首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
《Gondwana Research》2010,17(3-4):587-608
Plume-related oceanic magmatism form oceanic islands, seamounts and plateaus (hereafter “seamounts” or “paleoseamounts”), which are important features in geological history. The accretion of oceanic seamounts to active continental margins significantly contributed to the formation of the continental crust. This paper reviews occurrences of Late Neoproterozoic–Mesozoic seamounts of the Paleo-Asian and Paleo-Pacific oceans, which are hosted by accretionary complexes (ACs) of Russian Altai, East Kazakhstan, Mongolia, Russian Far East and Japan. The paleoseamounts commonly consist of Ti–LREE–Nb-enriched plume-related basalts (OIB-type or intraplate basalts) capped with massive limestone and associated with other units of oceanic plate stratigraphy (OPS): oceanic floor basalts (MORB), pelagic chert, epiclastic slope facies, etc. The paper presents available geochemical data on the plume-related basalts including the first geochemical data on the Middle Paleozoic OIB-type basalts of the Paleo-Asian Ocean hosted by the Ulaanbaatar AC of Mongolia. An emphasis is made for the structural setting of OPS units, specific geochemical features of intraplate basalts, problems of their identification, and distinguishing from magmatic units of a different origin such as MORB, island-arc and back-arc basalts. Finally, we propose a continuous, though periodical, evolution of the Pacific superplume-related magmatism, which can be more reliably proved by studying Middle Paleozoic OPS units hosted by ACs of Mongolia and Tien Shan, and discuss prospects of future studies.  相似文献   

2.
The island of Ishigaki Jima, located in the western part of the southern Ryukyu Arc, Japan, is underlain by a basement comprising the Tumuru and Fu-saki formations. The former is a pelitic glaucophane schist with a metamorphic age of 220–190 Ma, and the latter is a weakly metamorphosed accretionary complex, composed mainly of chert, mudstone and sandstone with minor amounts of limestone and mafic rocks. The Fu-saki Formation was weakly metamorphosed at ∼140 Ma. Latest Carboniferous–Early Jurassic microfossils have been obtained from the limestones, cherts and siliceous mudstones of this formation, but no fossils have been collected from the phyllitic mudstones. The radiolarian fauna of the phyllitic mudstones described herein indicates a late Pliensbachian–early Toarcian (Early Jurassic) age. This result, when combined with existing data, enables the reconstruction of an oceanic plate stratigraphy, showing a succession of (in ascending order) Upper Carboniferous–Triassic cherts, Sinemurian–lower Pliensbachian siliceous mudstones and upper Pliensbachian–lower Toarcian phyllitic mudstones and sandstones. The radiolarians from the phyllitic mudstones are important in constraining the timing of the accretion of the Fu-saki Formation to the base of the Tumuru Formation.  相似文献   

3.
本文报道了黑龙江嘉荫和俄罗斯远东Kundur(昆杜尔)地区黑龙江杂岩锆石U-Pb年代学和Hf同位素分析结果,并结合前人研究成果,探讨了黑龙江杂岩的物质组成、形成时代、构造就位时间及物源。黑龙江嘉荫地区黑龙江杂岩中两个石榴石白云母石英片岩(13HYC28-1和13HYC29-1)原岩为流纹岩,其锆石U-Pb年龄分别为185±1Ma和183±1Ma,应代表黑龙江杂岩中存在的中酸性火山岩原岩的形成时代;俄罗斯远东Kundur(昆杜尔)地区石榴石二云母片岩(14RF4-1)和白云母石英片岩(14RF5-1)碎屑锆石年龄频谱主要存在两个年龄区间:183~286Ma和420~525Ma,另外还有少量前寒武纪年龄。这些碎屑锆石年龄组合与佳木斯地块和松嫩-张广才岭地块东缘发育的岩浆事件相对应,揭示其沉积物源应来自于这些火成岩。黑龙江杂岩碎屑锆石年龄数据中早侏罗世的最小峰期年龄(188Ma)代表了黑龙江杂岩原岩成岩时代的下限,结合区内177~165Ma的单矿物变质变形年龄,可以判定黑龙江杂岩的构造就位时间为早侏罗世晚期-中侏罗世。黑龙江杂岩的形成与就位过程揭示了东北亚陆缘早中生代的构造演化历史:中-晚三叠世(240~230Ma),牡丹江洋沿嘉荫-牡丹江断裂裂开并逐渐扩张,早侏罗世期间,古太平洋板块开始向欧亚大陆之下俯冲,受其影响,牡丹江洋俯冲并闭合于早侏罗世晚期-中侏罗世,最终导致佳木斯地块与松嫩-张广才岭地块碰撞拼合以及黑龙江杂岩的构造就位。  相似文献   

4.
西岔地区金多金属矿位于华北地台东北缘。研究区经历了太古宙结晶基底的形成,元古宙"辽吉洋"的构造演化,中生代早期遭受古亚洲洋最终闭合的影响,中-新生代又有滨太平洋构造域的叠加与改造,造就了复杂的构造格局,同时也记录了丰富的成矿信息。为厘清区内多金属矿成矿时代与成矿动力学背景,本文对研究区不同成矿地质体开展了锆石LA-ICPMS U-Pb测年和全岩地球化学研究。结果表明:(1)具有条带状贱金属矿化的荒岔沟组变粒岩锆石年龄为2157Ma,其形成与辽吉洋洋壳俯冲产生的强烈海底火山喷发密切相关,在火山喷发的间歇期形成了条带状矿化的火山-沉积岩;(2)正岔矽卡岩型铅锌矿的成矿地质体(正岔岩体)由具有埃达克属性的高镁闪长岩和低镁花岗岩组成,形成于晚三叠世(2243~2185Ma),是古亚洲洋闭合和持续碰撞造山导致的加厚下地壳拆沉作用的产物,暗示华北地台北缘岩石圈规模有限的减薄和克拉通破坏的起始时间可能为晚三叠世;(3)西岔金银矿的成矿地质体西岔正长斑岩的锆石U-Pb年龄将西岔金银矿的成矿时代限定在~1211Ma。结合前人研究成果,认为西岔金银矿的形成与古太平洋板块俯冲后伸展作用相关。  相似文献   

5.
On the basis of geological observations and the study of conodont and radiolarian microfauna, a new stratigraphic scheme was proposed for the Mesozoic deposits of the Komsomolsk district of the Amur region. The lower Khorpy Group (T2-J3) consists of two units: the Boktor (T2-J2) and Kholvasi (J2–3). The Boktor Sequence (400 m thick) is represented by pelagic cherts with an admixture of cherty-clayey shales and volcanic rocks. The Kholvasi Sequence (500 m thick) is built up of the predominant siltstones and clayey shales with rare intercalations and lenses of clayey cherts and cherty-clayey shales. The upper Komsomolskaya Group (K1) has a terrigenous composition and includes the Gorin, Pionerskaya, and Pivan formations of 5 km total thickness. It is made up of intercalated sandstones, siltstones, mudstones, and often turbidites (proximal to distal). The rocks contain abundant buchia fauna of Volgian-Valanginian age, as well as carbonized plant detritus and flora of the Early Cretaceous habit. The described complex is characterized by a nappe-fold structure typical of the accretionary prisms in the ocean-continent convergence zones. The predominance of the coherent type of accretionary prisms reflects the simple morphology of the oceanic plate.  相似文献   

6.
The Archean to Paleoproterozoic Central Zone of the North China Craton is situated between the Eastern and Western Archean continental blocks and contains two contrasting series of Neoarchean granitoids: the 2523–2486 Ma tonalite−trondhjemite–granodiorite (TTG) gneisses in the Fuping Complex, and the 2555–2525 Ma calc-alkaline granitoids (tonalite, granodiorite, granite and monzogranite) in the Wutai Complex. The Fuping TTG gneisses most likely formed from partial melting of 2.7 Ga basalts at >50 km, with an involvement of 3.0 Ga crustal material. The Wutai granitoids have higher K2O, LILE and Rb/Sr, but lower Sr/Y and LaN/YbN than the Fuping TTG gneisses, are characterized by Nd TDM from 2.5 to 2.8 Ga and Nd(t) from 0.49 to 3.34, and are derived from partial melting of a juvenile source at <37 km.The geochemistry of these two contrasting series of Neoarchean granitoids provides further evidence that the Wutai Complex originated and evolved separately from the Fuping Complex. The Wutai Complex most likely formed as an oceanic island arc with volcanism and synvolcanic granitoid intrusions at 2555–2525 Ma. The Wutai Complex was subsequently accreted onto the Eastern Archean Continental Block, and was probably responsible for crustal thickening and TTG magmatism at 2523–2486 Ma in the Fuping Complex (as part of the Taihangshan–Hengshan block), at the western margin of the Eastern Archean Continental Block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号