首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The earliest stages of plant succession on severely disturbed sites usually follow highly unpredictable trajectories. However, in the Popocatépetl volcano area(50 km SE of Mexico City),the development of physiognomically distinct primary plant communities suggests the occurrence of various successional trajectories only 10 years after the onset of colonization of a temperate forest on lahars. To characterize plant communities and determine the environmental factors that drive the differences observed between plant communities and their successional trajectories, we monitored 64 circular sample plots(3.14 m2) from 2002 to 2011. We examined the plant communities' composition and structure in terms of their species richness and abundance, plant cover, and maximum stem height,and recorded 13 environmental factors related to the volcanic deposit characteristics, microclimate, soil,flow dynamics and gravitational processes. A cluster analysis of the species abundance data showed that,by 2011, six plant community types(CT's) had established, including grasslands, and open, dense and very dense shrub lands. As these communities developed over the same period of time and within the same overall ecosystem, then these plant community types were interpreted as different stages of the same successional trajectory. Two sequential main stages that drive regeneration were identified from this successional trajectory: a) the first four years are characterized by a steady increase in species richness and physiognomic development(plant size and coverage), mostly dominated by Baccharis conferta, Eupatorium glabratum and Senecio barbajohannis; b) from the sixth year onwards, a continued increase in the abundance of those same species led to the development of the dense shrubland communities.Differences in the availability of soil resources and disturbances linked to recent lahar flows were the main factors accounting for such differences.  相似文献   

2.
In Eastern South America, high altitude grasslands represent a mountain system that has a high number of endemic species. However, studies on the ecology of plant communities in these environments remain scarce. We aimed to evaluate the patterns of biodiversity and structure of plant communities from rocky outcrops in high altitude grasslands of three areas at the Caparaó National Park, southeastern Brazil, by sampling 300 randomly distributed plots. Then, we compared the floristic composition, relative abundance, and biological and vegetation spectra among areas. We classified species as endemic and non-endemic and verified the occurrence of endangered species. Species richness was evaluated by rarefaction analysis on the sampling units. The importance value and species abundance distribution(SAD) models were assessed. We also performed an indicator species analysis. We sampled 58 species belonging to 49 genera and 32 families. The number of species decreased with increasing altitude, with significant differences being observed among areas regarding richness, abundance, and cover. Of the total number of species, 10 are endemic to the Caparaó National Park and 17 are listed on the Brazilian Red List of endangered species. The dominant families on all peaks were Asteraceae and Poaceae. The SAD models showed lognormal and geometric distributions, corroborating the fact that 10 species that were common to all three areas were also the most dominant ones in the communities and showed the highest importance values, which ranged between 35% and 60%. Indicator species analysis revealed that 28 species(48.27%) were indicators. Of these, 42.85% had maximum specificity, meaning that they occurred only in one area. Thus, the number of species per life form ratio was similar among areas, yet vegetation spectra differed, especially for hemicryptophytes. The altimetric difference among the areas showed to be a very important driver in the community assembly, influencing the evaluated variables, however, other drivers as soil depth, slope and water could also influence the community structure on a smaller and local spatial scale.  相似文献   

3.
This study analyzes six vegetation communities in relation to current climatic parameters and eight climate change scenarios along an elevation gradient extending from 2,710 m to 4,210m in the Trans-Mexican Volcanic Belt. The projected movements of 25 plant species with the current restricted or wide altitudinal distributions were also modeled. To relate climatic parameters to the species and communities, a Precipitation/Temperature(P/T)index was used both for the current and the different climate-change scenarios. The temperatures are expected to increase by 1.1°C to 1.7°C by 2020 and by2°C to 3°C by 2050. A decrease of 4% to 13% in the annual precipitation is expected for the 2020 horizon,and a reduction between 3% and 20% is expected for2050. The reductions in water availability were projected for all altitude levels and plant communities.The most marked reduction was under the HADLEYA2 scenario, in which the lower limit of the altitudinal range increased from 2,710 to 3,310 m(2050 horizon)with reductions in the P/T index between 36% and39% compared to the current climate. Most plant species tended to shift their distribution from 200 to300 m upward in the 2020 temporal horizon scenarios. The Pinus hartwegii, Alnus jorullensis and Pinus montezumae communities would have a shorter altitudinal range as they move upward and merge with the remaining species at the higher altitudinal range. For the 2050 temporal horizon,30% of the species, primarily those from the higher altitudinal range, would disappear because their P/Tindex values would be above the limit of plant survival(4,210 m).  相似文献   

4.
The present study was carried out in Tungnath alpine meadows of Kedarnath Wild Life Sanctuary, Western Himalaya from subalpine to upper alpine zone. A total of four summits were selected along an altitudinal gradient and sampled for detailed vegetation analysis using multi summit approach as per Global observation research initiative in alpine environments(GLORIA). Species richness, diversity, and evenness among four summits as well as the interaction between environmental variables with plant communities were assessed. Monthly mean soil temperature was calculated using data retrieved from geo-precision temperature logger in order to identify the trend of soil temperature among different season and altitudinal gradient and its implications to plant communities. Soil samples were analyzed fromeach summit by collecting randomized composite soil samples. The indirect non-metric multidimensional scaling(NMDS) and direct canonical correspondence analysis(CCA) tools of ordination techniques to determine the linkage between plant species from various sample summits and biotic/abiotic environmental gradients were used in the present study. The results of the study demonstrated increase in species richness as soil temperature increases, the ecotone representing summits were found most warm summits followed by highest species richness. Annual soil temperature increased by 1.43°C at timberline ecotone. Whereas, at upper alpine zone the soil temperature increased by 0.810 C from year 2015 to 2016. S?rensen's similarity index was found to be increased between subalpine and upper alpine zone with increase in the presence of subalpine plant species at upper alpine zone. Both the ordination tools separate the subalpine summit and their respective vegetation from summits representingtimberline ecotone and upper alpine zone. Soil p H, altitude, soil cation exchange capacity were found as the key abiotic drivers for distribution of plant species.  相似文献   

5.
The investigation of distribution patterns of species diversity is significant for successful biodiversity conservation. The spatial patterns of vegetation and different life-forms species diversity along an elevation gradient in the middle section of the southern slope of the Tianshan Mountains in Xinjiang, China were explored, using the detrended canonical correspondence analysis(DCCA) and the generalized additive model(GAM) methods based on a field survey of 53 sampling plots. In this work 158 species of seed plants were recorded, including 141 herbaceous, 14 shrub, and 2 tree species, in which the woody plants are very limited. 53 sampling plots were classified into 9 major plant communities. The results indicate that the herb communities were the most sensitive to changes in elevation gradient. The diversity indices of the community as a whole presented bimodal patterns. The peak values for the species diversities were found in the transition region between mountain steppe desert and mountain desert steppe(2,200–2,300m), and in the alpine grassland region(2,900–3,100m), while maximum species diversities were in the areas of intermediate environmental gradient. The main environmental factors on the distribution patterns in plant diversity were the elevation, soil water, total nitrogen, available nitrogen, organic matter, and total salt. The response tendency of the four diversity indices for the whole community to the soil environment was the same as that of the herb layers.  相似文献   

6.
Relationships between topography,soil properties and the distribution of plant communities on two different rocky hillsides are examined in two subtropical karst forests in the Maolan National Natural Reserve,southwestern China.Surveys of two 1-ha permanent plots at each forest,and measurements of four topographic and thirteen edaphic factors on the slopes were performed.Twoway Indicator Species Analysis(TWINSPAN) and Detrended Canonical Correspondence Analysis(DCCA) were used for the classification of plant communities and for vegetation ordination with environmental variables.One hundred 10m×10m quadrats in each plot were classified into four plant community types.A clear altitudinal gradient suggested that elevation was important in community differentiation.The topography and soil explained 51.06% and 54.69% of the variability of the distribution of plant species in the two forest plots,respectively,indicating both topographic factors(eg.elevation,slope and rock-bareness rate) and edaphic factors(e.g.total P,K and exchangeable Ca) were the important drivers of the distribution of woody plant species in subtropical karst forest.However,our results suggested that topographical factors were more important than edaphic ones in affecting local plant distribution on steep slopes with extensive rock outcrops,while edaphic factors were more influential on gentle slope and relatively thick soil over rock in subtropical karst forest.Understanding relationships between vegetation and environmental factors in karst forest ecosystems would enable us to apply these findings in vegetation management strategies and restoration of forest communities.  相似文献   

7.
Vast grasslands are found in the walnut-fruit forest region of southern Kyrgyzstan,Middle Asia.Located above the worldwide unique walnutfruit forests and used for grazing,they play a pivotal role in the mixed mountain agriculture of local farmers.Accordingly,these pastures are subject to an increasing utilization pressure reflecting the changing political and social conditions in the transformation process from a Soviet republic to an independent state.A first detailed analysis of mountain pasture vegetation in the Ferghana Range answers the following questions:What are the main plant community types among Kyrgyzstan’s mountain pastures? What are the main environmental gradients that shape their species composition? Which phytogeographical distribution types are predominant? How does grazing affect community composition and species richness in these grasslands? Species composition was classified by cluster analysis;underlying environmental gradients were explored using DCA.A dataset of 395 relevés was used for classification,and a subset of 79 relevés was used in a DCA to analyze the correlation between vegetation,environment,and grazing impact.The investigated pastures were classified into four distinctive plant communities.The site factors altitude,heat load,inclination and grazing impact were found to be the major determinants of the vegetation pattern.A significant overlap between floristic composition and structural and spatial properties was shown.The majority of the species pool consisted of Middle Asian endemics and Eurosiberian species.However,disturbance-tolerant species played a significant role with respect to species composition and coverage of the herbaceous layer in vast areas of southern Kyrgyzstan’s mountain pastures.In general,an intense grazing impact is clearly reflected by both species composition and structural variables of plant communities.The highly diverse and unique ecosystem is modified by an increasing utilization pressure.In order to maintain vital processes and functioning of this valuable ecosystem-in both economical and ecological terms-,it is indispensable to adopt appropriate pasture management strategies.  相似文献   

8.
As one of the most sensitive regions to global climate change, alpine tundra in many places around the world has been undergoing dramatic changes in vegetation communities over the past few decades.Herbaceous plant species in the Changbai Mountains area have significantly expanded into tundra shrub communities over the past 30 yr.Soil microbial communities, enzyme activities, and soil nutrients are intertwined with this expansion process.In order to understand the responses of the soil microbial communities to such an expansion, we analyzed soil microbial community structures and enzyme activities in shrub tundra as well as areas with three different levels of herbaceous plant expansion.Our investigation was based on phospholipid fatty acid(PLFA) analysis and 96-well microtiter plates.The results showed that herbs have expanded greatly in the tundra, and they have become the dominant species in herbaceous plant expansion areas.There were differences for community composition and appearance among the shrub tundra and the mild expansion, moderate expansion, and severe expansion areas.Except for soil organic matter, soil nutrients were increased in herbaceous plant expansion areas, and the total nitrogen(TN), total phosphorus(TP), available nitrogen(AN), and available phosphorus(AP) were greatest in moderate expansion areas(MOE), while soil organic matter levels were highest in the non-expanded areas(CK).The total soil PLFAs in the three levels of herbaceous plant expansion areas were significantly higher than those in the non-expanded areas, and total soil PLFAs were highest in the moderately expanded area and lowest in the severely expanded area(SEE).Bacteria increased significantly more than fungi and actinomycetes with herbaceous plant expansion.Soil hydrolase activities(β-1,4-glucosidase(βG) activity, β-1, 4-N-acetylglucosaminidase(NAG) activity, and acid phosphatase(aP) activity) were highest in MOE and lowest in the CK treatment.Soil oxidase activities(polyphenol oxidase(PPO) activities and peroxidase(PER) activities) were also highest in MOE, but they were lowest in the SEE treatment.The variations in total soil PLFAs with herbaceous plant expansion were mostly correlated with soil organic matter and available phosphorus concentrations, while soil enzyme activities were mostly correlated with the total soil nitrogen concentration.Our results suggest that herbaceous plant expansion increase the total soil PLFAs and soil enzyme activities and improved soil nutrients.However, soil microorganisms, enzyme activity, and nutrients responded differently to levels of herbaceous plant expansion.The soil conditions in mild and moderate expansion areas are more favorable than those in severe expansion areas.  相似文献   

9.
The present study broadly focused on medicinal plant species collected from wild by the villagers for different purposes in the upper catchment of Dhauli Ganga in Nanda Devi Biosphere Reserve(NDBR),in the central Himalaya.A schedule based survey was conducted during the years 2003-2005 in 15 villages of Chamoli district part of the NDBR.Information was collected from collectors, vaidya(medicine man)and those dealing with domestication and marketing of the medicinal plants. The aim of the study was to understand the prioritiesed medicinal plants,their mode of collection and document their ethnobotanical uses by the Bhotiya tribal communities,in this world heritage site. During the survey,50 medicinal plants belonging to 31 families and 44 genera were documented.Out of these,70% were harvested from the wild,22% were cultivated and 8% were cultivated as well as wild harvested.Of the cultivated species,8% were found growing in the kitchen gardens and 14%in the agricultural fields.However,42%of the plants had their roots and rhizomes used followed by leaves (26%),seeds(10%),seed and leaf(8%),bark and whole plant(6%)and flower(1%).Most plants were reported to be used for rheumatism(16),followed by stomach disorder(14),cold and cough(11),and jaundice(9).Thirty three plants species were reported to have more than one therapeutic uses,while 17 species were reported to be used against single ailment.The distance of villages from road head was one of the factors contributing to the decline in the medicinal plant population in their natural habitats. The availability of medicinal plants increased with increase in distance from road head and also the peoples’dependence on them.Documentation of the traditional knowledge will help in conservation of knowledge and also opportunity for using it for future training and use.The result of this study will help in promoting sustainable cultivation and implementation in conservation protocol of those species,which are in the verge of extinction in this region.  相似文献   

10.
To identify impact factors on the distribution and characters of natural plants community in reclamation area, with survey data from 67 plant quadrats in July 2009, soil properties data from 216 sampling points in April 2009, and TM (30 m) data in 2006, the composition and characteristics of natural plants community in different time of the Fengxian area in the Changjiang (Yangtze) River estuary were analyzed with two-way indicator species analysis (TWINSPAN), multivariate analysis of variance (MANOVA), detrended canonical correspondence analysis (DCCA) and canonical correspondence analysis (CCA). The results show that: 1) The plant communities in the reclaimed area are mainly mesophytes and helophytic-mesophytic transitional communities, showing a gradient distribution trend with the change in reclamation years. Species richness (MA), species diversity (H) and above-ground biomass also increase with the increase of reclamation years. Nevertheless, they appear to decline slightly in the middle and late reclamation period (> 30 years). 2) With the rise in land use levels, the changes in species richness and species diversity tend to increase at first and then decrease; species dominance (D), however, tends to decline; and above-ground biomass increases slightly. 3) The distribution of the plant community is mainly influenced by the following factors: land use levels (R = 0.55, p < 0.05), soil moisture (R = 0.53, p < 0.05), soil salinity (R = 0.43, p < 0.05) and reclamation time (R = 0.40, p < 0.05).  相似文献   

11.
Mountainous rangelands play a pivotal role in providing forage resources for livestock, particularly in summer, and maintaining ecological balance. This study aimed to identify environmental variables affecting range plant species distribution, ecological analysis of the relationship between these variables and the distribution of plants, and to model and map the plant habitats suitability by the Random Forest Method(RFM) in rangelands of the Taftan Mountain, Sistan and Baluchestan Province, southeastern Iran. In order to determine the environmental variables and estimate the potential distribution of plant species, the presence points of plants were recorded by using systematic random sampling method(90 points of presence) and soils were sampled in 5 habitats by random method in 0–30 and 30–60 cm depths. The layers of environmental variables were prepared using the Kriging interpolation method and Geographic Information System facilities. The distribution of the plant habitats was finally modelled and mapped by the RFM. Continuous maps of the habitat suitability were converted to binary maps using Youden Index(?) in order to evaluate the accuracy of the RFM in estimation of the distribution of species potentialhabitat. Based on the values of the area under curve(AUC) statistics, accuracy of predictive models of all habitats was in good level. Investigating the agreement between the predicted map, generated by each model, and actual maps, generated from fieldmeasured data, of the plant habitats, was at a high level for all habitats, except for Amygdalus scoparia habitat. This study concluded that the RFM is a robust model to analyze the relationships between the distribution of plant species and environmental variables as well as to prepare potential distribution maps of plant habitats that are of higher priority for conservation on the local scale in arid mountainous rangelands.  相似文献   

12.
Middle and Late Cambrian trilobite faunas from the Dama section in western Hunanare are composed of 63 genera and subgenera, 84 species, and two forms of gen. et sp. indetermined. Which include a mixture of cosmopolitan agnostoids and polymeroids. Three new species, Hardyoides damaensis ,Meringaspis damaensis and Rhyssomelopus (Rodtrifinis ) nitidus, are described by present author in 2004. Besides, Erixanium is recognised for the first time in study area, which is significant for biostratigraphical correlation of the Late Cambrian in the Austalo-Asia region. According to distribution regularity vertical, the Middle and Late Cambrian trilobites can be divided into 9 trilobite communities for the Dama section. Based on the trilobite communities analysis, the author concludes that from the east Mt. Lailong to Dama through Fenghuang, further east, reach in Chenxi.the palaeoenvironments were changed from a shallow-water of oxygen-rich (platform margin slope) into a deep-water of oxygen-poor setting (basin).  相似文献   

13.
Biotic indicators have been widely used to monitor wetland health. However, few studies have explicitly evaluated if plant diversity could serve as a useful community-level indicator of wetland stability, especially when wetlands are confronted with anthropogenic perturbations. Based on three-year record of wetland plant species abundance in Napahai plateau wetland, Shangri-la under the influence of varying anthropogenic perturbation types, our study tests the impact of such perturbations on plant richness and the relationship between ecosystem temporal stability and plant richness, and further assesses the effectiveness of using plant diversity indicator to probe ecosystem temporal stability of Napahai plateau wetland and the potential mechanisms. The results showed that anthropogenic perturbations could have contributed significantly to realistic variation in plant diversity, and further demonstrated that ecosystem temporal stability was positively related to realistic variation in plant diversity. In particular, communities with high levels of diversity might have better capacity to dampen perturbation impacts than communities with low levels of diversity, and statistical averaging could have played an important role in causing greater stability in more diverse communities. Also, asynchrony might have a stabilizing effect on community stability, and diversity could have stabilized communities through both species asynchrony and population stability propagation. Therefore, our results suggest that plant diversity could be used as a useful indicator of the stability conditions of plateau wetland ecosystems confronted with anthropogenic perturbations, and the preservation of plant communities at sufficient abundance and diversity is necessary for maintaining healthy plateau wetlands and for sustaining their essential ecosystem functions and services.  相似文献   

14.
Implementing conservation actions on-the-ground is not a straightforward process,especially when faced with high scientific uncertainty due to limited available information. This is especially acute in regions of the world that harbor many unique species that have not been well studied,such as the alpine zone of the Hengduan Mountains of Northwest Yunnan (NWY),a global biodiversity hotspot and site of The Nature Conservancy’s Yunnan Great Rivers Project. We conducted a quantitative,but rapid regional-level assessment of the alpine flora across NWY to provide a broad-based understanding of local and regional patterns of the alpine flora,the first large-scale analysis of alpine biodiversity patterns in this region. Multivariate analyses were used to classify the major plant community types and link community patterns to habitat variables. Our analysis indicated that most species had small distributions and/or small population sizes. Strong patterns emerged with higher diversity in the more northern mountains,but beta diversity was high,averaging only 10% among sites. The ordinations indicated that elevation and geographic location were the dominant environ-mental gradients underlying the differences in the species composition among communities. The high beta diversity across the alpine of these mountains implies that conservation strategies ultimately will require the protection of large numbers of species over a large geographical area. However,prioritiza-tion should be given to areas where potential payoffs are greatest. Sites with high species richness also have a greater number of endemic species,and,by focusing efforts on these sites,conservation investments would be maximized by protecting the greatest number of unique species.  相似文献   

15.
Changes in the fungal and bacterial biomass and community structure in litter after the volcanic eruptions of Mount Usu, northern Japan were investigated using a chronosequence approach, which is widely used for analyzing vegetation succession. The vegetation changed from bare ground(10 years after the eruptions) with little plant cover and poor soil to monotonic grassland dominated by Polygonum sachalinense with undeveloped soil(33 years) and then to deciduous broad-leaved forest dominated by Populus maximowiczii with diverse species composition and well-developed soil(100 years). At three chronosequential sites, we evaluated the compositions of phospholipid fatty acids(PLFAs), carbon(C) and nitrogen(N) contents and the isotope ratios of C(δ13C) and N(δ15N) in the litter of two dominant species, Polygonum sachalinense and Populus maximowiczii. The C/N ratio, δ13C and δ15N in the litter of these two species were higher in the forest than that in the bare ground and grassland. The PLFAs gradually increased from the bare ground to the forest, showing that microbial biomass increased with the development of the soil and/or vegetation. The fungi-to-bacteria ratio of PLFA was constant at 5.3 ± 1.4 in all three sites, suggesting that fungi were predominant. A canonical correspondence analysis suggested that the PLFA composition was related tothe successional ages and the developing soil properties(P 0.05, ANOSIM). The chronosequential analysis effectively detected the successional changes in both microbial and plant communities.  相似文献   

16.
Butterflies are widely studied due to their key ecosystem functions.For this reason,they are used in ecosystem assessment,formulating conservation plans and in raising the environmental awareness.Quantification of different factors affecting diversity of butterflies is important for their effective conservation.In this study,we investigated abiotic and biotic factors affecting species richness and community composition of butterflies along an elevational gradient in Manang region,central Nepal.We also tested if butterfly species follow the Bergmann’s rule.A total of 57 butterfly species belonging to 39 genera and 8 families were recorded in the study area.Out of a total of 127 plant species identified in the study region,only 67 plant species were visited by butterflies as nectar sources.Species richness of butterflies increased with increasing elevation.Species richness was significantly higher in places with shrubs compared to other places and also in autumn than in summer.Species richness of butterflies also depended on composition of plant species occurring at the localities.Butterfly species composition varied among sampling localities.It was also determined by habitat type,elevation,sampling time,plant species and interactions of elevation×time.The relationship between butterfly size and elevation was in the opposite direction than expected according to the Bergmann’s rule.In conclusion,protection of butterfly diversity can only be achieved by protecting different habitats across the diverse physiography of the region and different plant species,in particular herbs and shrubs.Our results do not support the Bergmann’s rule for butterflies along an elevational gradient in our region.  相似文献   

17.
Polychaetes are one of the most important groups of macrobenthic organisms in coastal and marine environments, in terms of diversity and abundance, and play an important role in the functioning of ecosystem. This study aims to describe the structure and spatial distribution of polychaete communities along Essaouira's rocky shoreline(Atlantic coast of Morocco) in relation to the major environmental variables such as granulometry, salinity, temperature, pH, and intertidal range. Twelve sites from these intertidal rocky shores were sampled using a quadrat method during the summer 2016. A total of 4 435 individuals belonging to 34 taxa were recorded. Among the families, Sabellaridae(24%) and Nereididae(23%) were ranked ?rst in terms of abundance of individuals. Sabellaria alveolata(24%) and Perinereis cultrifera(13%) were the dominant species. Diversity( H′) values varied from 2.28 to 3.95. Pielou's index( J′) varied between 0.62 and 0.89. This was essentially due to the low dominance of few species. Cluster analysis was used to characterise Essaouira's rocky shores on the basis of benthic polychaete communities. SIMPER analysis con?rmed the presence of three distinct communities. According to canonical correspondence analysis, the structure and distribution of faunal assemblages of benthic polychaetes was mainly related to topographical complexity, water temperature, hydrodynamic conditions and upwelling. We conclude that these rocky shores show typically high benthic polychaete diversity compared to the taxonomic list of other rocky coasts. In addition, these results constitute a baseline data for the development of a sustainable network for long-term monitoring of benthic polychaete community changes due to ecological factor in?uences and anthropogenic activity impacts.  相似文献   

18.
One of the fundamental questions in community ecology is whether communities are random or formed by deterministic mechanisms. Although many efforts have been made to verify non-randomness in community structure, little is known with regard to co-occurrence patterns in above-ground and below-ground communities. In this paper, we used a null model to test non-randomness in the structure of the above-ground and below-ground mite communities in farmland of the Sanjiang Plain, Northeast China. Then, we used four tests for non-randomness to recognize species pairs that would be demonstrated as significantly aggregated or segregated co-occurrences of the above-ground and below-ground mite communities. The pattern of the above-ground mite commu- nity was significantly non-random in October, suggesting species segregation and hence interspecific competition. Additionally, species co-occurrence patterns did not differ from randomness in the above-ground mite community in August or in below-ground mite com- munities in August and October. Only one significant species pair was detected in the above-ground mite community in August, while no significant species pairs were recognized in the above-ground mite community in October or in the below-ground mite communities in August and October. The results indicate that non-randomness and significant species pairs may not be the general rule in the above-ground and below-ground mite communities in farmland of the Sanjiang Plain at the fine scale.  相似文献   

19.
The soil biological activity of mountain meadows is a significant factor that determines the health and utility of these regions. The climax stage of this area is forest, but to maintain semi-natural grassland, which is characterised by high biodiversity,low-intensity land use(mowing or grazing) is necessarily required. To understand the effect of various mowing regimes on the soil biological activity and plants, the soil microbial activity(microbial biomass carbon, dehydrogenase activity and number of the cultivable fraction of soil microbial community),annelids community(density and species composition earthworms and enchytraeids) and plant species composition were investigated. The study area was located in the Pieniny National Park in the Carpathian Mountains, in a meadow belonging to the association Dactylis glomerata-Poa trivialis. The investigated variants were divided according to mowing regime:traditional scything – hand mowing(HM), mechanical mowing(MM), or the abandonment of mowing – nonmowing(NM). The microbial activities(expressed by,e.g. microbial biomass carbon and the number of phosphorus bacteria) were affected by the mowing regime. The density of earthworms was higher in the HM and MM than in the NM variants. The largest changes in plant species composition were caused by the abandonment of mowing(NM). The mean number of plant species was positively correlated with soil moisture, earthworm density, and microbial activity(expressed indirectly by dehydrogenases activity). The soil microbial community, such as vegetative bacteria forms and ammonifying bacteria,were positively associated with pH value, and the microbial and total organic carbon content. The results presented here indicate that there is no single form of optimal management for all living organisms.Decisions about mowing regimes, or abandonment of use, should be preceded by multi-aspect studies,including plants and soil biota.  相似文献   

20.
《山地科学学报》2020,17(8):1931-1941
Plant communities are shaped by multiple factors along environmental gradients;however,studies are limited on how environmental filtering drives community composition and species richness on tropical inselbergs.We evaluate the influence of altitude and climatic variables related to temperature and precipitation on plant community composition and species richness on Brazilian inselbergs.We assume as a premise that both climate and altitude would induce changes on plant community composition and species richness at the local level.We used plant inventory data from 370 sampling units across four inselberg sites in the Atlantic Forest of Espírito Santo State,south-eastern Brazil.We tested the univariate and multivariate effects of altitude and climate variables on community composition and species richness with multiple models.Differences in species richness between inselbergs were evaluated using sample-based data to estimate rarefaction and extrapolation curves.In addition,differences in species composition and taxonomic beta diversity were examined via novel frequency-based metrics.A contrasting climate pattern was observed between the inselberg sites,with south sites being wet compared to the dry conditions found in northern sites.Species richness by rarefaction showed a similar pattern within regional sites;however,there were marked differences between regions.Species richness and beta diversity showed significant differences among sites,with higher values in southern sites than in northern sites.In a multi-model comparison between inselberg sites,altitude significantly influenced community composition and species richness and explained more variance than climate models.This finding suggested that climate could act to some extent on these tropical inselbergs;however,altitude was a better predictor of plant community composition and species richness at the local level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号