首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Askja caldera in northeast Iceland has been in a state of unrest for decades. Ground-deformation surveys show that the rate of deformation, i.e., deflation, is much higher then observed at any other dormant volcano in Iceland. This work presents the results from microgravity and deformation studies at Askja from 1988 to 2003. The deflation reaches a maximum of −0.46 m in the centre of the caldera, relative to a station outside the caldera, during the study period. The source of deformation is inferred to be at ∼3 km depth and a recent study infers a second deeper source at ∼16 km depth. The deflation is consistent with a subsurface volume change of −0.018 km3. We find a net microgravity decrease of 115 μGal in the centre of the caldera relative to the same station. This corresponds to a subsurface mass decrease of 1.6×1011 kg between 1988 and 2003 based on the use of a point source model. A combination of magma drainage and cooling and contraction of the shallow magma reservoir at 3 km depth is our favoured model, consistent with the integrated observations. We suggest that extensional tectonic forces generate space in the ductile part of the crust to accommodate ongoing magma drainage from the shallow magma chamber.  相似文献   

2.
Subsidence within the main caldera of Askja volcano in the North of Iceland has been in progress since 1983. Here, we present new ground- and satellite-based deformation data, which we interpret together with new and existing micro-gravity data, to help understand which processes may be responsible for the unrest. From 2003 to 2007, we observe a net micro-gravity decrease combined with subsidence and from 2007 to 2009 we observe a net micro-gravity increase while the subsidence continues. We infer subsidence is caused by a combination of a cooling and contracting magma chamber at a divergent plate boundary. Mass movements at active volcanoes can be caused by several processes, including water table/lake level movements, hydrothermal activity and magma movements. We suggest that, here, magma movement and/or a steam cap in the geothermal system of Askja at depth are responsible for the observed micro-gravity variations. In this respect, we rule out the possibility of a shallow intrusion as an explanation for the observed micro-gravity increase but suggest magma may have flowed into the residing shallow magma chamber at Askja despite continued subsidence. In particular, variable compressibility of magma residing in the magma chamber as well as compressibility of the surrounding rock may be the reason why this additional magma did not create any detectable surface deformation.  相似文献   

3.
We have evaluated published gravity-height ((g/(h) data on Campi Flegrei, Kilauea, Askja and Krafla, in order to discriminate between subsurface processes during caldera subsidence. With respect to end member gravity-height correlations, such as the free air gradient (FAG) and the Bouguer corrected free air (BCFAG), (g/(h gradients must be interpreted in terms of subsurface mass redistribution, density changes or some combination of these. (g/(h gradients during subsidence plot (1) along or below the BCFAG, (2) between the BCFAG and the FAG or (3) along or above the FAG. We have evaluated each of these three regions in terms of subsurface processes during volcano subsidence. We have interpreted (g/(h gradients as possible indicators of precursors of volcanic activity and propose that gravity-height surveys may help to detect precursors of caldera collapse caused by magma drainage. In this context, the 1875 eruption of Askja in Iceland has been re-interpreted in terms of the beginning of the eruptive episode being induced by roof collapse of an evacuating magma chamber. Based on other examples of recent volcanic roof collapses, we evaluate the contribution of gravity-height surveys in assessing volcanic risks during caldera subsidence. Caldera-forming eruptions are environmentally and economically the most devastating volcanic events. Inflation is usually considered to be an important precursor to activity. Here, we show that deflation may be associated with the trigger mechanism for caldera-forming explosive eruptions.  相似文献   

4.
New deformation data from the Askja volcano, Iceland, show that the volcano's caldera has been deflating continuously for over 20 years, and confirm that the rate of subsidence is slowing down. The decay in subsidence rate can be fitted with a function of the form e t / τ , where τ is 39 years. Reanalysis of GPS data from 1993–1998 show that these data can be fitted with a model calling for two Mogi point sources, one shallow, and another one much deeper (16.2 km depth). Pressure decrease occurs in both sources. The deeper source is responsible for observed horizontal contraction towards Askja at distances that cannot be explained by the shallower source. Plate spreading of 19 mm/year distributed evenly over about 100-km-wide zone is also favoured by the data.  相似文献   

5.
During the present tectonic activity in the volcanic rift zone in NE-Iceland it has become apparent that the attenuation of seismic waves is highly variable in the central region of the Krafla volcano. Earthquakes associated with the inflation of the volcano have been used to delineate two regions of high attenuation of S-waves within the caldera. These areas are located near the center of inflation have horizontal dimensions of 1–2 km and are interpreted as the expression of a magma chamber. The top of the chamber is constrained by hypocentral locations and ray paths to be at about 3 km depth. Small pockets of magma may exist at shallower levels. The bottom of the chamber is not well constrained, but appears to be above 7 km depth. Generally S-waves propagate without any anomalous aftenuation through laver 3 (vp=0.5 km sec?1) across the volcanic rift zone in NE-Iceland. The rift zone therefore does not appear to be underlain by an estensive magma chamber at crustal levels. The Krafla magma chamber is a localized feature of the Krafla central volcano.  相似文献   

6.
The Krafla rifting episode, which occurred in North Iceland in 1975–1984, was followed by inflation of a shallow magma chamber until 1989. At that time, gradual subsidence began above the magma chamber and has continued to the present at a declining rate. Pressure decrease in a shallow magma chamber is not the only source of deformation at Krafla, as other deformation processes are driven by exploitation of two geothermal fields, together with plate spreading. In addition, deep-seated magma accumulation appears to take place, with its centre ∼ 10 km north of the Krafla caldera. The relative strength of these sources has varied with time. New results from a levelling survey and GPS measurements in 2005 allow an updated view on the deformation field. Deformation rates spanning 2000–2005 are the lowest recorded in the 30-year history of geodetic studies at the volcano. The inferred rate of 2000–2005 subsidence related to processes in the shallow magma chamber is less than 0.3 cm/yr whereas it was ∼ 5 cm/yr in 1989–1992. Currently, the highest rate of subsidence takes place in the Leirbotnar area, within the Krafla caldera, and appears to be a result of geothermal exploitation.  相似文献   

7.
Extensive measurements of ground deformation at the Krafla volcano, Iceland, have been made since the beginning in 1975 of a series of eruptions and intrusions into the fissure system that extends north and south of the volcano. I concentrate on measurements before and after the eruption of September 1984, the last event of this series when the largest volume of lava was erupted. The patterns of ground deformation associated with the 1984 eruption, determined by precision levelling, electronic distance measurements and lake level observations, were similar to earlier intrusions and eruptions, in that the surface of the volcano subsided and the fissure system widened as magma moved laterally from a shallow central reservoir into the fissure system. The shallow magma reservoir of Krafla continued to expand for about five years after the eruption, but a slow subsidence of the central area began in 1989. Besides the presence of an inflating and deflating shallow magma reservoir at a depth of 2.5 km beneath the Krafla caldera, another inflating magma reservoir may exist at much greater depth below Krafla. The accumulation of compressive strain by numerous rift intrusions and eruptions since 1975 along the flanks of the north-south Krafla fissure swarm is being released slowly and will probably be reflected in the results of deformation measurements near Krafla for the next several decades. The total horizontal extension of the Krafla rift system in 1975–1984 was about 9 m, equal to about 500 years of constant plate divergence. The extension is twice the accumulated divergence since previous rifting events and eruptions in 1724–1729  相似文献   

8.
 Results are presented from 11 microgravity surveys on Mt. Etna between 1987 and 1993, a period including the major 1989 and 1991–1993 flank eruptions and subordinate 1990 activity. Measurements were made with LaCoste and Romberg D-62 and D-157 gravity meters along a network around the volcano between 1000 and 1900 m a.s.l. and, since 1992, a N–S summit profile. Gravity changes of as much as 200 μGal were observed at scales from the size of the summit region to that of the volcano. None was associated with significant changes in ground elevation. The data show an increase in gravity for 2 years before the 1989 eruption. The increase is attributed to the accumulation of magma (0.25–1.7×109 m3) in an elongate zone, oriented NNW–SSE, between 2.5 and 6 km below sea level. Part of this magma was injected into the volcanic pile to supply the 1989 and 1990 eruptions. It also probably fed the start of the 1991–1993 eruption, since this event was not preceded by significant gravity changes. A large gravity increase (up to 140 μGal) detected across the volcano between June and September 1992 is consistent with the arrival in the accumulation zone of 0.32–2.2×109 m3 of new magma, thus favoring continued flank effusion until 1993. A large gravity decrease (200 μGal) in the summit region marked the closing stages of the 1991–1993 event and is associated with magma drainage from the upper levels of Etna's central feeding system. Received: 15 July 1995 / Accepted: 27 October 1997  相似文献   

9.
In 1874 and 1875 the fissure swarm of Askja central volcano was activated during a major rifting episode. This rifting resulted in a fissure eruption of 0.3 km3 basaltic magma in Sveinagja graben, 50 to 70 km north of Askja and subsequent caldera collapse forming the Oskjuvatn caldera within the main Askja caldera. Five weeks after initial collapse, an explosive mixed magma eruption took place in Askja. On the basis of matching chemistry, synchronous activity and parallels with other rifted central volcanoes, the events in Askja and its lissure swarm are attributed to rise of basaltic magma into a high-level reservoir in the central volcano, subsequent rifting of the reservoir and lateral flow magma within the fissure swarm to emerge in the Sveinagja eruption. This lateral draining of the Askja reservoir is the most plausible cause for caldera collpse. The Sveinagja basalt belong to the group of evolved tholejites characteristie of several Icelandic central volcanoes and associated fissure swarms. Such tholeiites, with Mgvalues in the 40 to 50 tange, represent magmas which have suffered extensive fractional crystallization within the crust. The 12% porphyritic Sveinagja basalt contains phenocrysts of olivine (Fo62–67), plagioclase (An57–62), clinopyroxene (Wo38En46Wo16) and titanomagnetite. Extrusion temperature of the lava, calculated on the basis of olivine and plagioclase geothermometry, is found to be close to 1150°C.  相似文献   

10.
GPS geodetic measurements were conducted around the Askja central volcano located at the divergent plate boundary in north Iceland in 1987, 1990, 1992 and 1993. The accuracy of the 1987 and 1990 measurements is in the range of 10 mm for horizontal components; the accuracy of the 1992 and 1993 measurements is about 4 mm in the horizontal plane. Regional deformation in the Askja region is dominated by extension. Points located outside a 30–45 km wide plate boundary deformation zone indicate a displacement of 2.4±0.5 cm/a in the direction N 99°E±12° of the Eurasian plate relative to the North American plate in the period 1987–1990. Within the plate boundary deformation zone extensional strain accumulates at a rate of 0.8 strain/a. Displacement of control points next to Askja (>7 km from the caldera center) in the periods 1990–1993 and 1992–1993 show deflation and contraction towards the caldera. These results are in accordance with the results obtained by other geodetic methods in the area, which indicate that the deflation at Askja occurs in response to a pressure decrease at about 2.8 km depth, located close to the center of the main Askja caldera. A Mogi point source was fixed at this location and the GPS data used to solve for the source strength. A central subsidence of 11±2.5 cm in the period 1990–1993 is indicated, and 5.5±1.5 cm in the period 1992–1993. The maximum tensional strain rate, according to the point source model, occurs at a horizontal distance of 2.5–6 km from the source, at the same location as the main caldera boundary. Discrepancies between the observed displacements and predicted displacements from the Mogi model near the Askja caldera can be attributed to the regional eastwest extension that occurs at Askja.  相似文献   

11.
Divergent plate boundaries, such as the one crossing Iceland, are characterized by a high density of subparallel volcanic fissures and tectonic fractures, collectively termed rift zones, or fissure swarms when extending from a specific volcano. Volcanic fissures and tectonic fractures in the fissure swarms are formed during rifting events, when magma intrudes fractures to form dikes and even feeds fissure eruptions. We mapped volcanic fissures and tectonic fractures in a part of the divergent plate boundary in northern Iceland. The study area is ~1,800 km2, located within and north of the Askja central volcano. The style of fractures changes with distance from Askja. Close to Askja the swarm is dominated by eruptive fissures. The proportion of tectonic fractures gets larger with distance from Askja. This may indicate that magma pressure is generally higher in dikes close to Askja than farther away from it. Volcanic fissures and tectonic fractures are either oriented away from or concentric with the 3–4 identified calderas in Askja. The average azimuth of fissures and fractures in the area deviates significantly from the azimuth perpendicular to the direction of plate velocity. As this deviation decreases gradually northward, we suggest that the effect of the triple junction of the North American, Eurasian and the Hreppar microplate is a likely cause for this deviation. Shallow, tectonic earthquakes in the vicinity of Askja are often located in a relatively unfractured area between the fissure swarms of Askja and Kverkfjöll. These earthquakes are associated with strike-slip faulting according to fault plane solutions. We suggest that the latest magma intrusions into either the Askja or the Kverkfjöll fissure swarms rotated the maximum stress axis from being vertical to horizontal, causing the formation of strike-slip faults instead of the dilatational fractures related to the fissure swarms. The activity in different parts of the Askja fissure swarm is uneven in time and switches between subswarms, as shown by a fissure swarm that is exposed in an early Holocene lava NW of Herðubreið but disappears under a younger (3500–4500 BP) lava flow. We suggest that the location of inflation centres in Askja central volcano controls into which part of the Askja fissure swarm a dike propagates. The size and amount of fractures in the Kollóttadyngja lava shield decrease with increasing elevation. We suggest that this occurred as the depth to the propagating dike(s) was greater under central Kollóttadyngja than under its flanks, due to topography.  相似文献   

12.
At the Krafla central volcano in north-east Iceland, two main phases of rhyolite volcanism are identified. The earlier phase (last interglacial) is related to the formation of a caldera, whereas the second phase (last glacial) is related to the emplacement of a ring dike. Subsequently, only minor amounts of rhyolite have been erupted. The volcanic products of Krafla are volumetrically bimodal. Geochemically, there is a series of basaltic to basalto-andesitic rocks and a cluster of rhyolitic rocks. Rocks of intermediate to silicic composition (icelandites and dacites) show clear signs of mixing. The rhyolites are Fe-rich (tholeiitic), and aphyric to slightly porphyritic (plagioclase, augite, pigeonite, fayalitic olivine and magnetite). They are minimum melts on the quartz-plagioclase cotectic plane in the granite system (Qz-Or-Ab-An). The rhyolites at Krafla were produced by near-solidus, rather than nearliquidus fractionation. They are interpreted as silicic minimum melts of hydrothermally altered crust, mainly of basaltic composition. They were primarily generated on the peripheries of an active basaltic magma chamber or intrusive domain, where sufficient volumes of crust were subjected to temperatures favorable for rhyolite genesis (850–950° C). The silicic melts were extracted crystal-free from their source in response to crustal deformation.  相似文献   

13.
The caldera-forming eruption of Volcán Ceboruco, Mexico   总被引:1,自引:1,他引:0  
3 of magma erupted, ∼95% of which was deposited as fall layers. During most of the deposition of P1, eruptive intensity (mass flux) was almost constant at 4–8×107 kg s−1, producing a Plinian column 25–30 km in height. Size grading at the top of P1 indicates, however, that mass flux waned dramatically, and possibly that there was a brief pause in the eruption. During the post-P1 phase of the eruption, a much smaller volume of magma erupted, although mass flux varied by more than an order of magnitude. We suggest that caldera collapse began at the end of the P1 phase of the eruption, because along with the large differences in mass flux behavior between P1 and post-P1 layers, there were also dramatic changes in lithic content (P1 contains ∼8% lithics; post-P1 layers contain 30–60%) and magma composition (P1 is 98% rhyodacite; post-P1 layers are 60–90% rhyodacite). However, the total volume of magma erupted during the Jala pumice event is close to that estimated for the caldera. These observations appear to conflict with models which envision that, after an eruption is initiated by overpressure in the magma chamber, caldera collapse begins when the reservoir becomes underpressurized as a result of the removal of magma. The conflict arises because firstly, the P1 layer makes up too large a proportion (∼75%) of the total volume erupted to correspond to an overpressurized phase, and secondly, the caldera volume exceeds the post-P1 volume of magma by at least a factor of three. The mismatches between model and observations could be reconciled if collapse began near the beginning of the eruption, but no record of such early collapse is evident in the tephra sequence. The apparent inability to place the Jala pumice eruptive sequence into existing models of caldera collapse, which were constructed to explain the formation of calderas much greater in volume than that at Ceboruco, may indicate that differences in caldera mechanics exist that depend on size or that a more general model for caldera formation is needed. Received: 18 November 1998 / Accepted: 23 October 1999  相似文献   

14.
The lower crust of magmatically active rifts is usually too hot and ductile to allow seismicity. The Icelandic mid-Atlantic rift is characterized by high heat flow, abundant magmatism generating up to 25–30 km thick crust, and seismicity within the upper 8 km of the crust. In a 20-seismometer survey in July-August 2006 within the northern rift zone around the Askja volcano we recorded ~1700 upper-crustal earthquakes cutting off at 7–8 km depth, marking the brittle-ductile boundary. Unexpectedly, we discovered 100 small-magnitude (ML <1.5) earthquakes, occurring in swarms mostly at 14–26 km depth within the otherwise aseismic lower crust, and beneath the completely aseismic middle crust. A repeat survey during July-August 2007 yielded more than twice as many lower-crustal events. Geodetic and gravimetric data indicate melt drainage from crustal magma chambers beneath Askja. We interpret the microearthquakes to be caused by melt moving through the crust from the magma source feeding Askja. They represent bursts of magma motion opening dykes over distances of a few meters, facilitated by the extensional setting of the active rift zone.  相似文献   

15.
Fissure swarms at divergent plate boundaries are activated in rifting events, during which intense fracturing occurs in the fissure swarm accompanied by intrusion of magma to form dikes that sometimes lead to eruptions. To study the evolution of fissure swarms and the behaviour of rifting events, detailed mapping was carried out on fractures and eruptive fissures within the Krafla fissure swarm (KFS). Fracture densities of dated lava flows ranging from 10,000?years bp to ~30?years old were studied, and the fracture pattern was compared with data on the historical Myvatn rifting episode (1724–1729) and the instrumentally recorded Krafla rifting episode (1975–1984). Additionally, the interaction of transform faults and fissure swarms was studied by analysing the influence of the Húsavík transform faults on the KFS. During the historical rifting episodes, eruptions on the fissure swarm occurred within ~7?km from the Krafla central volcano, although faults and fractures were formed or activated at up to 60–70?km distance. This is consistent with earlier rifting patterns, as Holocene eruptive fissures within the KFS are most common closer to the central volcano. Most fractures within the central Krafla caldera are parallel to the overall orientation of the fissure swarm. This suggests that the regional stress field is governing in the Krafla central volcano, while the local stress field of the volcano is generally weak. A sudden widening of the graben in the northern KFS and a local maximum of fracture density at the junction of the KFS and the extrapolation of the Húsavík transform fault zone indicates possible buried continuation of the Húsavík transform fault zone which extends to the KFS. Eruptive fissures are found farther away from the Krafla central volcano in the southern KFS than in the northern KFS. This is either due to an additional magma source in the southern KFS (the Heiearsporeur volcanic system) or caused by the Húsavík transform faults, transferring some of the plate extension in the northern part. Fracture density within particular lava flow fields increases with field age, indicating that repeated rifting events have occurred in the fissure swarm during the last 10,000?years bp. The fracture density in the KFS is also generally higher closer to the Krafla central volcano than at the ends of the fissure swarm. This suggests that rifting events are more common in the parts of the fissure swarm closer to the Krafla central volcano.  相似文献   

16.
Many volcanic eruptions are shortly preceded by injection of new magma into a pre-existing, shallow (<10 km) magma chamber, causing convection and mixing between the incoming and resident magmas. These processes may trigger dyke propagation and further magma rise, inducing long-term (days to months) volcano deformation, seismic swarms, gravity anomalies, and changes in the composition of volcanic plumes and fumaroles, eventually culminating in an eruption. Although new magma injection into shallow magma chambers can lead to hazardous event, such injection is still not systematically detected and recognized. Here, we present the results of numerical simulations of magma convection and mixing in geometrically complex magmatic systems, and describe the multiparametric dynamics associated with buoyant magma injection. Our results reveal unexpected pressure trends and pressure oscillations in the Ultra-Long-Period (ULP) range of minutes, related to the generation of discrete plumes of rising magma. Very long pressure oscillation wavelengths translate into comparably ULP ground displacements with amplitudes of order 10−4–10−2 m. Thus, new magma injection into magma chambers beneath volcanoes can be revealed by ULP ground displacement measured at the surface.  相似文献   

17.
 A radar and gravity survey of the ice-filled caldera at Volcán Sollipulli, Chile, indicates that the intra-caldera ice has a thickness of up to 650 m in its central part and that the caldera harbours a minimum of 6 km3 of ice. Reconnaissance geological observations show that the volcano has erupted compositions ranging from olivine basalt to dacite and have identified five distinct volcanic units in the caldera walls. Pre- or syn-caldera collapse deposits (the Sharkfin pyroclastic unit) comprise a sequence which evolved from subglacial to subaerial facies. Post-caldera collapse products, which crop out along 17 of the 20 km length of the caldera wall, were erupted almost exclusively along the caldera margins in the presence of a large body of intra-caldera ice. The Alpehué crater, formed by an explosive eruption between 2960 and 2780 a. BP, in the southwest part of the caldera is shown to post date formation of the caldera. Sollipulli lacks voluminous silicic pyroclastic rocks associated with caldera formation and the collapse structure does not appear to be a consequence of a large-magnitude explosive eruption. Instead, lateral magma movement at depth resulting in emptying of the magma chamber may have generated the caldera. The radar and gravity data show that the central part of the caldera floor is flat but, within a few hundred metres of the caldera walls, the floor has a stepped topography with relatively low-density rock bodies beneath the ice in this region. This, coupled with the fact that most of the post-caldera eruptions have taken place along the caldera walls, implies that the caldera has been substantially modified by subglacial marginal eruptions. Sollipulli caldera has evolved from a collapse to a constructional feature with intra-caldera ice playing a major role. The post-caldera eruptions have resulted in an increase in height of the walls and concomitant deepening of the caldera with time. Received: 12 June 1995 / Accepted: 7 December 1995  相似文献   

18.
Fifty-three major explosive eruptions on Iceland and Jan Mayen island were identified in 0–6-Ma-old sediments of the North Atlantic and Arctic oceans by the age and the chemical composition of silicic tephra. The depositional age of the tephra was estimated using the continuous record in sediment of paleomagnetic reversals for the last 6 Ma and paleoclimatic proxies (δ18O, ice-rafted debris) for the last 1 Ma. Major element and normative compositions of glasses were used to assign the sources of the tephra to the rift and off-rift volcanic zones in Iceland, and to the Jan Mayen volcanic system. The tholeiitic central volcanoes along the Iceland rift zones were steadily active with the longest interruption in activity recorded between 4 and 4.9 Ma. They were the source of at least 26 eruptions of dominant rhyolitic magma composition, including the late Pleistocene explosive eruption of Krafla volcano of the Eastern Rift Zone at about 201 ka. The central volcanoes along the off-rift volcanic zones in Iceland were the source of at least 19 eruptions of dominant alkali rhyolitic composition, with three distinct episodes recorded at 4.6–5.3, 3.5–3.6, and 0–1.8 Ma. The longest and last episode recorded 11 Pleistocene major events including the two explosive eruptions of Tindfjallajökull volcano (Thórsmörk, ca. 54.5 ka) and Katla volcano (Sólheimar, ca. 11.9 ka) of the Southeastern Transgressive Zone. Eight major explosive eruptions from the Jan Mayen volcanic system are recorded in terms of the distinctive grain-size, mineralogy and chemistry of the tephra. The tephra contain K-rich glasses (K2O/SiO2>0.06) ranging from trachytic to alkali rhyolitic composition. Their normative trends (Ab–Q–Or) and their depleted concentrations of Ba, Eu and heavy-REE reflect fractional crystallisation of K-feldspar, biotite and hornblende. In contrast, their enrichment in highly incompatible and water-mobile trace elements such as Rb, Th, Nb and Ta most likely reflect crustal contamination. One late Pleistocene tephra from Jan Mayen was recorded in the marine sequence. Its age, estimated between 617 and 620 ka, and its composition support a common source with the Borga pumice formation at Sør Jan in the south of the island.  相似文献   

19.
The Katla volcano in Iceland is characterized by subglacial explosive eruptions of Fe–Ti basalt composition. Although the nature and products of historical Katla eruptions (i.e. over the last 1,100 years) at the volcano is well-documented, the long term evolution of Katla’s volcanic activity and magma production is less well known. A study of the tephra stratigraphy from a composite soil section to the east of the volcano has been undertaken with emphasis on the prehistoric deposits. The section records ∼8,400 years of explosive activity at Katla volcano and includes 208 tephra layers of which 126 samples were analysed for major-element composition. The age of individual Katla layers was calculated using soil accumulation rates (SAR) derived from soil thicknesses between 14C-dated marker tephra layers. Temporal variations in major-element compositions of the basaltic tephra divide the ∼8,400-year record into eight intervals with durations of 510–1,750 years. Concentrations of incompatible elements (e.g. K2O) in individual intervals reveal changes that are characterized as constant, irregular, and increasing. These variations in incompatible elements correlate with changes in other major-element concentrations and suggest that the magmatic evolution of the basalts beneath Katla is primarily controlled by fractional crystallisation. In addition, binary mixing between a basaltic component and a silicic melt is inferred for several tephra layers of intermediate composition. Small to moderate eruptions of silicic tephra (SILK) occur throughout the Holocene. However, these events do not appear to exhibit strong influence on the magmatic evolution of the basalts. Nevertheless, peaks in the frequency of basaltic and silicic eruptions are contemporaneous. The observed pattern of change in tephra composition within individual time intervals suggests different conditions in the plumbing system beneath Katla volcano. At present, the cause of change of the magma plumbing system is not clear, but might be related to eruptions of eight known Holocene lavas around the volcano. Two cycles are observed throughout the Holocene, each involving three stages of plumbing system evolution. A cycle begins with an interval characterized by simple plumbing system, as indicated by uniform major element compositions. This is followed by an interval of sill and dyke system, as depicted by irregular temporal variations in major element compositions. This stage eventually leads to a formation of a magma chamber, represented by an interval with increasing concentrations of incompatible elements with time. The eruption frequency within the cycle increases from the stage of a simple plumbing system to the sill and dyke complex stage and then drops again during magma chamber stage. In accordance with this model, Katla volcano is at present in the first interval (i.e. simple plumbing system) of the third cycle because the activity in historical time has been characterized by uniform magma composition and relatively low eruption frequency.  相似文献   

20.
Iwate volcano, Japan, showed significant volcanic activity including earthquake swarms and volcano inflation from the beginning of 1998. A large earthquake of magnitude 6.1 hit the south-west of the volcano on September 3. Although a 1 km2 fumarole field formed, blighting plants on the ridge in the western part of the volcano in the spring of 1999, no magmatic eruptions occurred. We reconcile the spatio-temporal distributions of volcanic pressure sources determined by previously reported studies in which GPS, strain and tilt data from dense geodetic station networks are analyzed (Miura et al. Earth Planet Space 52:1003–1008, 2000; Sato and Hamaguchi J Volcanol Geotherm Res 155:244–262, 2006). We calculate the magma supply rates from their results and compare them with the occurrence rates of volcanic earthquakes. The results show that the magma supply rates are almost constant or even decrease with time while the earthquake occurrence rate increases with time. This contrast in their temporal changes is interpreted to result from stress accumulation in the volcanic edifice caused by constant magma supply without effusion of magma to the surface. We further show that data showing slight acceleration in strain can be best explained by magma ascent at a constant velocity, and that there is no evidence for increased magma buoyancy resulting from gas bubble growth. This consideration supports the interpretation that the magma stayed at 2 km depth and horizontally migrated. These findings relating magma supply rate and seismicity to magma ascent process are clues to understanding why no magmatic eruption occurred at Iwate volcano in 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号