two spreading cells overlap in an anomalous zone between 23°05′ N and 23°17′ N that lacks a well-developed rift valley or neovolcanic zone, and may represent a slow-spreading ridge analogue to the overlapping spreading centers found at the East Pacific Rise. Despite the complexity of the MARK area, volcanic and tectonic activity appears to be confined to the 10–17 km wide rift valley floor. Block faulting along near-vertical, small-offset normal faults, accompanied by minor amounts of back-tilting (generally less than 5°), begins within a few km of the ridge axis and is largely completed by the time the crust is transported up into the rift valley walls. Features that appear to be constructional volcanic ridges formed in the median valley are preserved largely intact in the rift mountains. Mass-wasting and gullying of scarp faces, and sedimentation which buries low-relief seafloor features, are the major geological processes occurring outside of the rift valley. The morphological and structural heterogeneity within the MARK rift valley and in the flanking rift mountains documented in this study are largely the product of two spreading cells that evolve independently to the interplay between extensional tectonism and episodic variations in magma production rates.  相似文献   

12.
The tectonic evolution of the Vienna Basin overlying the Alpine-Carpathian fold and thrust belt includes two stages of distinct basin subsidence and deformation. The earlier phase contemporaneous with thrusting of the Alpine-Carpathian floor thrust is related to the formation of a wedge-top basin (“piggy-back”), which was connected to the evolving foreland basin (Lower Miocene; c. 18.5–16 Ma). This stage is followed by the formation of a pull-apart basin (Middle to Upper Miocene; c. 16–8 Ma). Sediments of the latter unconformably overly wedge-top basin strata and protected them against erosion.  相似文献   

13.
Analysis of 2 D seismic data over 4 500 km in length from the Madura Strait Basin in the East Java Sea reveals seismic re?ection characteristics of reefs and associated sedimentary bodies, including asymmetrical or symmetrical dome re?ections, slope progradational re?ections, chaotic re?ections and discontinuous strong re?ections inside the reef, which onlap the ?ank of the reef. It is concluded that the developmental paleo-environment of most reefs is mainly conducive to shallow marine carbonate platform facies and platform margin facies, based on well core data, variations in seismic facies and strata thickness.The formation and evolution of all reefs are primarily in?uenced by the tectonic framework of the Madura Strait Basin. Platform margin reefs are principally controlled by two types of structures: one is a series of E-W trending Paleogene normal faults, and the other is an E-W trending Neogene inversion structures. In addition, wave actions, tidal currents and other ocean currents play an accelerated role in sorting, rounding and redeposition for the accumulation and evolution of reefs. Tertiary reefs in the MSB can be divided into four types: 1) an open platform coral reef of Late Oligocene to Early Miocene, 2) a platform margin coral reef controlled by normal faults in Late Oligocene to Early Miocene, 3) a platform margin Globigerina moundreef controlled by a "hidden" inversion structure in Early Pliocene, and 4) a platform margin Globigerina mound-reef controlled by thrust faults in the early Pliocene. Patterns of the formation and evolution of reefs are also suggested.  相似文献   

14.
I~IOXThe speCiality in gootectonic position and complicity in origin and evolution of the sleuth China Sea (SCS) has aroused particular attention of the geoscientists at home and abroad. The central region, which consists of continental slope, island slope and a deep-sea basin, is an importantarea for the study of the mechanism of origin and evolution of the SCS. In addition to the surveysof bathemetry, gravity and magnetism, seismic surveys have been carried out by domestic andforeign in…  相似文献   

15.
The East Sea (Japan Sea) is a semi-enclosed back-arc basin that is thought to preserve a significant record of tectonic evolution and paleo-climatic changes of Eastern Asia during the Neogene. We use here 2-D regional multi-channel seismic reflection profiles and borehole data from Expedition 346 of the Integrated Ocean Drilling Program (IODP) to provide new constraints on the geological history of the Eastern South Korea Plateau (ESKP). The ESKP represents a structurally-complex basement high in the southwestern East Sea which formed during rifting of the back-arc basin. Our new observations show that the ESKP is composed of numerous horsts and grabens controlled by NE-trending normal faults. The acoustic basement is blanketed by Oligocene to recent sediments that have preferentially accumulated in topographic lows (up to 1.5 km thick) and have been cored during Expedition 346 at Site U1430 close to the southern margin of the ESKP. Seismic profiles in the ESKP reveal three units separated by regional unconformities. These seismic units closely correspond to IODP lithostratigraphic units defined at Site U1430, where biostratigraphic data can be used to constrain the timing of three main evolutionary stages of the ESKP. Stage 1 was related to rifting in the late Oligocene and middle Miocene, terminated by a regional uplift leading to an erosional phase in the middle Miocene. Stage 2 was associated with subsidence in the middle and late Miocene and uplift and accompanying erosion or non-deposition in the latest late Miocene. Stage 3 (Pliocene to present) recorded overall uniform hemipelagic-pelagic subsidence of the ESKP with short-lived tectonically-induced uplifts in the late middle Miocene and latest Miocene-early Pliocene. The three stages of evolution of the ESKP closely correlate to sedimentary changes since the Oligocene and suggest a direct control of regional/local tectonics on sedimentation patterns in the southwestern East Sea, with secondary influence of regional climatic and paleo-oceanographic processes.  相似文献   

16.
Wide-angle and multichannel seismic data collected on the Malpelo Ridge provide an image of the deep structure of the ridge and new insights on its emplacement and tectonic history. The crustal structure of the Malpelo Ridge shows a 14 km thick asymmetric crustal root with a smooth transition to the oceanic basin southeastward, whereas the transition is abrupt beneath its northwestern flank. Crustal thickening is mainly related to the thickening of the lower crust, which exhibits velocities from 6.5 to 7.4 km/s. The deep structure is consistent with emplacement at an active spreading axis under a hotspot like the present-day Galapagos Hotspot on the Cocos-Nazca Spreading Centre. Our results favour the hypothesis that the Malpelo Ridge was formerly a continuation of the Cocos Ridge, emplaced simultaneously with the Carnegie Ridge at the Cocos-Nazca Spreading Centre, from which it was separated and subsequently drifted southward relative to the Cocos Ridge due to differential motion along the dextral strike-slip Panama Fracture Zone. The steep faulted northern flank of the Malpelo Ridge and the counterpart steep and faulted southern flank of Regina Ridge are possibly related to a rifting phase that resulted in the Coiba Microplate’s separation from the Nazca Plate along the Sandra Rift.  相似文献   

17.
An autumnal upwelling event was observed in the Ria of Vigo (NW Iberian Peninsula) on 15th November 2001. This event was analyzed by means of thermohaline variables measured at CTD stations located in the study area, satellite sea surface temperature and wind data provided by QuikSCAT. Salinity and temperature distributions revealed that the upwelled water mass was Eastern North Atlantic Central Water (ENACW), typically observed during summer upwelling events. However, previous to the upwelling event, the characteristic autumnal body of water was recorded on 31st October 2001. Subsequent sea surface temperature and upwelling index corroborated the presence of an autumnal upwelling event of approximately 15 days duration. The probability of upwelling-favorable winds (from 1999 to 2004) was lower during autumn–winter than during spring–summer, although they may occur at any time of the year. Probabilities of 45% were calculated for February and November, with the highest probability (65%) corresponding to July.  相似文献   

18.
Complementary to previous work mainly based on seismic interpretation, our compilation of geophysical data (multibeam bathymetry, gravity, magnetic and seismic) acquired within the framework of the ZoNéCo (ongoing since 1993) and FAUST (1998–2001) programs enables us to improve the knowledge of the New Caledonia Basin, Fairway Basin and Fairway Ridge, located within the Southwest Pacific region. The structural synthesis map obtained from geophysical data interpretation allows definition of the deep structure, nature and formation of the Fairway and New Caledonia Basins. Development of the Fairway Basin took place during the Late Cretaceous (95–65 Ma) by continental stretching. This perched basin forms the western margin of the New Caledonia Basin. A newly identified major SW–NE boundary fault zone separates northern NW–SE trending segments of the two basins from southern N–S trending segments. This crustal-scale fault lineament, that we interpret to be related to Cretaceous-early Cainozoic Tasman Sea spreading, separates the NW–SE thinned-continental and N–S oceanic segments of the New Caledonia Basin. We can thus propose the following pattern for the formation of the study area. The end of continental stretching within the Fairway and West Caledonia Basins ( 65–62 Ma) is interpreted as contemporaneous with the onset of emplacement of oceanic crust within the New Caledonia Basin’s central segment. Spreading occurred during the Paleocene (62–56 Ma), and isolated the Gondwanaland block to the west from the Norfolk block to the east. Finally, our geophysical synthesis enables us to extend the structural Fairway Basin down to the structural Taranaki Basin, with the structural New Caledonia Basin lying east of the Fairway Basin and ending further north than previously thought, within the Reinga Basin northwest of New Zealand.  相似文献   

19.
We present a detailed stratigraphic and structural study of the Kopeh Dagh fold-and-thrust belt in NE Iran, which is an investigation of the complex polyphased tectonic history of this belt and its links with the adjacent South Caspian Sea and Amu Darya basins. Based on numerous field surveys, a large amount of 2D and 3D seismic data, borehole data and more than 150 new biostratigaphic datings, a new detailed biostratigraphic chart and 4 main regional cross-sections illustrate the importance of lateral facies variations and structural inheritance in the present-day structure of the belt.After the Cimmerian orogeny corresponding to the closure of the Paleotethys Ocean in Late Triassic/Early Jurassic times, a Middle Jurassic post-collisional rifting event was associated with the deposition of one of the main source rocks of the Kopeh Dagh and the Amu Darya Basin (Kashafrud Formation). Following this rifting event, over 7 km of sediments were accumulated until the Tertiary above a regional post-Triassic unconformity. The occurrence of local uplifts during the Late Cretaceous-Early Paleocene is interpreted as a consequence of regional-scale modification of plate-slab coupling in the Neotethys subduction zone. The main inversion of the Kopeh Dagh occurred at Late Eocene times, when the far-field deformation developed in Eurasia as a consequence of the locking of the Neo-Tethys subduction. This folding phase is sealed in the western part of the belt by a major Eocene-Oligocene unconformity at the base of the thick sedimentary series belonging to the South Caspian Sea Basin. The bulk of sedimentary infill in the South Caspian Sea Basin is Oligocene and younger, and it is probably related to syn-compressional downward flexure of the resistant basement basin at the onset of the Alpine phase. In the eastern part of the Kopeh Dagh, this deformation is characterized by Middle Jurassic graben inversion with evidence of forced folding, short-cuts and as well by larger scale basement uplifts. In contrast, the northwestern part of the belt shows thrust faults involving basement and fault-propagation folds within the sedimentary sequence. The Kopeh Dagh presents tectonic structures that are parallel to the Paleotethys suture zone, which emphasizes the importance of the structural inheritance and inversion processes during the structural evolution of the belt. Finally, a change from a mostly dip-slip to a mostly strike-slip tectonics occurred during the Pliocene within the Kopeh Dagh as a consequence of a major tectonic reorganization in North-East Iran.  相似文献   

20.
Located on the West Iberian margin, between Cabo Carvoeiro and Cabo da Roca, the Estremadura Spur is a trapezoidal promontory elongated in an east-west direction, extending until the Tore seamount. Recently a field with more than 70 pockmarks was discovered in the NW region of the Estremadura Spur outer shelf (Lourinhã Monocline). Pockmarks are the seabed culminations of fluid migration through the sedimentary column and their characteristic seabed morphologies correspond to cone-shaped circular or elliptical depressions. The characterization of these features and the understanding of the associated fluid escape process are the main objectives of this work. Here we characterize these structures to understand their structural and stratigraphic control based on: 1) Seismic processing and interpretation of the high resolution 2D single-channel sparker seismic dataset, 2) Bathymetric and Backscatter interpretation and 3) ROV direct observation of the seafloor.The analysis of the seismic profiles allowed the identification of six seismic units, disturbed by the migration and accumulation of fluids. The Estremadura Spur outer shelf has been affected by several episodes of fluid migration and fluid escape during the Pliocene-Quaternary that are expressed by a vast number of seabed and buried pockmarks. At present, the pockmarks are mainly inactive, as the seabed pockmarks are covered by recent sediments. It is concluded that the migration of fluids to the seabed occurred over the Pliocene-Quaternary, as indicated by the buried pockmarks at different depths below the seabed. The vertical stacking of various pockmarks suggests a cyclical fluid flow activity that can possibly be the result of the eustatic sea level variations and the subsequent changes of the hydrostatic pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号