首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship of hillslope erosion rates and sediment yield is often poorly defined because of short periods of measurement and inherent spatial and temporal variability in erosion processes. In landscapes containing hillslopes crenulated by alternating topographic noses and hollows, estimates of local hillslope erosion rates averaged over long time periods can be obtained by analysing colluvial deposits in the hollows. Hollows act as local traps for a portion of the colluvium transported down hillslopes, and erosion rates can be calculated using the age and size of the deposits and the size of the contributing source area. Analysis of colluvial deposits in nine Oregon Coast Range hollows has yielded average colluvial transport rates into the hollows of about 35cm3cm?1yr?1 and average bedrock lowering rates of about 0.07 mm yr?1 for the last 4000 to 15000 yr. These rates are consistent with maximum bedrock exfoliation rates of about 0.09 mm yr?1 calculated from six of the hollows, supporting the interpretation that exfoliation rates limit erosion rates on these slopes. Sediment yield measurements from nine Coast Range streams provide similar basin-wide denudation rates of between 0.05 and 0.08mm yr?1, suggesting an approximate steady-state between sediment production on hillslopes and sediment yield. In addition, modern sediment yields are similar in basins varying in size from 1 to 1500 km2, suggesting that erosion rates are spatially uniform and providing additional evidence for an approximate equilibrium in the landscape.  相似文献   

2.
A sediment budget for an upland catchment–reservoir system at Burnhope Reservoir, North Pennines, UK has been developed. This provides a framework for quantifying historic and contemporary sediment yields and drainage basin response to disturbance from climate change and human activities in the recent past. Bathymetric survey, core sampling, 137Cs dating and aerial photographs have been used to assess sediment accumulation in the reservoir. The average reservoir sedimentation rate is 1·24 cm yr?1 (annual sediment yield 33·3 t km?2 yr?1 ± 10%, trap efficiency 92%). Mean annual reservoir sedimentation over the 67 year period has been estimated at 592 t ± 10%. Inputs of suspended sediment from direct catchwater streams account for 54% of sediment supply to the budget (best estimate yield of 318 t yr?1 ± 129%), while those from actively eroding reservoir shorelines contribute 328 t yr?1 ± 92%. Sediment yield estimates from stream monitoring and reservoir sedimentation are an order of magnitude lower than those reported from South Pennine reservoirs of comparable drainage basin area. Analysis of historical rainfall series for the catchment shows fluctuations in winter and summer rainfall patterns over the past 62 years. From 1976 to 1998 there has been a diverging trend between winter and summer rainfall, with a large increase in winter and a gradual decrease in summer totals. Periods of maximum variation occur during the summer drought events of the late 1970s, early 1980s and mid‐1990s. Analysis of the particle size of core sediments highlights abrupt increases in sand‐sized particles in the top 20 cm of the core. Based on the 137Cs chronology, these layers were deposited from the late 1970s onwards and relate to these diverging rainfall records and rapidly fluctuating reservoir levels. This provides evidence of potential sediment reworking within the reservoir by rapid water‐level rise after drought. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Field observations suggest that burrowing activity is the primary mode of sediment transport currently active in a small grassland drainage basin in Marin County, California. Spatial concentrations of the 1150 gopher mounds surveyed vary from 0-16 mounds m?2 on interfluves to 0.32 mounds m?2 on sideslopes and in the topographic hollow, with localized concentrations of up to 2.88 mounds m?2 on the margins of the colluvial deposit. Simple models of sediment transport by burrowing activity yield estimates of between 0.91 and 2.33 cm3 cm?1 yr?1 for the basin as a whole, with absolute minimum and maximum rates of 0.48 and 631 cm3 cm?1 yr?1. These values are similar to those previously estimated for this area (Lehre, 1982) and are nearly an order-of-magnitude less than average long-term sediment transport rates at the same site (Reneau, 1988).  相似文献   

4.
Measurements made on the floors of the temporarily-drained Glenfarg and Glenquey Reservoirs indicate that sediments with wet volumes of 63.94 × 103 m3 and 12.64 × 103 m3 were deposited in 56 and 73 years respectively. These figures represent 2.5 per cent and 1.1 per cent losses of original storage capacity. When corrected for water, organic, and diatom skeleton contents, and reservoir trap efficiency inorganic sediment yields of at least 31.3 tonnes km?2 yr?1 and of 9.0 tonnes km?2 yr?1 are suggested. The difference is probably related to contrasts of land use.  相似文献   

5.
In contrast to much previous research on blanket peat moorland, which has concentrated upon studies of the form and causes of gully erosion, this paper attempts to investigate sediment transport and to estimate both short-term and long-term sediment yields in such terrain. The research was conducted on Wessenden Head Moor to the west of Huddersfield, Yorkshire, where automatic stream sampling continued over a period of two years. Use of corrected rating curves (Ferguson, 1988) provided a mean estimate of sediment yield over this period of 55 t km?2 yr?1. In addition an estimate of longer-term sediment yield was derived from four reservoir sediment surveys in the Wessenden Valley. Total yield was 203.69 t km?2 yr?1, including an organic fraction of 38.82 t km ?2 yr?1. Stream sampling at three sites on Shiny Brook, including headwaters and the outflow to the reservoir, suggested that there is great temporal and spatial variability in mineral and organic inputs to the reservoirs. Although not excessive in gravimetric terms, the low density of peat means that there is a serious erosion problem. Estimates of erosion rates for the peat gully network at Shiny Brook appear to confirm earlier evidence concerning the relatively recent occurrence of this erosion, within the last two centuries.  相似文献   

6.
Hydrological process in arid zones differs substantially from that in better documented humid environments. The ponding point for infiltration is reached within 10 mins of first rain and overland flow forms the major component of basin runoff. Drainage densities are high, approaching 100 km.km?2, maximising the opportunity for both water and eroded soil to reach the channel network. The typical flood bore is not as abrupt as the mythology of desert streams would suggest. Nevertheless, the time of rise of the flood hydrograph is usually between 4 and 16 mins, giving credance to the notion of ‘flash flood’. Measured flows remain subcritical in the main, though Froude number exceeds unity for short periods around peak discharge. Flow is exceedingly turbulent, with Reynolds number > 105 even for much of the recession limb. As a result, suspended sediment concentrations by size grade are shown to be hydraulically controlled. However, the high degree of turbulence and wide availability of sediment from hillslope and channel sources also means that the mean size of the suspended load varies systematically with flow parameters. In this respect, ephemeral streams differ from perennial counterparts in humid environments where no clear-cut relationships exist. There is greater prospect of deriving a physically deterministic model of suspended sediment transport in desert streams. Implications for soil erosion and reservoir siltation are discussed, and sediment is traced from its source to its various sinks within the drainage basin.  相似文献   

7.
Sediment yields estimated from contemporary stream monitoring of suspended sediment in the Merevale forested catchment, North Warwickshire, were compared with the sediment yield record obtained from analysis of lake sediment in the downstream reservoir. Total sediment volume and mass for nine periods since 1861 were calculated by extrapolation of synchronous levels in 54 cores, identified from magnetic susceptibility and other magnetic measurements, and by using 210Pb and 137Cs analysis to provide an absolute sediment chronology. Sediment yield estimated from the two methods show comparable but low (50-200 kg ha?1 yr?1) levels of sediment loss. While suggesting that lake sediments can be a useful means for extending the period over which contemporary monitoring exists, the study stresses the need for detailed historical records of land use and climate against which long term sediment yield records can be evaluated.  相似文献   

8.
Mountain building and landscape evolution are controlled by interactions between river dynamics and tectonic forces. Such interactions have been extensively studied, however a quantitative evaluation of tectonic/geomorphic feedbacks, which is imperative for understanding sediments routing within orogens and fold‐and‐thrust belts, remains to be undertaken. Here, we employ numerical simulations to assess the conditions of uplift and river incision necessary to deflect an antecedent drainage network during the growth of one, or several, folds. We propose that a partitioning of the river network into internal (endorheic) and longitudinal drainage arises as a result of lithological differences within the deforming crustal sedimentary cover. Using examples from the Zagros Fold Belt (ZFB), we show that drainage patterns can be linked to the non‐dimensional incision ratio R between successive lithological layers, corresponding to the ratio between their relative erodibilities or incision coefficients. Transverse drainage networks develop for uplift rates smaller than 0.8 mm yr?1 and low incision ratios (?10 < R < 10). Intermediate drainage networks are obtained for uplift rates up to 2 mm yr?1 and large incision ratios (R > 20). Parallel drainage networks and the formation of sedimentary basins occur for large values of incision ratio (R > 20) and uplift rates between 1 and 2 mm yr?1. These results have implications for predicting the distribution of sediment depocenters in fold‐and‐thrust belts, which can be of direct economic interest for hydrocarbon exploration. They also put better constraints on the fluvial and geomorphic responses to fold growth induced by crustal‐scale tectonics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Estimates of suspended sediment yield over the past 800 years have been derived from a whole-basin study of lake sediments in Llyn Geirionydd, North Wales. Magnetic and physical sediment properties were used to correlate a suite of cores to a master chronology based on 210Pb and 14C dates. The sources of sediment within the catchment were identified by comparing the magnetic and heavy metal properties of sediments, soils, and stream sediments. Mean suspended sediment yields range from 6 to 18 t km?2 yr?1 with high yields in the periods 1765-1830 and 1903-1985 corresponding to mining activities in the catchment. The impact of earlier deforestation, agricultural expansion, or climatic change on sediment yields is low, although there is evidence that agricultural activities increased levels of peak stream discharge. Afforestation in the 20th century does not appear to have significantly increased sediment yield. Sediment sources have remained fairly constant through time; they appear to be widespread and dominated by stream channel sides rather than point sources, except during the mining phases when spoil material has dominated the sediment load. Sediment loads to the lake today are still dominated by sediment derived from unvegetated spoil heaps.  相似文献   

10.
The black soil region of northeast China,which covers the Provinces of Heilongjiang,Jilin and the Inner Mongolia autonomous region with black soil,chernozem and meadow soil,has experienced soil erosion since intense agricultural reclamation began approximately 100 years ago.However,the sediment delivery ratio,defined as the fraction of gross erosion that is transported from a given area in a given time interval,is still unclear.In this study,we calculated the delivery ratio and analysed changes in erosive processes within Hebei catchment from 1977 to 2007 based on an analysis of sediments of the Liudui reservoir.The original vegetation layer clearly identified the bottom of the reservoir when it was constructed in 1977;thus,the reservoir sediments could be precisely dated.The delivery ratio,calculated by comparing the sediment deposition in the reservoir with the total soil erosion in the upstream catchment,was found to be exponentially correlated(r2 = 0.95,P < 0.01) with decreasing grain size,except for the fraction <0.002 mm.The delivery ratio for the clays(<0.002 mm) was low,averaging 0.10 during the study period, which indicated partial removal of clays from the reservoir.The changes in the reservoir deposition rate reflected the temporal changes in the erosion processes.The exceptionally high rainfall in 1998 was confirmed by the distributions of 137Cs,210Pb,and the grain-size of the sediments.Beginning from the position of the original grass layer,we defined three periods from 1977 to 2007 based on deposition rates:2.40 cm year-1 from 1977 to 1997,5.60 cm year-1 in 1998 due to unusually high rainfall,and 1.55 cm year-1 from 1999 to 2007.The overall average deposition rate for the entire period was 2.26 cm year-1.Precipitation was found to be the main factor affecting the soil erosion of the study area.  相似文献   

11.
Rainfall, peak discharges, and suspended sediment transport were surveyed for 280 events in three small (0.8 to 10 km2) catchments in a hilly area derived from Neogene marls, silts, and sands. Under similar hydrological input conditions, stream flow behaviour and sediment delivery differed considerably from one catchment to another, depending on topography, lithology, land use, and especially sediment availability. Analytical treatment of data showed a good fit between sediment yield and peak flow discharge. Less good, although still significant, was the correlation between sediment concentration and discharge values for different flow stages. Rainfall peak/basin lag time and rainfall/discharge showed poor or no correlation, mainly due to strong variations in rainfall distribution. Sediment concentration in the catchments varied enormously according to season, from zero up to 334 g 1?1; sediment yield was 160-900 tonnes km?2 yr?1 in the two major catchments, and over 5200 tonnes km?2 yr?1 in the headwater catchment, stressing the importance of small tributaries not only in inducing floods in downstream channels, but also in sediment supply.  相似文献   

12.
The problem of identifying areas of accelerated erosion in a dynamic landscape is complicated. The limited history of sediment yield measurements makes this task difficult even if geomorphic evidence is available. Beryllium-10, a cosmogenic isotope produced by cosmic rays interacting with the earth's atmosphere and surface, has chemical and physical properties that make it useful as a tracer for erosion and sediment transport processes. The rarity of the stable isotope, 9Be, allows 10Be to be detected with accelerator mass spectrometry in natural materials at extremely low levels. Backgrounds for rocks and sediments below 105 atom per g are now attainable, a value to be compared with an average deposition rate of 1.3 × 106 atom cm?2 yr?1. The affinity of Be for the components of soil and sediment is sufficiently high that it is effectively immobilized on contact, thereby allowing 10Be to function as a tracer of sediment transport. To a good approximation all the 10Be transport out of a drainage basin is on the sediment leaving it. The number of 10Be atoms passing the gauging station can be determined by measuring the concentration of the isotope in the sediment, if the annual sediment load is known. The ratio of the 10Be carried from the basin by the sediment to that incident upon it, called the erosion index, has been determined for 48 drainage basins within the same physiographic province, which allows them to be reasonably compared, all of which have sediment yield data. Basins located in the Atlantic coastal plain have an average index of 0.3 with the maximum observed being 0.9. Basins located between the fall line and the mountains, a region called the Piedmont, have an average value of 2.2 with individual values ranging from 0.6 to 6.7; this marked difference is thought to result from two centuries of farming on land of moderate gradient. Basins in the highland regions reflect local conditions with low indices for those in grass and timber and high indices associated with destructive land use. The data allow an estimate of the erosion index for the pre-colonial Piedmont, which then allows the pre-colonial sediment yield to be calculated. A number of basins have also been examined world wide with similar conclusions derived. An important deviation from the rule is noted for rivers that erode large regions of loess, such as the Mississippi, Hwang Ho, and Yangtze. Large aeolian deposits were laid down during the ice age in these basins, deposits that brought inherited 10Be with them and that are easily eroded.  相似文献   

13.
Sediment yields were calculated on the ?anks of Merapi and Semeru volcanoes in Java, Indonesia, using two different methods. During the ?rst year following the 22 November 1994 eruption of Merapi, a sediment yield in excess of 1·5 × 105 m3 km?2 yr?1 was calculated in the Boyong River drainage basin, based on the volumes of sediment that were trapped by ?ve check dams. At Semeru, sediment discharges were assessed in the Curah Lengkong River from direct measurements on the lahars in motion and on the most signi?cant stream?ows. The calculated rate of sediment yield during one year of data in 2000 was 2·7 × 105 m3 km?2 yr?1. Sediment yields are dominated by rain‐triggered lahars, which occur every rainy season in several drainage basins of Merapi and Semeru volcanoes, mostly during the rainy season extending from October to April. The return period of lahars carrying sediment in excess of 5 × 105 m3 is about one year in the Curah Lengkong River at Semeru. At Merapi, the volume of sediments transported by a lahar did not exceed 2·8 × 105 m3 in the Boyong River during the rainy season 1994–95. On both volcanoes, the sediments are derived from similar sources: pyroclastic‐?ow/surges deposits, rockfalls from the lava domes, and old material from the riverbed and banks. However, daily explosions of vulcanian type at Semeru provide a more continuous sediment supply than at Merapi. Therefore, sediment yields are larger at Semeru. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Changes in the rate of soil erosion in lake catchments can be identified from changes in the rate of sediment accumulation in lakes. Here we compare recently afforested sites with non-afforested sites in the Galloway area of Southwest Scotland. We show that lakes with non-afforested catchments have slow, constant sediment accumulation rates, whereas lakes with recently afforested catchments have changes in accumulation that parallel the known history of afforestation. For Loch Grannoch the sediment accumulation rate increases from 0.1 cm yr?1 to over 2 cm yr?2 during the disturbance period. Data from L. Skerrow, however, suggest that the rate might decline to predisturbance levels after approximately 10 years as the forest canopy closes and drainage channels stabilize.  相似文献   

15.
Pikes Peak Highway is a partially paved road between Cascade, Colorado and the summit of Pikes Peak. Significant gully erosion is occurring on the hillslopes due to the concentration of surface runoff, the rearrangement of drainage pathways along the road surface and adjacent drainage ditches, and the high erodibility of weathered Pikes Peak granite that underlies the area. As a result, large quantities of sediment are transported to surrounding valley networks causing significant damage to water quality and aquatic, wetland, and riparian ecosystems. This study establishes the slope/drainage area threshold for gullying along Pikes Peak Highway and a cesium‐137 based sediment budget highlighting rates of gully erosion and subsequent valley deposition for a small headwater basin. The threshold for gullying along the road is Scr = 0 · 21A–0·45 and the road surface reduces the critical slope requirement for gullying compared to natural drainages in the area. Total gully volume for the 20 gullies along the road is estimated at 5974 m3, with an erosion rate of 64 m3 yr–1 to 101 m3 yr–1. Net valley deposition is estimated at 162 m3 yr–1 with 120 m3 yr–1 unaccounted for by gullying. The hillslope–channel interface is decoupled with minimal downstream sediment transport which results in significant local gully‐derived sedimentation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A sediment budget was developed for the 1.7 km2 Maluna Creek drainage basin located in the Hunter Valley, New South Wales, Australia, for the period 1971-86. the impact of viticulture, which commenced at Maluna in 1971, was studied using erosion plots, with caesium-137 as an indicator of both soil erosion and sedimentation. Two methods were used to estimate vineyard soil losses from caesium-137 measurements. Sediment output from the catchment was measured for three years, and extrapolated from readings taken at a nearby long-term stream flow gauging station for the remaining 13 years. Relative amounts of soil loss from forest (60 per cent basin area), grazing land (30 per cent) and vineyards (10 per cent) were calculated. Soil losses by rain splash detachment were ten times greater from bare/cultivated sufaces than from the forest. Erosion plots of area 2 m2 showed no significant differences in soil loss between forest and grassland but, under bare soil, losses were 100 times greater. the 137Cs method was employed to calculate net soil loss from all vineyard blocks using both a previously established calibration curve and a proportional model. the latter method gave estimates of soil loss which were 3-9 times greater than by the calibration curve, and indicated that average soil losses from the vineyard were equivalent to 62 t ha?1 y?1 (1971-86). It was estimated that the forest contributed 1-8 per cent, the grazing land 1.6 per cent, and the vineyard 96.6 per cent of the total soil loss during that period. Sediment storages within the fluvial system adjacent to the vineyard ws 9460 t for the period, whereas sediment output was equivalent to 215 t km?1 y?1. Independent measurements of soil erosion, storage, and output showed that 56 per cent of the eroded sediment remained in the catchment, and 34 per cent was transported out by Maluna Creek. the budget was able to be balanced to within 10 per cent.  相似文献   

17.
Seasonal soil water dynamics were measured at a fine-textured, upslope site within the jarrah forest of southwest Western Australia and compared to the results from a coarse-textured hillslope transect. Gravity drainage dominated during winter and early spring. This reversed in early summer and an upward potential gradient was observed to 7 m depth. A shallow ephemeral saturation zone was observed above a clay pan at 1.5 m depth. This saturation zone persisted through late winter and early spring, contrasting with the short-lived saturation in the duricrust on the hillslope transect. The annual maximum to minimum unsaturated soil water storage was about 530 mm, 50 mm greater than the hillslope transect and higher than most values reported elsewhere in Australia. Significant soil water content changes following winter rain were generally restricted to 6 m but at one site occurred to 9 m. These depths were significantly less than the coarser-textured hillslope transect. Soil water drying rates averaged 5 mm day?1 during extended dry periods compared to 3.5 mm day?1 on the hillslope transect. The drying rate occurred uniformly through the profile until late summer when a significant decrease in the upper 3 m was observed.  相似文献   

18.
Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8‐yr record of proglacial suspended sediment yield. Non‐glacial lowering rates range from 1·8 ± 0·5 mm yr?1 to 8·5 ± 3·4 mm yr?1 from estimates of rock fall and debris‐flow fan volumes. An average erosion rate of 0·08 ± 0·04 mm yr?1 from eight convex‐up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice‐cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106 t, corresponding to an erosion rate of 1·8 ± 0·6 mm yr?1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub‐basin (32% ice‐cover) to determine an erosion rate of 12·1 ± 6·9 mm yr?1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice‐free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Because groundwater is Earth's largest pool of freshwater, understanding the sensitivity of deep drainage to climate, soils, and land cover is critical in managing water resources. To better understand controls on this critical flux in the context of woody encroachment, we determined the sensitivity of deep drainage to climate, soil texture, soil compaction, rooting depth, growing season duration, and plant–water stress response using Hydrus‐1D to simulate deep drainage. To evaluate the simulation results, we compared these results with ground measurements at two anchor sites. At both anchor sites, Hydrus‐1D predictions of deep drainage matched measured values within the errors inherent in ground measurements. Sensitivity analysis suggested greatest sensitivity of deep drainage to climate (24 mm yr?1) and rooting depth (12 mm yr?1), moderate sensitivity to growing season duration (5 mm yr?1) and soil texture (4 mm yr?1), and lowest sensitivity to topsoil compaction and plant–water stress response (3 mm yr?1). The sensitivity analysis indicated the relative importance of the plant‐related factors considered, which, in decreasing order, were rooting depth, growing season duration, and plant–water stress response – factors that change concomitantly as a result of forestation or woody encroachment. Further ground‐truth measurements of woody encroachment effects on deep drainage are needed to confirm or refine the results of this simulation modelling study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Soil loss, fluvial erosion, and sedimentation are major problems in semi‐arid environments due to the high associated costs of decreasing services such as provisioning and regulating water resources. The objective of this research is to analyse sediment yield in a mountainous semi‐arid basin, paying special attention to the sources of sediment, the associated uncertainties, and the transport processes involved. The segregation hypothesis along a reservoir of the sediment coming from hillslopes or fluvial systems is also evaluated. For this purpose, bottom‐set and deltaic deposits of a reservoir (110 hm3 ) in southern Spain have been measured and compared with basin erosion and fluvial transport monitoring over a 12‐year period. The volume of sediment stored at the bottomset of the reservoir shows a relative match with parametric predictions based on the Revised Universal Soil Loss Equation/Modified Universal Soil Loss Equation hillslope models and rating curves, estimated as being between 7 and 13 t·ha?1·year?1. Similarly, the measured volume of deltaic deposit fits the average value of stochastic simulations from different bedload transport equations. These contributions represent 50–65% of the total volume measured regarding suspended sediment inputs, way above that described in previous works. This highlights the importance of considering bedload when estimating the useful life of reservoirs in semi‐arid environments. The major differences in sediment grain size between hillslopes and river systems, and the size fractions measured along the reservoir, support the assertion of segregation hypothesis. Nonetheless, based on the processes observed and the uncertainty related to modelling, that assertion has to be taken with caution. At basin scale, a specific sediment yield of between 19 and 24 t·ha?1·year?1 has been estimated, which includes hillslopes and fluvial contributions. This rate is in the range of sediment yield reported for Mediterranean mountain areas of a torrential character. The pulse‐like nature of the system and the spatial heterogeneity of fluvial and hillslope erosion rates points out the importance of considering mid to long‐term and process‐based approaches and emphasizes the limitations of annual estimations for management purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号