首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na-rich microlite-glass is first discovered in deep-source xenoliths in alkali-rich porphyry, Liuhe village, Heqing County, Yunnan Province. It is shown that the ultramafic xenoliths originated from partial melting of primary mantle and the glass resulted from metasomatism between the xenoliths and mantle fluid derived from mantle degassing. Mantle metasomatism not only resulted in the enrichment of alkaline, large-ion elements, ore metals and volatiles but also created a favorable condition for the generation of alkaline magmas. The mantle xenoliths and their characteristics of mantle metasomatism provide important evidence for a better understanding of the petrogenesis and mineralization of the Cenozoic alkali-rich porphyry in western Yunnan.  相似文献   

2.
Two unusual diamonds were studied from kimberlites from China, which contain both ultramafic and eclogitic mineral inclusions in the same diamond hosts. Diamond L32 contains seven Fe-rich garnets, four omphacites and one olivine inclusion. Four olivine, one sanidine and one coesite were recovered from diamond S32. Both garnet and omphacite inclusions have similar compositions as those from other localities of the world, and show basaltic bulk composition. All the garnet and omphacite inclusions in diamond L32 have positive Eu anomalies (Eu/Eu*1.64 1.79). These observations support the proposal that mantle eclogite is the metamorphic product of subducted ancient oceanic crust. The Mg/(Mg + Fe) ratio of the olivine inclusions from the two diamonds (91-92) are evidently lower than the normal olivine inclusions in diamonds from the same kimberlite pipe (92-95). The following model is proposed for the formation of diamonds with “mixed” mineral inclusions. Ascending diamond-bearing eclogite (recycled oceanic crust) entrained in mantle plumes may experience extensive partial melting, whereas the ambient peridotite matrix remains subsolidus in the diamond stable field. This provides a mechanism for the transport of diamond from its original eclogitic host to an ultramafic one. Subsequent re-growth of diamond in the new environment makes it possible to capture mineral inclusions of different lithological suites. Partial melts of basaltic sources may interact with the surrounding peridotite, resulting in the relatively lower Mg/(Mg + Fe) ratios of the coexisting olivine inclusions from the studied diamonds. Diamonds with “mixed” mineral inclusions demonstrate that plume activity also occurred in the Archean cratons.  相似文献   

3.
An historical introduction to the geotherm and its significance for the existence of a diamond window at the base of the peridotite lithosphere is followed by a brief survey of types of mantle zenoliths (low T, high T and metasomatized peridotites, megacrysts or discrete nodules, eclogites and less common varieties). The similarities of eclogite xenoliths to the subducted eclogites with graphitized diamonds in the peridotite massif of Beni Bousera, northern Morocco, are reviewed. Diamond-bearing peridotite (Archaean harzburgite and lherzolite) and eclogite xenoliths are rare, having suffered excessive disaggregation. They do not necessarily relate proportionately to the types of diamonds in the host kimberlite/lamproite.Batches of single mineral species from disaggregated diamondiferous xenoliths, particularly garnets, form a realistic approach to diamond exploration. Nickel thermometry applied to Cr pyropes, developed by Griffin et al. (1989) Contr. Miner. Petrol. 103, 199–203, and barometry dependent upon Cr content in notional coexisting spinels, provide a realistic appreciation of the extent of the diamond window. Sodium and K pressure “indicators” in eclogitic garnets and clinopyroxenes are reviewed, but estimates are affected by mantle processes (metasomatism) and amounts of coexisting P and Ti.Metasomatic processes in the basal lithosphere are sourced in the underlying asthenospheric (megacryst) magmas. Depending on the degree and type of interaction they can result in the destruction of ancient diamonds or the growth of new peridotitic diamonds. Partial destruction or replacement of mineral indicators may also result and Cr garnets acquire distinctive quantifiable trace element signatures. High T minerals encapsulated in diamond are either relict from former ambient high T conditions or the result of localized thermal highs emanating from asthenospheric magmas (or plume/diapir).It is concluded that the fullest significance of the geochemistry (sensuo lato) of the diamondiferous debris erupted by kimberlites and lamproites, can only be made by reference to complementary geophysical, structural and isotopic studies of the surrounding cratonic country rocks. Thus, tectonothermal events which punctuate the varied evolutionary histories of cratons—plume migration, rifting, subduction/overthrusting, delamination, cratonization, flood basalt generation, regional metamorphism and metasomatism, etc.—can be manifested in the deep lithosphere environment, and cannot be divorced from questions of diamond formation and survival.  相似文献   

4.
Luigi  Beccaluva  Massimo  Coltorti  Emilio  Saccani  Franca  Siena 《Island Arc》2005,14(4):551-563
Abstract Ophiolites of the Mirdita–Subpelagonian zone form a nearly continuous belt in the Albanide–Hellenide orogen, including mid‐ocean ridge basalt (MORB) associations in the western Mirdita sector and supra‐subduction zone (SSZ) complexes, with prevalent island arc tholeiitic (IAT) and minor boninitic affinities in the eastern part of the belt (i.e. eastern Mirdita, Pindos, Vourinos). In addition, basalts with geochemical features intermediate between MORB and IAT (MORB/IAT) are found in the central Mirdita and in the Aspropotamos sequence (Pindos). These basalts alternate with pure MORB and are cut by boninitic dykes. The distinctive compositional characteristics of the mafic magmas parental to the different ophiolitic suites can be accounted for by partial melting of mantle sources progressively depleted by melt extractions. Partial melting processes (10–20%) of lherzolitic sources generated pure MORB, leaving clinopyroxene‐poor lherzolite as a residuum. Approximately 10% water‐assisted partial melting of this latter source, in an SSZ setting, may in turn generate basalts with MORB/IAT intermediate characteristics, whereas IAT basalts and boninites may have been derived from 10–20% and 30% partial melting, respectively, of the same source variably enriched by subduction‐derived fluids. In addition, boninites may also have been derived by comparatively lower degrees of hydrated partial melting of more refractory harzburgitic sources. A generalized petrologic model based on mass balance calculations between bulk rock and mineral compositions, indicate that most of the intrusives (from ultramafic cumulates to gabbronorites and plagiogranites), as well as sheeted dykes and volcanics (from basalts to rhyodacites) forming the bulk crustal section of the SSZ ophiolites, may be accounted for by shallow fractional crystallization from low‐Ti picritic parental magmas very similar in composition to IAT picrites from Pacific intraoceanic arcs. The most appropriate tectono‐magmatic model for the generation of the SSZ Tethyan ophiolites implies low velocity plate‐convergence of the intraoceanic subduction and generation of a nascent arc with IAT affinity and progressive slab roll‐back, mantle diapirism and extension from the arc axis to the forearc region, with generation of MORB/IAT intermediate basalts and boninitic magmas.  相似文献   

5.
Kimberlites are volatile rich magmas that ascend from deep in the mantle at high velocities, then as they reach a ‘root zone’ at 1–3 km in depth they either discharge explosively through to the surface or stall to form dykes and sills. Understanding this eruptive behaviour is difficult due to a lack of data on volatile solubility, particularly at conditions where the magmas enter the ‘root zone’ (∼30–80 MPa). In this study, we perform experiments on some putative primary kimberlite magma compositions to assess the amount of CO2 and H2O retained if these compositions represent magma as it enters the root zone. At the conditions investigated (100–200 MPa and 1,275–1,100°C) the results suggest that none of these particular kimberlite compositions reproduce a magma that can retain the observed high volatile content when intruded at these pressures (∼4–8 km). In our experiments, the low volatile retention is due to a combination of factors including a high proportion of solid phases, none of which are volatile-bearing, and inadequate volatile solubilities in the subordinate amounts of melt present. Modelled solubilities also suggest that the dissolved volatile contents remain too low even at super-liquidus temperatures (i.e. 100% melt). For water, the higher values observed in natural rocks can be explained by the addition of H2O associated with ubiquitous post-emplacement serpentinization. The high CO2 contents in hypabyssal rocks are unlikely to be related to alteration. We suggest that most kimberlites originally had lower SiO2 contents and as such may have been ‘transitional’ between silicate and carbonate melts. This results in both higher CO2 solubilities and lower liquidus temperatures. For such compositions, it is possible that both CO2 and water solubility may first decrease and then increase as magmas decompress and crystallize. Such unusual behaviour can help explain why kimberlite magmas can be very explosive or form shallow hypabyssal intrusions.  相似文献   

6.
Surface dissolution features on diamonds and Fourier Transform Infra Red spectroscopy (FTIR) of phenocrystal and xenocrystal olivines from kimberlites contain a record of magmatic fluid in kimberlite magmas. We investigated composition and behavior of kimberlitic fluid and the effect of volatiles on the eruption style and geology of kimberlites using microdiamonds and olivine concentrates from six kimberlite pipes with different lithologies and the character of diamond resorption (Ekati Diamond Mine, Northwest Territories, Canada). The study showed a clear correlation between the resorption style of diamond population of the kimberlites and the type of infrared (IR) spectra of their olivines. Four kimberlites have high quality diamonds with smooth regular surface features and high H2O content of the olivines indicating the presence of H2O-rich fluid during the emplacement. Fast ascent rates of fluid-rich magma can explain explosive eruption and filling the pipes with volcaniclastic kimberlite facies. Conversely, Grizzly and Leslie kimberlites have diamonds with complex sharp features diminishing diamond quality and indicating loss of the fluid. The slower ascent rates and less explosive eruption of the fluid-free magmas produced kimberlite pipes filled with magmatic facies kimberlite. Distinctive peaks in olivine IR spectra at 3356 and 3327 cm? 1 were found to correlate with the presence of hydrous magmatic fluid. Character of diamond morphology suggests that during the whole ascent of all six kimberlites, the magmatic fluid when present had a high H2O:CO2 ratio.  相似文献   

7.
Geochemical data are presented for a suite of ultramafic and related rocks from the Dras ophiolitic melange of the Indus suture zone in the western Himalaya. Harzburgites from the suite have highly refractory chemistry. Lherzolites from the suite represent modified mantle material and are comparable to potential source rocks for MORB and to the lherzolites of the Bay of Islands ophiolites. Cumulus dunite, pyroxenite and gabbro units contain olivine, chromite, clinopyroxene and plagioclase as the major cumulus phases. Orthopyroxene is absent as a cumulus phase and in this respect the Dras ophiolite differs from the Marum, Betts Cove and Troodos ophiolites. However, the Dras cumulates are similar to the Vourinos and Bay of Islands cumulate sequence and are consistent with accumulation of low-pressure liquidus phases of mid-oceanic ridge-type magmas. Magmas parental to the Dras cumulate rocks contained high 100 Mg/(Mg + Fe2+) ratios of 77–79, high Ni, Cr and possibly Ca, low Ti and depleted LREE. Parent magmas were probably similar to those of normal MORB formed by two-stage (or dynamic) melting processes in the mantle. Peridotite fabrics suggest high-temperature plastic (mantle) deformation. Disruption, serpentinisation and melange formation were probably produced during emplacement in the Indus suture zone.  相似文献   

8.
云南数字地震台站下方的S波速度结构研究   总被引:36,自引:13,他引:36       下载免费PDF全文
通过对云南数字地震台站的宽频带远震接收函数反演,获得了云南地区数字地震台站下方0-0km深度范围的S波速度结构.结果表明,云南地区地壳厚度变化剧烈,中甸、丽江等西北部地区,地壳厚度达62km左右,景洪、思茅和沧源等南部地区,地壳厚度仅为32-34km.厚地壳从西北部向东南方向伸展,厚度和范围逐渐减小,至通海一带地壳厚度减为42km,其形态和范围与小江断裂和元江断裂围成的川滇菱形块体相一致.地壳厚度较小的东、南部地区Moho面速度界面明显;在地壳厚度较大或变化剧烈的地区,Moho面大多表现为S波速度的高梯度带.云南地区S波速度结构具有很强的横向不均匀性.km深度以上,北部地区S波速度明显低于南部地区,在-20km深度范围内,北部地区的S波速度比南部地区高.地壳内部S波速度界面的连续性较差,低速层的深度和范围不一,近一半的台站下方不存在明显的低速层.受南部地区上地幔的影响,40-50km深度范围内,S波速度南部高、北部低,高速区随深度增加逐渐向北推移,低速异常区形态与川滇菱形块体的形态趋向一致.70-80km深度的上地幔速度分布与云南地区大震分布具有一定的相关性.  相似文献   

9.
Kimberlite in certain dykes and in the deepest parts of some diatremes show textural and other features which contrast with those in the breccia diatremes. Some hypabyssal kimberlite intrusions show relatively high-temperature contact phenomena including baking of country-rock sediments and sedimentary xenoliths, and contrasting with the brecciated texture of most diatreme-facies kimberlites, in the hypabyssal kimberlites are numerous examples of preferred orientation of inequidimensional minerals (? trachytic flow texture), and rapid mineralogical gradients from the contact towards the dyke centres that may be attributable to flowage differentiation. In the Benfontein sill (Kimberley area) there is well-developed horizontal banding due to gravitational settling, and pseudo-sedimentary structures are also present. The accumulated evidence indicates that kimberlite existed as a relatively hot fluid up to depths of 2–3 km below the land-surface at the time of intrusion; above this level, gas release caused diatreme formation, brecciation and adiabatic cooling. These views are contrary to those of geologists who postulate eruption of kimberlite as a cold breccia directly from the mantle or deep within the crust, but accords with the views of many Russian geologsts who accept the existence of kimberlite magma, the extrusive equivalent of which is the ultrabasic lava meimechite.  相似文献   

10.
Three carbonate ocelli-bearing lamprophyre dykes have been found in the Laowangzhai and Beiya gold orefields in the northern sector of the Ailaoshan gold deposit zone, Yunnan Province. Ocelli in the lamprophyre dykes are carbonates composed mainly of dolomite and calcite. Their trace elements, REE and C isotopic compositions are characteristic of carbonatite and the main mineral assemblages, major elements, trace elements and REE in the matrix are similar to those in the carbonate ocelli-barren lamprophyre dykes in the orefields, which are calc-alkaline lamprophyres that derived from the fertile mantle. The results indicate that the carbonate ocelli-bearing lamprophyre dykes in this area were produced at the time when the Himalayan lamprophyre magma evolved to a relatively late stage of silicate-carbonate liquid immiscibility. In the process of magmatic evolution there took place magmatic degassing with CO2 and H2O as the dominant released gases.  相似文献   

11.
Mafic and ultramafic xenoliths are well represented within a large basaltic lava field of Stromboli. These basalts, known as San Bartolo lavas, show a high-K calc-alkaline (HKCA) affinity and were erupted <5 ka BP. Xenoliths consist of olivin-gabbro, gabbronorite, anorthosite, dunite, wehrlite and clinopyroxenite. Thermobarometric estimates for the crystallization of gabbroic materials show minima equilibration pressures of 0.17–0.24 GPa, at temperatures ranging from 940 to 1,030°C. These materials interacted with hydrous ascending HKCA basaltic magmas (with temperatures of 1,050–1,100°C) at pressures of about 0.2–0.4 GPa. These pressure regimes are nearly identical to those found for the crystallization of phenocrystic phases within HKCA basaltic lavas. Gabbroic inclusions are regarded as cumulates and represent crystallized portions of earlier HKCA Strombolian basalts.Dunite and wehrlite show porphyroclastic-heterogranular textures, whereas the clinopyroxenite exhibit a mosaic-equigranular texture typical of mantle peridotites. These ultramafic materials are in equilibrium with more primitive basaltic magmas (under moderately hydrous and anhydrous conditions) at pressures of 0.8–1.2 GPa, which is below the crust-mantle transition, located at about 20 km depth under Stromboli.Major and trace element distributions indicate comagmatism between the host basaltic lava and the mafic and ultramafic inclusions. REE patterns for mafic nodules are relatively regular and overlap the field of basaltic lavas (HKCA). They show moderate to high LREE enrichments and moderate enrichments in HREE relative to chonrites. Spider diagrams also show significant similarities between the lavas and the mafic-ultramafic xenoliths as well.During their ascent, primitive Strombolian magmas may be stored in upper-mantle regions where they interact with peridotitic materials and partly differentiate (to give dunite and wehrlite) before migrating to upper crustal levels. In this region, hydrous basaltic magmas (with estimated water contents of 2–3.5 wt%) are stored in the subvolcanic environment, and are allowed to crystallize the gabbroic materials before reaching the surface under nearly anhydrous conditions.An erratum to this article can be found at  相似文献   

12.
Detailed field mapping in the Güvem area in the Galatia province of NW Central Anatolia, Turkey, combined with K–Ar dating, has established the existence of two discrete Miocene volcanic phases, separated by a major unconformity. The magmas were erupted in a post-collisional tectonic setting and it is possible that the younger phase could be geodynamically linked to the onset of transtensional tectonics along the North Anatolian Fault zone. The Early Miocene phase (18–20 Ma; Burdigalian) is the most voluminous, comprising of over 1500 m of potassium-rich intermediate-acid magmas. In contrast, the Late Miocene volcanic phase (ca. 10 Ma; Tortonian) comprises a single 70-m-thick flow unit of alkali basalt. The major and trace element and Sr–Nd isotope compositions of the volcanics suggest that the Late Miocene basalts and the parental mafic magmas to the Early Miocene series were derived from different mantle sources. Despite showing some similarities to high-K calc-alkaline magma series from active continental margins, the Early Miocene volcanics are clearly alkaline with higher abundances of high field strength elements (Zr, Nb, Ti, Y). Crustal contamination appears to have enhanced the effects of crystal fractionation in the petrogensis of this series and some of the most silica-rich magmas may be crustal melts. The mantle source of the most primitive mafic magmas is considered to have been an asthenospheric mantle wedge modified by crustally-derived fluids rising from a Late Cretaceous–Early Tertiary Tethyan subduction zone dipping northwards beneath the Galatia province. The Late Miocene basalts, whilst still alkaline, have a Sr–Nd isotope composition indicating partial melting of a more depleted mantle source component, which most likely represents the average composition of the asthenosphere beneath the region.  相似文献   

13.
The Neoproterozoic (815.4 ± 4.3 Ma) Aries kimberlite intrudes the King Leopold Sandstone and the Carson Volcanics in the central Kimberley Basin, northern Western Australia. Aries is comprised of a N–NNE-trending series of three diatremes and associated hypabyssal kimberlite dykes and plugs. The diatremes are volumetrically dominated by massive, clast-supported, accidental lithic-rich kimberlite breccias that were intruded by hypabyssal macrocrystic phlogopite kimberlite dykes and plugs with variably uniform- to globular segregationary-textured groundmasses. Lower-diatreme facies, accidental lithic-rich breccias probably formed through fall-back of debris into the vent with a major contribution from the collapse of the vent walls. These massive breccias are overlain by a sequence of bedded volcaniclastic breccias in the upper part of the north lobe diatreme. Abundant, poorly vesicular to nonvesicular, juvenile kimberlite ash and lapilli, with morphologies that are indicative of phreatomagmatic fragmentation processes, occur in a reversely graded volcaniclastic kimberlite breccia unit at the base of this sequence. This unit and overlying bedded accidental lithic-rich breccias are interpreted to be sediment gravity-flow deposits (including possible debris flows) derived from the collapse of the crater walls and/or tephra ring deposits that surrounded the crater. Diatreme-forming eruptions may have been initiated by magma–water interactions along fracture and joint-controlled aquifers within the King Leopold Sandstone. The current level of exposure of the diatremes probably extends from the lower-diatreme facies up into the base of a bedded upper-diatreme sequence.  相似文献   

14.
An experimental determination of the reaction MgCO3 + MgSiO3 = Mg2SiO4 + CO2 between 20 and 40 kbars and in the range 1000–1500°C yields an average pressure effect on the equilibrium of 44 bars/°C. This result shows that the assemblage forsterite and carbon dioxide is not stable under most pressure and temperature conditions expected in the upper mantle. Hypotheses requiring the presence of free CO2 in the low-velocity zone, CO2 as a drive mechanism for kimberlite emplacement, or action of a free CO2 phase in ultramafic rocks may need considerable revision.  相似文献   

15.
大陆下地壳层流作用及其大陆动力学意义   总被引:15,自引:0,他引:15       下载免费PDF全文
大量的地质和地球物理资料表明 ,年轻的大陆构造活动区的下地壳可能因热软化而出现透入性非地震式顺层韧性流动 ,这种下地壳层流作用驱动大陆上地壳发生地震式脆性断块运动 ,形成盆山格局 ,发生圈层耦合。大陆下地壳低粘度物质顺层流动可能是在地幔岩浆底侵作用为下地壳提供热能和添加幔源物质的基础上 ,并在地幔上升派生的重力和剪切力作用下 ,造成大陆下地壳热软化物质从盆地下部的幔隆区顺层流向相邻造山带之下的幔拗区。在下地壳层流过程中 ,地温场和速度场发生变  相似文献   

16.
Geology and volcanology of the Edd-Bahar Assoli area (Ethiopia)   总被引:1,自引:0,他引:1  
The paper presents geological and petrological data on one of the alkaline ranges developed along the borders of the Afar depression (Ethiopia). These alkaline ranges occur in a position transversal to the dominant NNW trend of the spreading zones of northern and central Afar which are characterized by magmas of tholeiitic affinity. The Edd-Bahar Assoli volcanic range consists of broad fields of basic lavas and numerous spatter cones outcropping in the area extending between 13°25′ and 13°75′ lat. N and 41°38′ and 42°15′ long. E. The mineralogical assemblage and the chemical data point to an alkaline nature for this range consisting mainly of alkali olivine basalts and basalts tending to hawaiites, the most evolved terms being largely subordinate. Petrologic differences between the Assab, Edd-Bahar Assoli and Erta Ale ranges are shown. The Edd-Bahar Assoli alkaline volcanism would be related to tectonic patterns trending both from NNW-SSE to N-S and from NE-SW to E-W. The supposed similarity with the transverse structure of the equatorial Atlantic ocean would thus not completely be ascertained in this zone. In Afar, the coexistence of an axial volcanism of tholeiitic affinity with an alkaline volcanism at the margin can better be explained by models based upon the upper mantle temperature distribution in a zone under oceanization.  相似文献   

17.
Abstract   In southern New Caledonia, Late Oligocene granodiorite and adamellite are intruded into an ultramafic allochthon emplaced in the Late Eocene period. Previous studies of these granitoids proposed an origin associated with the melting of the underlying continental crust, but our new data show that these high-K to medium-K calc-alkaline granitoids display the geochemical and isotopic features of volcanic arc magmas uncontaminated by crust-derived melts. These magmas were probably generated in a post-Eocene and pre-Miocene subduction, the geophysical traces of which have been detected along the western coast of New Caledonia. Sr, Nd and Pb isotopic ratios indicate derivation from an almost isotopically homogeneous mantle wedge, but in contrast, some variation in trace element ratios uncorrelated to differentiation is indicative of source heterogeneity. Prominent heavy rare earth element (HREE) depletion of some of the younger granitoids may be the result of an equilibrium achieved with garnet-bearing subcrustal material (granulite) found as xenoliths, while a relative Nb, Ta and Hf enrichment, irrespective of crystal fractionation, may be related to either a modest contamination by previously underplated mafic material, heterogeneous hydration of the mantle wedge, or mixing with uplifted Nb-rich mantle. Post-obduction slab break-off can be proposed to have played a role in sublithospheric mantle mixing and the subsequent heterogeneity. The Late Oligocene subduction described here may be tentatively extended southward into northern New Zealand allochthons.  相似文献   

18.
Clinopyroxenes separated from garnetiferous ultramafic rocks in the core zone of the Norwegian Caledonides have rubidium concentrations of 0.008 to 0.064 ppm, strontium concentrations of 23.5 to 421 ppm, and 87Sr/86Sr ratios of 0.7011 to 0.7029. The very low Rb/Sr ratios of the clinopyroxenes (less than 0.0004) suggest that their 87Sr/86Sr values have not varied significantly over geologic time and may approximate the initial 87Sr/86Sr of the eclogite-facies ultramafic mineral assemblages at their time of formation. The ultramafic rocks occur in a basement complex that yields Rb-Sr whole-rock and U-Pb zircon ages of about 1800 m.y. Garnetiferous ultramafic rocks are apparently lacking in younger (Sveconorwegian or Caledonian) sialic sequences, raising the possibility that the eclogite-facies metamorphism may have occurred at least 1800 m.y. ago. The Rb/Sr and 87Sr/86Sr ratios of the clinopyroxenes are as predicted for the ancient upper mantle under most evolutionary models. However, the data do not preclude the possibility that the eclogite-facies metamorphism occurred in the crust. The garnetiferous ultramafic rocks are generally enclosed by large volumes of dunite which could have shielded the eclogite-facies assemblages from contamination by fluids from the country rock during metamorphism.  相似文献   

19.
湖南宁乡钾镁煌斑岩是寻找湖南原生金刚石矿床的重要线索之一。本文通过对宁乡V号煌斑岩岩管岩石地球化学的分析及其与其它地区钾镁煌斑岩的对比,确定宁乡V号岩管煌斑岩与前人所研究的宁乡钾镁煌斑岩特征基本一致。但与西澳典型含金刚石的钾镁煌斑岩相比,其SiO2、Al2O3、MnO的含量较高,MgO、TiO2、K2O含量较低,这可能与钾镁煌斑岩的岩浆来源及演化过程有关,显示其地幔源区来源相对于西澳钾镁煌斑岩的源区较为富集。  相似文献   

20.
本文使用川西密集地震台阵记录的面波资料,利用程函方程面波成像方法获得了周期为14—60 s的瑞雷波相速度及方位各向异性分布。结果显示:川滇菱形地块的川西北地块内部的低速异常明显,其下地壳各向异性快波方向以NS向为主,松潘—甘孜地块内部的低速异常稍弱,下地壳各向异性快波方向以NW?SESE向为主,表明川西北地块可能存在下地壳通道流,松潘—甘孜地块内部存在的通道流相对较弱;龙门山断裂带和丽江—小金河断裂两侧的速度结构和方位各向异性均有明显差异,可推测青藏高原内部的地壳流在东部和南部分别受高速、高强度的四川盆地和滇中地块阻挡,沿高原边界带发生了侧向流动;周期大于25 s的面波方位各向异性方向为NW?SE;与SKS分裂优势方向相近,说明四川盆地的剪切波各向异性可能主要源于上地幔;而龙门山断裂带附近壳幔各向异性较为复杂,面波方位各向异性与SKS分裂的NW?SE向弱各向异性存在差异,表明该处的剪切波各向异性可能来自地幔更深处,有待进一步研究。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号