共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Netopil E. Paunzen H. M. Maitzen A. Claret K. Pavlovski E. Tamajo 《Astronomische Nachrichten》2005,326(8):734-737
The first CCD photometric investigation of the open cluster NGC 7296 up to now was performed within the narrow band Δa photometric system, which enables us to detect peculiar objects. A deeper investigation of that cluster followed, using the standard BV R ‐Bessel filter set. The age and E (B – V ) was determined independently to log t = 8.0 ± 0.1 and 0.15 ± 0.02, respectively by using Δa and broadband photometry. In total five Be/Ae objects and two metal‐weak stars showing significant negative Δa ‐values as well as one classical chemically peculiar star could be identified within that intermediate age open cluster. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
2.
P. Harmanec 《Astronomische Nachrichten》2002,323(2):87-98
A brief history of investigations of Lyr, an emission‐line binary and one of the first ever discovered Be stars is presented. A rather fast progress in the understanding of this enigmatic object during the past fifteen years is then discussed in some detail. The current picture of β Lyr is that it is an eclipsing binary in a stage of mass transfer between the components. The mass‐losing star is a B6‐8II object, with a mass of about 3 M⊙, which is filling the Roche lobe and sending material towards its more massive companion at a rate of about 2 × 10—5 M⊙ yr—1. This leads to the observed rapid increase of the orbital period at a rate of 19 s per year. The mass‐gaining star is as early B star with a mass of about 13 M⊙. It is completely hidden inside an opaque accretion disk, jet‐like structures, perpendicular to the orbital plane and a light‐scattering halo above the poles of the star. The observed radiation of the disk corresponds to an effective temperature which is much lower than what would correspond to an early B star. The disk shields the radiation of the central star in the directions along the orbital plane and redistributes it in the directions perpendicular to it. That is why the mass‐losing star appears brighter of the two in the optical region of the spectrum. At present, rather reliable estimates of all basic properties of the binary and its components are available. However, in spite of great progress in understanding the system in recent years, some disagreement between the existing models and observed phase variations still remains, both for continuum and line spectrum, which deserves further effort. 相似文献
3.
We have detected 1.1 mm continuum emission from 24 of 53 Herbig Ae/Be stars surveyed with the JCMT. Survival analysis shows that 1.1 mm luminosity is correlated with bolometric luminosity and with IRAS 25µm luminosity. For those stars that were also detected at 0.45 or 0.8 mm we find a typical flux dependence of the form S
#x03BD;
3, which is steeper than that of most classical T Tauri stars. 相似文献
4.
The star ζ Ophiuchi is one of the brightest massive stars in the northern hemisphere and was intensively studied in various wavelength domains. The currently available observational material suggests that certain observed phenomena are related to the presence of a magnetic field. We acquired spectropolarimetric observations of ζ Oph with FORS 1 mounted on the 8‐m Kueyen telescope of the VLT to investigate if a magnetic field is indeed present in this star. Using all available absorption lines, we detect a mean longitudinal magnetic field 〈Bz〉all = 141 ± 45 G, confirming the magnetic nature of this star. We review the X‐ray properties of ζ Oph with the aim to understand whether the X‐ray emission of ζ Oph is dominated by magnetic or by wind instability processes (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
5.
I. Negueruela 《Astronomische Nachrichten》2004,325(5):380-392
As Be stars are restricted to luminosity classes III‐V, but early B‐type stars are believed to evolve into supergiants, it is to be expected that the Be phenomenon disappears at some point in the evolution of a moderately massive star, before it reaches the supergiant phase. As a first stage in an attempt to determine the physical reasons of this cessation, a search of the literature has provided a number of candidates to be Be stars with luminosity classes Ib or II. Spectroscopy has been obtained for candidates in a number of open clusters and associations, as well as several other bright stars in those clusters. Among the objects observed, HD 207329 is the best candidate to be a high‐luminosity Be star, as it appears like a fast‐rotating supergiant with double‐peaked emission lines. The lines of HD 229059, in Berkeley 87, also appear morphologically similar to those of Be stars, but there are reasons to suspect that this object is an interacting binary. At slightly lower luminosities, LS I +56°92 (B4 II) and HD 333452 (O9 II), also appear as intrinsically luminous Be stars. Two Be stars in NGC 6913, HD 229221 and HD 229239, appear to have rather higher intrinsic magnitudes than their spectral type (B0.2 III in both cases) would indicate, being as luminous as luminosity class II objects in the same cluster. HD 344863, in NGC 6823, is also a rather early Be star of moderately high luminosity. The search shows that, though high‐luminosity Be stars do exist, they are scarce and, perhaps surprisingly, tend to have early spectral types. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
6.
P. Reig A. Sowikowska A. Zezas P. Blay 《Monthly notices of the Royal Astronomical Society》2010,401(1):55-66
SAX J2103.5+4545 is the Be/X-ray binary (BeX) with the shortest orbital period. It shows extended bright and faint X-ray states that last for a few hundred days. The main objective of this work is to investigate the relationship between the X-ray and optical variability and to characterize the spectral and timing properties of the bright and faint states. We have found a correlation between the spectral and temporal parameters that fit the energy and power spectra. Softer energy spectra correspond to softer power spectra. That is to say, when the energy spectrum is soft, the power at high frequencies is suppressed. We also present the results of our monitoring of the Hα line of the optical counterpart since its discovery in 2003. There is a correlation between the strength and shape of the Hα line, originated in the circumstellar envelope of the massive companion and the X-ray emission from the vicinity of the neutron star. Hα emission, indicative of an equatorial disc around the B-type star, is detected whenever the source is bright in X-rays. When the disc is absent, the X-ray emission decreases significantly. The long-term variability of SAX J2103.5+4545 is characterized by fast episodes of disc loss and subsequent reformation. The time-scales for the loss and reformation of the disc (about 2 yr) are the fastest among BeXs. 相似文献
7.
We analyse a series of line profile observations of the He i 6678 line in ζ Oph. A period analysis on these data using the mode and moments of the line profile confirms the two previously known periods. We describe a new method of mode identification for pulsating stars in which the calculated profiles are directly fitted to observed profiles. The method yields the full set of pulsational parameters including the spherical harmonic degree, ℓ, and azimuthal number, m . Application of the method to these data confirms the mode identifications previously suggested for the two periodicities. We find that the derived pulsational parameters are physically realistic and conclude that non-radial pulsation is the most likely explanation for the travelling subfeatures. However, a unique mode identification is still not possible – several non-sectorial modes fit the data as well as the usually adopted sectorial identifications. The predicted photometric amplitudes are in good accord with upper limits derived from photometric observations. We conclude that ζ Oph is a star in the β Cep instability strip in which two modes of high degree (probably ℓ=4 and ℓ=8) are excited. We present an interpretation of these findings in which the cause of the low-order line profile and light variations in periodic Be stars is corotating photospheric clouds, while the travelling subfeatures are incidental to the Be phenomenon and are a result of non-radial pulsation. 相似文献
8.
M. Maheswaran J. P. Cassinelli 《Monthly notices of the Royal Astronomical Society》2009,394(1):415-426
We develop equations and obtain solutions for the structure and evolution of a protodisc region that is initially formed with no radial motion and super-Keplerian rotation speed when wind material from a hot rotating star is channelled towards its equatorial plane by a dipole-type magnetic field. Its temperature is around 107 K because of shock heating and the inflow of wind material causes its equatorial density to increase with time. The centrifugal force and thermal pressure increase relative to the magnetic force and material escapes at its outer edge. The protodisc region of a uniformly rotating star has almost uniform rotation and will shrink radially unless some instability intervenes. In a star with angular velocity increasing along its surface towards the equator, the angular velocity of the protodisc region decreases radially outwards and magnetorotational instability (MRI) can occur within a few hours or days. Viscosity resulting from MRI will readjust the angular velocity distribution of the protodisc material and may assist in the formation of a quasi-steady disc. Thus, the centrifugal breakout found in numerical simulations for uniformly rotating stars does not imply that quasi-steady discs with slow outflow cannot form around magnetic rotator stars with solar-type differential rotation. 相似文献
9.
W. Wegner 《Astronomische Nachrichten》2015,336(2):159-167
This paper is based on 2MASS photometry (J H Ks magnitudes) of 1172 Be stars. The observed mean intrinsic colours have been derived with aid of two‐colour diagrams for Be stars of luminosity classes Ie‐IIe, IIIe and IVe‐Ve. The obtained results are the first determinations of their intrinsic colours in the astronomical literature. The smoothed infrared colours are compared with those obtained for “normal” B stars. Several two‐colour diagrams and plots of observed and smoothed intrinsic colour versus spectral type of luminosity classes Ie‐IIe, IIIe and IVe‐Ve are presented. Generally the determined infrared intrinsic colours of Be stars (V – J)0, (V – H)0, and (V – Ks)o differ substantially from those of “normal” B stars. It is found that the intrinsic colours of B stars are generally bluer than Be stars of corresponding spectral type and luminosity class. The mean absolute visual magnitude Mv of 528 Be stars for luminosity classes Iae, Ibe‐Iabe, IIe, IIIe and IVe‐Ve is derived from HIPPARCOS parallaxes. The Mv calibration is compared with the existing ones. The Be stars are generally brighter than “normal” B stars of corresponding spectral types. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
10.
XMM‐Newton and Chandra have boosted our knowledge about the X‐ray emission of early‐type stars (spectral types OB and Wolf‐Rayet). However, there are still a number of open questions that need to be addressed in order to fully understand the X‐ray spectra of these objects. Many of these issues require high‐resolution spectroscopy or monitoring of a sample of massive stars. Given the moderate X‐ray brightness of these targets, rather long exposure times are needed to achieve these goals. In this contribution, we review our current knowledge in this field and present some hot topics that could ideally be addressed with XMM‐Newton over the next decade. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
11.
L. M. Dray 《Monthly notices of the Royal Astronomical Society》2006,370(4):2079-2090
It is commonly assumed that high-mass X-ray binary (HMXB) populations are little affected by metallicity. However, the massive stars making up their progenitor systems depend on metallicity in a number of ways, not least through their winds. We present simulations, well-matched to the observed sample of Galactic HMXBs, which demonstrate that both the number and the mean period of HMXB progenitors can vary with metallicity, with the number increasing by about a factor of 3 between solar and Small Magellanic Cloud (SMC) metallicity. However, the SMC population itself cannot be explained simply by metallicity effects; it requires both that the HMXBs observed therein primarily sample the older end of the HMXB population and that the star formation rate at the time of their formation was very large. 相似文献
12.
Modern spectropolarimeters are capable of detecting subkilogauss field strengths using the Zeeman effect in line profiles from the static photosphere, but supersonic Doppler broadening makes it more difficult to detect the Zeeman effect in the wind lines of hot stars. Nevertheless, the recent advances in observational capability motivate an assessment of the potential for detecting the magnetic fields threading such winds. We incorporate the weak-field longitudinal Zeeman effect in the Sobolev approximation to yield integral expressions for the flux of circularly polarized emission. To illustrate the results, two specific wind flows are considered: (i) spherical constant expansion with v ( r ) = v ∞ and (ii) homologous expansion with v ( r ) ∝ r . Axial and split monopole magnetic fields are used to schematically illustrate the polarized profiles. For constant expansion, optically thin lines yield the well-known 'flat-topped' total intensity emission profiles and an antisymmetric circularly polarized profile. For homologous expansion, we include occultation and wind absorption to provide a more realistic observational comparison. Occultation severely reduces the circularly polarized flux in the redshifted component, and in the blueshifted component, the polarization is reduced by partially offsetting emission and absorption contributions. We find that for a surface field of approximately 100 G, the largest polarizations result for thin but strong recombination emission lines. Peak polarizations are approximately 0.05 per cent, which presents a substantial although not inconceivable sensitivity challenge for modern instrumentation. 相似文献
13.
Pablo Reig 《Monthly notices of the Royal Astronomical Society》2007,377(2):867-873
We have investigated the long-term X-ray variability, defined as the root-mean-square (rms) of the All Sky Monitor Rossi X-ray Timing Explorer (ASM RXTE ) light curves, of a set of galactic Be/X-ray binaries and searched for correlations with system parameters, such as the spin period of the neutron star and the orbital period and eccentricity of the binary. We find that systems with larger rms are those harbouring fast-rotating neutron stars, low eccentric and narrow orbits. These relationships can be explained as the result of the truncation of the circumstellar disc. We also present an updated version of the Hα equivalent width–orbital period diagram, including sources in the Small Magellanic Cloud (SMC). This diagram provides strong observational evidence of the interaction of neutron star with the circumstellar envelope of its massive companion. 相似文献
14.
S. Hubrig M. Schller I. Savanov R.V. Yudin M.A. Pogodin St. tefl Th. Rivinius M. Cur 《Astronomische Nachrichten》2009,330(7):708-716
We report the results of our search for magnetic fields in a sample of 16 field Be stars, the binary emission‐line B‐type star υ Sgr, and in a sample of fourteen members of the open young cluster NGC3766 in the Carina spiral arm. The sample of cluster members includes Be stars, normal B‐type stars and He‐strong/He‐weak stars. Nine Be stars have been studied with magnetic field time series obtained over ∼1 hour to get an insight into the temporal behaviour and the correlation of magnetic field properties with dynamical phenomena taking place in Be star atmospheres. The spectropolarimetric data were obtained at the European Southern Observatory with the multi‐mode instrument FORS1 installed at the 8m Kueyen telescope. We detect weak photospheric magnetic fields in four field Be stars, HD 62367, μ Cen, o Aqr, and ε Tuc. The strongest longitudinal magnetic field, 〈Bz〉 = 117 ± 38 G, was detected in the Be star HD 62367. Among the Be stars studied with time series, one Be star, λ Eri, displays cyclic variability of the magnetic field with a period of 21.12 min. The binary star υ Sgr, in the initial rapid phase of mass exchange between the two components with strong emission lines in the visible spectrum, is a magnetic variable star, probably on a timescale of a few months. The maximum longitudinal magnetic field 〈Bz〉 = –102 ± 10 G at MJD 54333.018 was measured using hydrogen lines. The cluster NGC3766 seems to be extremely interesting, where we find evidence for the presence of a magnetic field in seven early B‐type stars out of the observed fourteen cluster members (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
15.
We aim to compare properties of early‐type post‐asymptotic giant‐branch (post‐AGB) stars, including normal first‐time B‐type post‐AGB stars, and extreme helium stars (EHes). Hipparcos photometry for 12 post‐AGB stars and 7 EHe stars has been analyzed; 5 post‐AGB stars are clearly variable. The Hipparcos data are not sufficiently sensitive to detect variability in any of the EHes. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
16.
R.D. Oudmaijer M.E. van den Ancker D. Baines P. Caselli J.E. Drew M.G. Hoare S.L. Lumsden B. Montesinos S. Sim J.S. Vink H.E. Wheelwright W.J. de Wit 《Astronomische Nachrichten》2011,332(3):238-241
The Herbig Ae/Be stars are intermediate mass pre‐main sequence stars that bridge the gap between the low mass T Tauri stars and the Massive Young Stellar Objects. In this mass range, the acting star forming mechanism switches from magnetically controlled accretion to an as yet unknown mechanism, but which is likely to be direct disk accretion onto the star. We observed a large sample of Herbig Ae/Be stars with X‐shooter to address this issue from a multi‐wavelength perspective. It is the largest such study to date, not only because of the number of objects involved, but also because of the large wavelength coverage from the blue to the near‐infrared. This allows many accretion diagnostics to be studied simultaneously. By correlating the various properties with mass, temperature and age, we aim to determine where and whether the magnetically controlled mass accretion mechanism halts and the proposed direct disk accretion takes over. Here, we will give an overview of the background, present some observations and discuss our initial results. We will introduce a new accretion diagnostic for the research of Herbig Ae/Be stars, the HeI 1.083 μm line (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
17.
We present a combined method to classify stellar spectra of the seventh data release (DR7) of the SDSS via an Artificial Neural Network (ANN), derive radial velocities and to estimate distances from an isochrone fitting technique. In total, we used 29 182 spectra of stars falling in the effective temperature range between 10000 and 5500 K, including white dwarfs. The targets were selected on the basis of SDSS colours. We compare our results not only with the SEGUE Stellar Parameter Pipeline output, but also with already published values and find excellent agreement. With new and extensive data sets from all‐sky ground based as well as satellite missions, our approach will become very important and efficient to analyse these information (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
18.
A.M.T. Pollock 《Astronomische Nachrichten》2012,333(4):351-354
Charge exchange occurs between charged ions with enough energy to overcome Coulomb repulsion, a condition satisfied for collisions at velocities like those of the winds driven from hot stars by radiation pressure. X‐ray line ratios in some hot stars are inconsistent with those expected from thermal plasmas excited by electron impact. Ion‐ion interactions including charge exchange might be responsible instead if high‐velocity collisions between ions are enabled by the presence of a magnetic field in the wind, suggesting a possible alternative mechanism to the widely accepted instability‐driven shock model. The nature of a plasma in charge‐exchange equilibrium is yet to be determined (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
19.
ROTSE‐IIId observations of the Be/X‐ray transient system KS 1947+300 obtained between September 2004 and December 2005 make it possible to study the correlation between optical and X‐ray activity. The optical outburst of 0.1 mag was accompanied by an increase of the X‐ray flux in the 2004 observations. A strong correlation between the optical and X‐ray light curves suggests that the neutron star directly accretes from the outflowing material of the Be star. The nearly zero time lag between X‐ray and optical light curves suggests a heating of the disk of Be star by X‐rays. No optical brightening and X‐ray enhancement was seen in the 2005 observations. There is no indication of an orbital modulation in the optical light curve. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
20.
《Astronomische Nachrichten》2017,338(2-3):207-212
XMM ‐Newton has deeply changed our picture of X‐ray emission of hot massive stars. High‐resolution X‐ray spectroscopy, as well as monitoring of these objects, has helped us to gain a deeper insight into the physics of single massive stars with or without magnetic fields, as well as of massive binary systems, where the stellar winds of both stars interact. These observations also revealed a number of previously unexpected features, challenging our understanding of the dynamics of the stellar winds of massive stars. Here, we briefly summarize the results obtained over the past 15 years and highlight the perspectives for the next decade. It is anticipated that coordinated (X‐ray and optical or ultraviolet) monitoring and time‐critical observations of either single or binary massive stars will become the most important topics in this field over the coming years. Synergies with existing or forthcoming X‐ray observatories (NuStar , Swift, and extended ROentgen Survey with an Imaging Telescope Array (eROSITA )) will also play a major role and will further enhance the importance of XMM ‐Newton in our quest for understanding the physics of hot massive stars. 相似文献