首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
A two‐dimensional shallow water hydro‐sediment‐morphodynamic model is applied to investigate alternate bar formation, development and sediment sorting in straight channels. The model is coupled, explicitly incorporating the flow–sediment–bed interactions by using the full mass and momentum conservation equations, which are numerically solved by a well‐balanced version of the finite volume Slope Limiter Centred (SLIC) scheme. The model is first tested against a flume experiment on alternate bars formed over a uniform sediment bed, which clearly exhibits processes of bar formation, migrating and finally approaching an equilibrium state. Then it is applied to another flume experiment on alternate bars due to non‐uniform sediment transport. The computational results are evaluated, with a focus on the longitudinal and vertical sediment sorting. It is argued for the first time that the inconsistent sediment sorting patterns observed in previous studies are determined by different sediment transport conditions, i.e. full versus partial transport. When a condition of full transport is achieved, under which all size fractions are fully mobilized and transported, the longitudinal surface sediment shows a sorting pattern of coarse‐on‐head and fine‐in‐pool, and the vertical substrate sediment exhibits an immobile‐fine‐coarse structure upwards. In contrast, for a partial transport condition, under which only finer fraction participates in the transport process, an opposite longitudinal pattern (i.e. fine‐on‐head and coarse‐in‐pool) and a different vertical structure (i.e. immobile‐coarse‐fine) are observed. Concurrently, numerical experiments with specified conditions show that the critical aspect ratio for the formation of migrating alternate bars is approximately equal to 12. With the increase of the aspect ratio, the bar length grows gradually, while the bar height increases rapidly for moderate values of the aspect ratio and then keeps nearly stable. The bar celerity, however, is weakly sensitive to the variation of this ratio. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The alluvial cover in channels with non-alluvial beds is a major morphologic feature in these rivers and has important geomorphic and ecologic functions. Although controls on the extent of the alluvial cover have been previously researched, little is known about the role of channel meanders in shaping the three-dimensional morphology and bedload transport rates in these rivers. Flume experiments were conducted in a fixed-bed sinuous channel scaled from an engineered urban river. A fully graded sediment supply mixture was fed into the bare channel at rates ranging between 0.3 and 1.2 times the estimated channel capacity under constant discharge. The three-dimensional morphology and surface texture of the alluvial cover were captured using photogrammetry, and the sediment output was periodically measured and sieved. A stable alluvial cover was achieved under all sediment supply conditions that coincided with a sediment transport equilibrium. The sediment supply rate controlled the final areal extent, mass and volume of the alluvial cover, while cover developed as a periodic series of stable bars ‘fixed’ by the channel planform. The alluvial cover development followed consistent trajectories relative to angular position around bends but developed to a greater degree and higher elevation with increasing sediment supply. The stable cover extent had a logarithmic relationship with the relative sediment supply, while the final mass, volume and bar height had linear relationships. The final channel morphology was characterized by fine-textured point bars with flat tops and steep margins connected by coarse riffle features. The outside of banks between bend apexes remained bare, even at sediment supply conditions exceeding the channel capacity. The length of the exposed outer banks followed predictable linear relationships with the total cover extent. Insights from this study can provide guidance for the management of channels with non-alluvial boundaries and provide validation for models of sinuous bedrock channel abrasion. © 2020 John Wiley & Sons, Ltd.  相似文献   

4.
Since the early 1990s, US Forest Service researchers have made thousands of bedload measurements in steep, coarse‐grained channels in Colorado and Wyoming, USA. In this paper we use data from 19 of those sites to characterize patterns and rates of coarse sediment transport for a range of channel types and sizes, including step–pool, plane‐bed, pool–riffle, and near‐braided channels. This effort builds upon previous work where we applied a piecewise regression model to (1) relate flow to rates of bedload transport and (2) define phases of transport in coarse‐grained channels. Earlier, the model was tested using bedload data from eight sites on the Fraser Experimental Forest near Fraser, Colorado. The analysis showed good application to those data and to data from four supplementary channels to which the procedure was applied. The earlier results were, however, derived from data collected at sites that, for the most part, have quite similar geology and runoff regimes. In this paper we evaluate further the application of piecewise regression to data from channels with a wider range of geomorphic conditions. The results corroborate with those from the earlier work in that there is a relatively narrow range of discharges at which a substantial change in the nature of bedload transport occurs. The transition from primarily low rates of sand transport (phase I) to higher rates of sand and coarse gravel transport (phase II) occurs, on average, at about 80 per cent of the bankfull (1·5‐year return interval) discharge. A comparison of grain sizes moved during the two phases showed that coarse gravel is rarely trapped in the samplers during phase I transport. Moreover, the movement and capture of the D16 to D25 grain size of the bed surface seems to correspond with the onset of phase II transport, particularly in systems with largely static channel surfaces. However, while there were many similarities in observed patterns of bedload transport at the 19 studied sites, each had its own ‘bedload signal’ in that the rate and size of materials transported largely reflected the nature of flow and sediment particular to that system. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

5.
Gravel-bed rivers characteristically exhibit shallow riffles in wide sections and deeper pools where the channel becomes constricted and narrow. While rivers can adjust to changing flow and sediment supply through some combination of adjustments of channel slope, bed-surface sorting, and channel shape, the degree to which riffle-pools may adopt these changes in response to changing flows and sediment supplies remains unclear. This article presents results from a flume experiment investigating how constant- and variable-width channels adjust their morphology in response to changing flow and increased sediment supply. Two flume geometries were used: (1) constant-width and (2) variable-width, characterized by a sinusoidal pattern with a mean width equal to that of the first channel. The variable-width channel developed bed undulations in phase with the width, representing riffle-pools. The experiment consisted of three phases for each flume geometry: (1) steady flow, constant sediment supply; (2) unsteady flow, constant sediment supply; and (3) unsteady flow, doubled sediment supply. Unsteady flow was implemented in the form of repeated symmetrical stepped hydrographs, with a mean discharge equal to that in the steady flow phase. In all phases the bed and sediment supply were composed of a sand/gravel mixture ranging from 1 to 8 mm. In both the straight and variable-width channels, transitioning from steady flow to repeated hydrographs did not result in significant changes in bed morphology. The two channel geometries had different responses to increased sediment supply: the slope of the straight channel increased nearly 40%, while the variable-width channel reduced the relief between bars and pools and decreased the variability in cross-sectional elevation with a slight slope increase. Bar-pool relief varied with repeat discharge hydrographs. Pool elevation changed twice the distance of bar elevations, emphasizing the relevance of pool scour for riffle-pool self-maintenance in channels with width variations.  相似文献   

6.
Bedload pulses in gravel-bed rivers have been widely reported in recent years and attempts have been made to relate them to channel morphology. Bedload transport and channel morphology were measured in a small-scale generic model of braided gravel-bed streams. Two experiments are described in which braided channels developed in a 14 m × 3 m sand tray. Total bedload output from the tray was weighed every 15 minutes. Stream bed geometry was surveyed every four hours. Pulses were observed in the bedload output time series, and were qualitatively related to the channel morphology immediately upstream of the measuring section. The Bagnold (1980) bedload equation generally overpredicts measured bedload transport rates when applied to channels that were in equilibrium or aggrading. Underprediction occurred when applied to degrading channels. Aggradation was associated with channel multiplication and bar deposition. Channel pattern simplification occurred when degradation took place, and bars emerged from the water flow. Development of phases of aggradation and degradation is dependent upon the three-dimensional geometry of the stream beds. Spatial and temporal feedback loops can be identified, enabling links between channel morphology and bedload transport rate to be directly identified.  相似文献   

7.
The relation between morphological change and patterns of variation in bedload transport rate in braided streams was observed by repeated, daily topographic surveys over a 25 day study period in a 60 m reach of the proglacial Sunwapta River, Alberta, Canada. There are two major periods of morphological change, each lasting several days and each involving the complete destruction and reconstruction of bar complexes. Bar complex destruction was caused by redirection of the flow and by downstream extension of the confluence scour zone upstream. Reconstruction involved accretion of unit bars on bar head, flank and tail and in one case was initiated by disection of a large, lobate unit bar. High rates of sediment movement, measured from net scour and fill of the cross-sections, coincided with these morphological changes. Sediment was supplied from both bed and bank erosion, and patterns and distances of transfer were highly variable. Rates of transport estimated by matching upstream erosional volumes with downstream deposition were much greater than those estimated from either a step-length approach or a sediment budget. Measurements of scour and fill and observations of morphological change indicate that step lengths (virtual transport distances) were typically 40–100m during a diurnal discharge cycle. Shorter step lengths occurred when transfer was confined to a single anabranch and longer steps involved channel changes at the scale of the entire reach. Sediment budgeting was used to describe the spatial patterns of sediment transport associated with the morphological changes and to estimate minimum daily reach-averaged transport rates. Mean bedload transport rates correlate with discharge, but with considerable scatter. The largest deviations from the mean relation can be tied to phases of channel incision, bank erosion, scour hole migration, bar deposition and channel filling apparently controlled by changes and fluctuations in sediment supply from upstream, independent of discharge. These are interpreted as field evidence of ‘autopulses’ or ‘macropulses’ in bedload transport, previously observed only in laboratory models of braided streams.  相似文献   

8.
A 1:50 scale hydraulic model was designed, based on Froude number similarity and using hydrological and sediment data from a small braided gravel-bed river (the North Branch of the Ashburton River, Canterbury, New Zealand). Eighteen experiments were conducted; seven using steady flows, and eleven using unsteady flows. The experiments were carried out in a 20 m × 3 m tilting flume equipped with a continuous sediment feed and an automated data acquisition and control system. In all experiments water at 30°C was used to reduce viscosity-related scale effects. Analyses of the experimental data revealed that bedload transport rates in braided channels are highly variable, with relative variability being inversely related to mean bedload transport rate. Variability was also found to be cyclic with short-term variations being caused by the migration of bedforms. Bedload transport was found to be more efficient under steady flow than under unsteady flow, and it was postulated that this is caused by a tendency for channel form to evolve towards a condition which maximizes bedload transport for the occurring flow. Average bedload transport rate was found to vary with channel form, although insufficient measurements were made to define a relationship.  相似文献   

9.
We exploit a natural experiment in Boulder Creek, a ~ 30 km2 drainage in the Santa Cruz mountains, CA, USA to explore how an abrupt increase in the caliber of bedload sediment along a bedrock channel influences channel morphology in an actively uplifting landscape. Boulder Creek's bedrock channel, which is entirely developed on weak sedimentary rock, has a high flow shear stress that is about 3.5 times greater where it transports coarse (~ 22 cm D50) diorite in the lower reaches in comparison with the upstream section of the creek that transports only relatively finer bedload (~2 cm D50) derived from weak sedimentary rocks. In addition, Boulder Creek's channel abruptly widens and shallows downstream and transitions from partial to nearly continuous alluvial cover where it begins transporting coarse diorite. Boulder Creek's tributary channels are also about three times steeper where they transport diorite bedload, and within the Santa Cruz mountains channels in sedimentary bedrock are systematically steeper when >50% of their catchment area is within crystalline basement rocks. Despite this clear control of coarse sediment size on channel slopes, the threshold of motion stress for bedload, alone, does not appear to control channel profile slopes here. Upper Boulder Creek, which is starved of coarse sediment, maintains high flow shear stresses well in excess of the threshold for motion. In contrast, lower Boulder Creek, with a greater coarse sediment supply, exerts high flow stresses much closer to the threshold for motion. We speculate that upper Boulder Creek has evolved to sustain partial alluvial cover and transfer greater energy to the bed via bedload impacts to compensate for its low coarse sediment supply. Thus bedload supply, bedrock erosion efficiency, and grain size all appear to influence channel slopes here. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
In the Erlenbach stream, a pre‐alpine steep channel in Switzerland, sediment transport has been monitored for more than 25 years. Near the confluence with the main valley river, stream flow is monitored and sediment is collected in a retention basin with a capacity of about 2000 m3. The basin is surveyed at regular intervals and after large flood events. In addition, sediment transport has been continuously monitored with piezoelectric bedload impact and geophone sensors since 1986. In 2008–2009, the measuring system in the Erlenbach stream was enhanced by installing an automatic system to obtain bedload samples. Movable metal baskets are mounted on a rail at the downstream wall of the large check dam above the retention basin, and they can be moved automatically into the flow to take bedload transport samples. The wire mesh of the baskets has a spacing of 10 mm to sample all sediment particles coarser than this size (which is about the limiting grain size detected by the geophones). The upgraded measuring system permits to obtain bedload samples over short sampling periods and to measure the grain size distribution of the transported material and its variation over time and with discharge. The analysis of calibration relationships for the geophone measuring system confirms findings from very similar measurements which were performed until 1999 with piezoelectric bedload impact sensors; there is a linear relationship between impulse counts and bedload mass passing over the sensors. Findings from flume experiments are used to discuss the most important factors which affect the calibration of the geophone signal. The bedload transport rates as measured by the moving baskets are among the highest measured in natural streams, with values of the order of several kilograms per meter per second. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
《国际泥沙研究》2023,38(5):769-779
It is important to understand the effects of ice cover on sediment transport in cold climates, where sub-freezing temperatures affect water bodies for a significant part of the year. The literature contains many studies on sediment transport in open channel flow, and several studies on sediment transport in completely ice-covered flow. There has been little or no research on sediment transport in partially ice-covered channels. In the current study, laboratory experiments were done in a rectangular flume to quantify the impact of border ice presence on the sediment transport rate. The effects of ice cover extent and changing flow strengths on sediment transport distribution also were investigated, and the results were compared to those for fully ice-covered and open channel flow. The ice coverage ratios considered were 0 (representing the open water condition), 0.25, 0.50, 0.67, and 1 (representing fully ice-covered flow). The partial ice cover was found to impact the sediment transport distribution within the channel. The effect of ice coverage extent on sediment transport distribution was more significant at lower flow strengths and became negligible at higher flow strengths. The conventional equations for sediment transport in open channel flow and fully ice-covered flow that relate the dimensionless bedload transport rate to the flow strength were found to be applicable to estimate the total cross-section-averaged bedload transport for partially ice-covered flow when modified appropriately. Empirical coefficients for these equations were determined using the experimental data.  相似文献   

12.
In mixed bedrock–alluvial rivers, the response of the system to a flood event can be affected by a number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes and upstream, flood sequencing and coarse sediment grain size distribution. However, the impact of along-stream changes in channel width on bedload transport dynamics remains largely unexplored. We combine field data, theory and numerical modelling to address this gap. First, we present observations from the Daan River gorge in western Taiwan, where the river flows through a 1 km long 20–50 m wide bedrock gorge bounded upstream and downstream by wide braidplains. We documented two flood events during which coarse sediment evacuation and redeposition appear to cause changes of up to several metres in channel bed elevation. Motivated by this case study, we examined the relationships between discharge, channel width and bedload transport capacity, and show that for a given slope narrow channels transport bedload more efficiently than wide ones at low discharges, whereas wider channels are more efficient at high discharges. We used the model sedFlow to explore this effect, running a random sequence of floods through a channel with a narrow gorge section bounded upstream and downstream by wider reaches. Channel response to imposed floods is complex, as high and low discharges drive different spatial patterns of erosion and deposition, and the channel may experience both of these regimes during the peak and recession periods of each flood. Our modelling suggests that width differences alone can drive substantial variations in sediment flux and bed response, without the need for variations in sediment supply or mobility. The fluctuations in sediment transport rates that result from width variations can lead to intermittent bed exposure, driving incision in different segments of the channel during different portions of the hydrograph. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

13.
Laboratory flume experiments were carried out to evaluate the effect of particle density on bedload transport of sand‐sized particles and the effect of a suspended load of clay particles (kaolinite) on bedload transport of sand‐sized particles in rill flow conditions. Three materials in the range 400–600 µm were selected to simulate bedload transport of primary particles and aggregates: sand (2650 kg/m3), crushed brick (2450 kg/m3) and anthracite (1300–1700 kg/m3). In the two first experiments, two different methods were applied to determine bedload transport capacity of coarse particles for various conditions of flow discharge (from 2 to 15 L/min) and slope (2.2, 3 and 4%). In the third experiment, clear water was replaced with kaolinite–water mixture and bedload transport capacity of crushed brick particles was determined for a 4% slope and different concentrations of kaolinite (0, 7, 41 and 84 g/L). The results showed that bedload transport increased significantly with the decrease in particle density but the effect of particle density on transport rates was much less important than flow discharge. Velocity measurements of clear flow, flow mixed with coarse particles and coarse particles confirmed the existence of a differentiation between suspended load and bedload. In these experimental conditions, suspended load of kaolinite did not affect bedload rates of crushed brick particles. Three transport capacity formulae were tested against observed bedload rates. A calibration of the Foster formula revealed that the shear stress exponent should be greater than 1.5. The Low and the Govers unit stream power (USP) equations were then evaluated. The Low equation was preferred for the prediction of bedload rates of primary particles but it was not recommended in the case of aggregates of low density because of the limited experimental conditions applied to derive this equation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Coarse bedload transport dynamics are investigated utilizing hydrodynamic and sediment transport data obtained in an extensively instrumented study reach located in Squaw Creek, Montana, USA. During 1991 and 1992, a number of discrete bedload transport events associated with the daily rise and fall in stream discharge were investigated. Data show that initiation of sediment transport was accompanied by a reduction in bed roughness and by changes in bulk hydraulic parameters. For larger discharges, coarser fractions of the bed material mobilized, and bedload transport rates and average hydraulic parameters stabilized. As discharge reduced, mobile coarse particles became less frequent and deposited fine particles were removed, resulting in an increase in bed roughness. These observations are attributed to the downstream translation of bar sediments during the passage of a hydrograph. Bedload pulses were aperiodic but spatially variable. Flow turbulence and velocity profile data obtained during low flows allowed comparison between average bed shear stress and apparent bed roughness estimates obtained using different approaches. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
Recent advances in fluvial seismology have provided solid observational and theoretical evidence that near-river seismic ground motion may be used to monitor and quantify coarse sediment transport. However, inversions of sediment transport rates from seismic observations have not been fully tested against independent measurements, and thus have unknown but potentially large uncertainties. In the present study, we provide the first robust test of existing theory by conducting dedicated sediment transport experiments in a flume laboratory under fully turbulent and rough flow conditions. We monitor grain-scale physics with the use of ‘smart rocks’ that consist of accelerometers embedded into manufactured rocks, and we quantitatively link bedload mechanics and seismic observations under various prescribed flow and sediment transport conditions. From our grain-scale observations, we find that bedload grain hop times are widely distributed, with impacts being on average much more frequent than predicted by existing saltation models. Impact velocities are observed to be a linear function of average downstream cobble velocities, and both velocities show a bed-slope dependency that is not represented in existing saltation models. Incorporating these effects in an improved bedload-induced seismic noise model allows sediment flux to be inverted from seismic noise within a factor of two uncertainty. This result holds over nearly two orders of magnitude of prescribed sediment fluxes with different sediment sizes and channel-bed slopes, and particle–particle collisions observed at the highest investigated rates are found to have negligible effect on the generated seismic power. These results support the applicability of the seismic-inversion framework to mountain rivers, although further experiments remain to be conducted at sediment transport near transport capacity. © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
Automatic and continuously recording samplers are deployed in a Hertfordshire gravel-bed stream to show that bedload transport is related to stream power. The pattern is similar to that already established for North American channels but, because the record is so detailed, it is possible to identify the cause of the considerable scatter that is normal in such relationships. A major factor is the occurrence of rhythmic pulses in bedload discharge that are not matched by similar fluctuations in hydraulic variables. It is suggested that these pulses reflect downstream differences in the concentration of mobile particles in a slow-moving traction carpet, and that they may be likened to kinematic waves. The record also reveals that the threshold of sediment transport—always presumed hithero to be associated with incipient motion—is related to the cessation of bedload transport in a river flood. Indeed, the mean value of stream power at the finish of bedload transport is only 20 percent of that prevailing at the moment of incipient sediment motion. Because of this, there is an inevitably poor correlation between actual bedload transport rates and those predicted by bedload equations which rely upon a single traction threshold. These new data show that the general inverse relationship between bedload discharge and water-depth : grain-size ratio proposed by Bagnold (1977, 1980) is not universal. Transport efficiency for this gravel-bed stream is typically 0.05 per cent of available stream power, which compares with 1.6 per cent for a river moving both gravel and sand, and 5 per cent for another channel where bedload is composed predominantly of sand-sized particles. It is argued that coarse and fine-grained alluvial channels may need to be considered separately. By allowing for differences in traction threshold at the beginning and end of bedload events, and by averaging bedload discharge flood by flood in order to smooth out the effect of pulses, it is possible to achieve a reasonably good prediction of average bedload transport rate in terms of stream power.  相似文献   

17.
1 INTRODUCTION Sedimentation in reservoirs is a significant problem. A variety of methods have been suggested to alleviate the effects of sedimentation, but none of the methods are inexpensive and entirely effective. Perhaps soil conservation is the best option, but soil conservation only leads to a reduction in sediment load. Dredging is expensive and produces a large amount of spoil. Sediment sluicing can be effective, but for large dams it takes a great deal of time to lower and re…  相似文献   

18.
Differences in the transport rate and size of bedload exist for varying levels of flow in coarse‐grained channels. For gravel‐bed rivers, at least two phases of bedload transport, with notably differing qualities, have been described in the literature. Phase I consists primarily of sand and small gravel moving at relatively low rates over a stable channel surface. Transport rates during Phase II are considerably greater than Phase I and more coarse grains are moved, including material from both the channel surface and subsurface. Transition from Phase I to Phase II indicates initiation and transport of grains comprising the coarse surface layer common in steep mountain channels. While the existence of different phases of transport is generally acknowledged, the threshold between them is often poorly defined. We present the results of the application of a piecewise regression analysis to data on bedload transport collected at 12 gravel‐bed channels in Colorado and Wyoming, USA. The piecewise regression recognizes the existence of different linear relationships over different ranges of discharge. The inflection, where the fitted functions intersect, is interpreted as the point of transition from Phase I to Phase II transport; this is termed breakpoint. A comparison of grain sizes moved during the two phases shows that coarse gravel is rarely trapped in the samplers during Phase I transport, indicating negligible movement of grains in this size range. Gravel larger than about D16 of the channel surface is more consistently trapped during Phase II transport. The persistence of coarse gravel in bedload samples provides good evidence that conditions suitable for coarse grain transport have been reached, even though the size of the sediment approaches the size limits of the sampler (76 mm in all cases). A relative breakpoint (Rbr) was defined by the ratio between the discharge at the breakpoint and the 1·5‐year flow (a surrogate for bankfull discharge) expressed as a percentage. The median value of Rbr was about 80 percent, suggesting that Phase II begins at about 80 percent of the bankfull discharge, though the observed values of Rbr ranged from about 60 to 100 percent. Variation in this value appears to be independent of drainage area, median grain size, sorting of bed materials, and channel gradient, at least for the range of parameters measured in 12 gravel‐bed channels. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

19.
It is widely recognized nowadays that there are at least two different phases of bedload sediment transport in gravel‐bed rivers. However, the transition between these phases is still poorly or subjectively defined, especially at bends in rivers, where cross‐stream sediment transport can strongly influence changes in the texture of the transported sediment. In this paper, we use piecewise models to identify objectively, at two points in the cross‐section of a river bend, the discharge at which the transition between bedload transport phases occurs. Piecewise models were applied to a new bedload data set collected during a wide range of discharges while analysing the associated changes in sediment texture. Results allowed the identification of two well‐differentiated phases of sediment transport (phase I and phase II), with a breakpoint located around bankfull discharge. Associated with each phase there was a change in bedload texture. In phase I there was non‐dominance in the transport of fine or coarse fractions at a particular sampling point; but in phase II bedload texture was strongly linked to the position of the sampling point across the channel. In this phase, fine particles tended to be transported to the inner bank, while coarse sizes were transferred throughout the middle parts of the channel. Moreover, bedload texture at the inner sampling point became bimodal while the transport of pebble‐sized particles was increasing in the central parts of the river channel. It is suggested that this general pattern may be related both to secondary currents, which transfer finer particles from the outer to the inner bank, and to the progressive dismantling of the riverbed surface layer. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
Single‐thread, gravel‐bed streams of moderate slope in the northern Negev are characterized by three channel units: bars exhibit steeper than average slopes and poorly sorted mixtures of small–medium cobbles and coarse–very coarse pebbles; flats are associated with more gentle slopes and well‐sorted medium–fine pebbles and granules; and transitional units have intermediate slopes and grain size. In general, all three units are planar, span the full channel width and have well‐defined boundaries. Bars and flats are more common than the transitional units and alternate downstream for distances of several hundred metres, forming sequences that are reminiscent of the riffle–pool structure commonly observed in humid‐temperate gravel‐bed rivers. A notable contrast is the absence of significant bed relief: bars lack crests and flats lack depressions. The relative lack of bed relief in bar–flat sequences is attributed to the high rate of sediment supply from the sparsely vegetated hillslopes which promotes the infilling of depressions and to the erosion of crests under conditions of intense transport. This reduction of bed relief lowers channel roughness, which in turn increases flow velocity and, therefore, the ability of the channel to transmit the large sediment loads it receives. Although our analyses pertain to a semi‐arid river system, the results have wider implications for understanding the adjustment of channel bedform to high sediment loads in other fluvial environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号