首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sunspot activity is usually described by either sunspot numbers or sunspot areas. The smoothed monthly mean sunspot numbers (SNs) and the smoothed monthly mean areas (SAs) in the time interval from November 1874 to September 2007 are used to analyze their phase synchronization. Both the linear method (fast Fourier transform) and some nonlinear approaches (continuous wavelet transform, cross-wavelet transform, wavelet coherence, cross-recurrence plot, and line of synchronization) are utilized to show the phase relation between the two series. There is a high level of phase synchronization between SNs and SAs, but the phase synchronization is detected only in their low-frequency components, corresponding to time scales of about 7 to 12 years. Their high-frequency components show a noisy behavior with strong phase mixing. Coherent phase variables should exist only for a frequency band with periodicities around the dominating 11-year cycle for SNs and SAs. There are some small phase differences between them. SNs lag SAs during most of the considered time interval, and they are in general more asynchronous around the minimum and maximum times of a cycle than at the ascending and descending phases.  相似文献   

2.
The GOLF experiment on the SOHO mission aims to study the internal structure of the Sun by measuring the spectrum of global oscillations in the frequency range 10-7 to 10-2 Hz. Here we present the results of the analysis of the first 8 months of data. Special emphasis is put into the frequency determination of the p modes, as well as the splitting in the multiplets due to rotation. For both, we show that the improvement in S/N level with respect to the ground-based networks and other experiments is essential in achieving a very low-degree frequency table with small errors ∼ 2 parts in 10-5). On the other hand, the splitting found seems to favour a solar core which does not rotate slower than its surface. The line widths do agree with theoretical expectations and other observations.  相似文献   

3.
We studied the evolution and dynamic processes in the chromosphere above a sunspot umbra. A relatively rarely occurring phenomenon of bright long-lasting emission observed in the umbra of a unipolar sunspot of the AR 9570 group on August 11, 2001 was investigated. It was found that during the course of the observation, emission was spreading, gradually occupying nearly the entire sunspot umbra. Based on the analysis of the observations from other observatories, we arrived at the conclusion that the bright emission was a sympathetic flare that occurred in the sunspot umbra. It was assumed that there occurred an interaction with a neighboring, rapidly evolving group that exhibited subflares on the day of observation. In the same umbra, there was taking place an oscillatory process of the type of umbral flash (observations from August 11 and 12, 2001). The characteristics of the oscillatory process in the presence of the flare were studied. As the bright emission propagated in the sunspot umbra, brightness fluctuations ceased to be seen in the umbral flashes against the background of this brighter emission. The character of velocity variations did not change substantially, although the oscillation amplitude did decrease.  相似文献   

4.
Y. D. Zhugzhda 《Solar physics》2008,251(1-2):501-514
Two competing theories of sunspot oscillations are discussed. It is pointed out that the normal mode (eigenoscillations) theory is in contradiction with a number of observations. The reasons for this are discussed. The revised filter theory of the three-minute sunspot oscillations is outlined. It is shown that the reason for the occurrence of the multipassband filter for the slow waves is the interference that appears from the multilayer structure of the sunspot atmosphere. In contrast with Zhugzhda and Locans (Sov. Astron. Lett. 7, 25?–?27, 1981) it is shown that along with the Fabry?–?Perot chromospheric passband the cutoff frequency passband and a number of the high-frequency passbands occur. The effect of the nonlinearity of the sunspot oscillations in the upper chromosphere and the transition region is taken into account. The spectra of the distinct empirical models of the sunspot atmosphere are explored. An example of the interpretation of the sunspot oscillations based on the revised filter theory is presented. Only the filter theory can explain the complicated behavior of the oscillations across the sunspot. The observations provide evidence of the nonuniformity of the sunspot atmosphere.  相似文献   

5.
分别应用太阳黑子视面积数和太阳黑子相对数代表太阳活动水平与天津夏季降水总量进行相关分析,结果表明黑子面积指标明显优于黑子数.  相似文献   

6.
Fang  C.  Tang  Y. H.  Ding  M. D.  Zhao  J.  Sakurai  T.  Hiei  E. 《Solar physics》1997,176(2):267-277
By analysing the data of Yohkoh soft X-ray images, vector magnetograms and 2D spectral observations, coronal loops above a large sunspot on 16–19 May 1994 have been studied. It is shown that the loops follow generally the alignment of concentrated magnetic flux. The results indicate that the soft X-ray emission is low just above the sunspot, while some loops connecting regions with opposite magnetic polarities show strong soft X-ray emission. Especially, the part of the loops near the weaker magnetic field region tends to be brighter than the one near the stronger magnetic field. The temperature around the top of the loops is typically 3 × 106 K, which is higher than that at the legs of the loops by a factor of 1.5–2.0. The density near the top of the loops is about 5 x 109 cm-3, which is higher than that of the leg parts of the loops. These loops represent probably the sites where strong magnetic flux and/or current are concentrated.  相似文献   

7.
We used two methods to investigate the periodic behavior of sunspot counts in four categories for the time period January 1986?–?October 2013. These categories include the counts from simple (A and B), medium (C), large (D, E, and F), and final (final-stage; H) sunspot groups. We used i) the multitaper method with red noise approximation, and ii) the Morlet wavelet transform for periodicity analysis. Our main findings are that 1) the solar rotation periodicity of about 25 to 37 days, which is of obvious significance, is found in all groups with at least a 95 % significance level; 2) the periodic behavior of a cycle is strongly related to its amplitude and group distribution during the cycle; 3) the appearance of periods follows the amplitude of the investigated solar cycles; and that 4) meaningful periods do not appear during the minimum phases of the investigated cycles. We would like to underline that the cyclic behavior of all categories is not exactly the same; there are some differences between these groups. This result can provide a clue for the better understanding of solar cycles.  相似文献   

8.
Sunspot records in the seventeenth century provide important information on the solar activity before the Maunder minimum, yielding reliable sunspot indices and the solar butterfly diagram. Galilei’s letters to Cardinal Francesco Barberini and Marcus Welser contain daily solar observations on 3?–?11 May, 2 June?–?8 July, and 19?–?21 August 1612. These historical archives do not provide the time of observation, which results in uncertainty in the sunspot coordinates. To obtain them, we present a method that minimizes the discrepancy between the sunspot latitudes. We provide areas and heliographic coordinates of 82 sunspot groups. In contrast to Sheiner’s butterfly diagram, we found only one sunspot group near the Equator. This provides a higher reliability of Galilei’s drawings. Large sunspot groups are found to emerge at the same longitude in the northern hemisphere from 3 May to 21 August, which indicates an active longitude.  相似文献   

9.
The rotation of sunspot penumbrae has been investigated on the longitudinal magnetic and velocity fields, observed in the photospheric line Fe i λ5253 Å of five lone sunspots. We reconstructed the entire vectors of both fields from their line-of-sight components. All three components of both vectors revealed that the rotation of the sunspots was, in fact, a torsional oscillation. All components of each sunspot had the same rotational period. The penumbrae oscillation periods were distributed in the range from 3.4 days to 7.7 days. The phase of the velocity azimuthal component oscillation was ahead of the phases of all other components of both vectors. If the penumbra plasma density had been equal to the photospheric plasma density (10?7 g cm?3) then the oscillation magnetic energy of the components exceeded their kinetic energy approximately by a factor of 10–200. The obtained results led to the conclusion that these oscillations were constrained.  相似文献   

10.
Solar activity behaviour on the eve of the Maunder minimum may provide important information on the period of further suppression of sunspot population. We analyse sunspot positions and areas in the 1630s extracted from rare drawings published by Pierre Gassendi in Opera Omnia. This work was published in two different editions, the first in Lyon and the second almost 70 years later in Florence. The drawings published in Lyon are found to be slightly different from those published in Florence, which produces a discrepancy in the position of spots of a few degrees, while sunspot group areas may differ by a factor of two. We reveal that the orientation of the drawings in the book is not always the same as might be seen in the telescope. We conjecture that the time of Gassendi’s observations covers the beginning of a new Schwabe cycle in the southern hemisphere. The differential rotation rate in the 1630s is also assessed and discussed.  相似文献   

11.
Barnes  G.  Cally  P.S. 《Solar physics》2000,193(1-2):373-382
Sunspots are strong absorbers of f and p modes. A possible absorption mechanism is direct conversion to slow magnetoacoustic waves. Calculations based on vertical magnetic field models show that this works well for f modes, but is inadequate for p modes. Using a very simple shallow spot model, in which the effects of the magnetic field are accounted for solely by a surface condition, we investigate the possibility that p modes first scatter into f modes inside the spot, which are then more susceptible to conversion to slow modes. We find that the coupling between an incident p mode and the internal f mode is unlikely to be strong enough to account for the observed absorption, but that the incident modes do couple strongly to the acoustic jacket in some cases, leading to a region immediately around the sunspot where a significant fraction of the surface velocity is due to the jacket modes.  相似文献   

12.
在柱坐标下将黑子周围的环形区域(黑子除外)内的振荡分解为朝向黑子传播的(入射的)波和离开黑子传播的(出射的)波。对无黑子的环形区域内的振荡也进行了同样的分解。将黑子周围的入射波看成是被黑子磁流管磁化了的介质(介质内的磁场基本是水平的)中的波。而无黑子区的入射波看成是非磁化介质中的波。比较这两种波在固定波数下功率随频率的分布发现,在磁化介质中不同径向除n的声波(p模)频率系统降低,同时功率也降低,降低的功率最高达非磁化介质中波的功率的30%。而比较在固定频率下功率随波数的分布发现,磁场中f模及n=1,2,3的p模的脊向高波数方向位移,功率的降低受频率调制,即声波在某些有限的频带中被吸收。这些观测表明,在磁场中p模与磁声重力波(MAG)产生了模式混合或耦合。模式混合的存在支持了模式转换作为p模式被黑子吸收的机制的解释。此外,本文还分析了转换的MAG波进入黑子磁流管(其中的磁场基本上是垂直的)后进一步被吸收,吸收的功率最高达MAG波的20%。在磁流管内没有进一步观测到模式的转换  相似文献   

13.
We examine the nonlinear dynamical properties of the monthly smoothed group sunspot number Rg and find that the solar activity underlying the time series of Rg is globally governed by a low-dimensional chaotic attractor. This finding is consistent with the nonlinear study results of the monthly Wolf sunspot numbers. We estimate the maximal Lyaponuv exponent (MLE) for the Rg series to be positive and to equal approximately 0.0187 ± 0.0023 (month-1). Thus, the Lyaponuv time or predictability time of the chaotic motion is obtained to be about 4.46 ± 0.5 years, which is slightly different with the predictability time obtained from Rz. However, they both indicate that solar activity forecast should be done only for a short to medium term due to the intrinsic complexity of the time behavior concerned.  相似文献   

14.
15.
Three wavelet functions: the Morlet wavelet, the Paul wavelet, and the DOG wavelet have been respectively performed on both the monthly Wolf sunspot numbers (Rz) from January 1749 to May 2004 and the monthly group sunspot numbers (Rg) from June 1795 to December 1995 to study the evolution of the Gleissberg and Schwabe periods of solar activity. The main results obtained are (1) the two most obvious periods in both the Rz and Rg are the Schwabe and Gleissberg periods. The Schwabe period oscillated during the second half of the eighteenth century and was steady from the 1850s onward. No obvious drifting trend of the Schwabe period exists. (2) The Gleissberg period obviously drifts to longer periods the whole consideration time, and the drifting speed of the Gleissberg period is larger for Rz than for Rg. (3) Although the Schwabe-period values for Rz and Rg are about 10.7 years, the value for Rz seems slightly larger than that for Rg. The Schwabe period of Rz is highly significant after the 1820s, and the Schwabe period of Rg is highly significant over almost the whole consideration time except for about 20 years around the 1800s. The evolution of the Schwabe period for both Rz and Rg in time is similar to each other. (4) The Gleissberg period in Rz and Rg is highly significant during the whole consideration time, but this result is unreliable at the two ends of each of the time series of the data. The evolution of the Gleissberg period in Rz is similar to that in Rg.  相似文献   

16.
Finsterle  W.  Fröhlich  C. 《Solar physics》2001,200(1-2):393-406
Several candidates for low-order p modes (n 5) and possibly g modes were found by applying mode-detection techniques such as multivariate spectral regression analysis and time-frequency analysis to the VIRGO full-disc solar irradiance data. Three out of the candidates for low-order p modes could be confirmed by significant peaks in the un-treated power spectra in good agreement with theoretical predictions. The frequency of a fourth candidate for a low-order p mode lies some 2.8 Hz below the predicted frequency. The candidates found for g modes are less reliable, since none of them could be confirmed neither by significant peaks in the un-treated power spectra nor by the detection of multiplets.  相似文献   

17.
18.
本文对太阳活动第21周、22周(1976年—1992年间)97个质子活动区进行统计分析,包括活动区的面积、型别、磁结构、半影纤维等,结果表明:75%的质子耀斑产生于面积为500≤Sp≤3000单位的黑子群中;耀斑爆发前一天及后一天活动区面积有显著减少;质子活动区含δ复杂磁结构的占70%;具有半影旋涡形态的质子活动区中,约77%的耀斑发生在旋涡黑子出现以后。  相似文献   

19.
It is well known that sunspots are dark. This statement is not correct in the sunspot atmosphere between the chromosphere and the corona, where sunspots often are brighter than their surroundings. The brightest feature in the sunspot transition region is called a sunspot plume. Not all sunspots contain a plume. We find that 20 out of 21 sunspots show a plume when one magnetic polarity dominates the sunspot region out to a distance of 50 from the sunspot. Most sunspots show downflows that exceed 25 km s–1 in the sunspot plumes at temperatures close to 250000 K. This downflow is not maintained by inflow from the corona, but by gas at transition region temperatures, streaming in flow channels from locations well outside the sunspot. We suggest that this inflow is a necessary requirement for the sunspot plume to occur and present a working hypothesis for the origin of sunspot plumes. This paper is the first thorough spectral analysis of sunspot plumes. It is based on simultaneous observations of ten or six EUV emission lines in 42 sunspot regions with the Coronal Diagnostic Spectrometer – CDS on the Solar and Heliospheric Observatory – SOHO. The line profiles are studied in detail with another SOHO instrument, the Solar Ultraviolet Measurements of Emitted Radiation – SUMER.  相似文献   

20.
Measurements on magnetic canopies extending from sunspots show that, at the outer penumbral edge, heights of the bases are independent of sunspot diameter and average 180 km. This places a lower limit on the outer penumbral base; with an assumed thickness of 250 km, the top is 430 km above z = 0 ( c = 1) in the photosphere.Chistyakov's (1962) observations require the penumbral surface to be convex in radial section. The Wilson depression, able thus to be found only from limb-side penumbras, is 1360 km from his selected measurements. Averaged over all regular sunspots without special selection, this drops to 1040 km. Thus * = 1 in umbras lies around z = -610 km.Magnetic field-strength measurements relate probably to * 0.02, some 160 km higher, where z -450 km. The magnetic pressure of the typical 3250 G sunspot field would support the external-axial gas-pressure difference at z = -330 km, the difference of 120 km lying well within the uncertainties. Tension forces, commonly invoked to achieve pressure balance, do not exceed the uncertainties of measurement.Beyond the sunspot, the base of the sunspot field rises only slowly over at least 16 000 km horizontally, whereas Beckers (1963) found the inclination of H superpenumbral fibrils to be some 13°. These results are nicely compatible since the field angle is typically of this magnitude at the minimum heights where H fibrils will be observed, say 1400 km.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号