首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data to describe the morphologic, hydrologic and sedimentologic characteristics of 72 South Island, New Zealand, rivers were collected and analysed. Nearly 70 per cent of variation in channel morphology is accounted for by differences in cross-sectional area, slope, and cross-section shape; only 53 per cent of the morphologic variability could be statistically ‘explained’ by the hydrologic and sediment variables used. The level of explanation varied for different morphologic variables; nearly 90 per cent of the variability in cross-sectional area could be explained, but aspect ratio (maximum depth divided by hydraulic radius) was completely independent. Apart from the inadequacy of the measured variables as indices of the true underlying controlling factors, and the imperfect measurement and sampling procedures, the low level of explanation is probably due to the influence of factors such as floodplain vegetation, high quasi-random variability in bark sediment character, boundary effects imposed by bedrock bluffs, and the precise sequence of flood events, none of which are easily quantified. In addition, observations indicate that there is a large random variation in channel form which cannot be related to any factor. An attempt to relate channel morphology to flow variability, using simple indices of the latter, was unsuccessful.  相似文献   

2.
Analysis of the bankfull cross-sections of headwater streams in Ado-Ekiti region of Southwestern Nigeria and their comparison with data from other tropical environments and temperate latitudes reveal that the channel capacities of streams in the humid tropics are relatively smaller than those of temperate regions, averaging 1.51 m2 with a coefficient of variation of 87 per cent. This is attributed to the small stream discharge, the predominantly low and highly seasonal flows of the streams, the low shear stress of stream load, and the stabilizing and protective influence of riparian vegetation and surface incrustations. The chanel capacities of the urban streams (mean = 1.13m2) are about 47 per cent smaller than those of the natural streams (mean = 2.12 m2) in the same ecological zone. In terms of hydraulic efficiency, the urban streams also have relatively inefficient cross-sections and larger width/depth ratios than their rural or natural counterparts. Resurveys of seventeen monumented cross-sections reveal that while channel shoulder width increased by only 6 per cent over a one-year period, channel depth and capacity decreased by 16 per cent and 4 per cent respectively; the observed decrease in channel size occurs entirely in the channel depth dimension. Thus the response of stream channels to the urbanization of small headwater catchments in the humid tropics is probably more of vertical accretion of channel bed and reduction in channel capacity rather than the widely-reported anomalous enlargement of urban streams through channel widening. The rapid rate of channel aggradation is attributed to excessive rates of sediment production and delivery to streams in urbanized catchments in the humid tropics, rapid deposition of sediments during small runoff events and on the falling stage of storm hydrographs, and the inability of the streams to evacuate the sediments delivered to them despite the increased discharge and peak flow associated with urbanization. The low competence of the urban streams is attributed to the predominance of low flows, very gentle bed slopes, and most importantly the widespread dumping of refuse into the channels thereby reducing flow velocity and promoting backwater flooding, ponding, and sedimentation. The correlations between drainage basin area, a surrogate for stream discharge, and channel capacity are very strong for the rural watersheds, and the regression analysis indicates a tendency towards a steady-state isometric relationship. Urban channels are, to a large extent, in disequilibrium with the urban hydrological state. However, spatial variations in the degree of urbanization of the catchments, and, therefore in runoff volume and velocity, exercise strong control on channel width, depth, and size. A model of the sequence of stream channel adjustment to the urbanization of small headwater catchments in the humid tropics is presented.  相似文献   

3.
The frequency of floods has been projected to increase across Europe in the coming decades due to extreme weather events. However, our understanding of how flood frequency is affected by geomorphic changes in river channel capacity remains limited. This paper seeks to quantify the influence of trends in channel capacity on flood hazards. Measuring and predicting the effect of geomorphic changes on freshwater flooding is essential to mitigate the potential effects of major floods through informed planning and response. Hydrometric records from 41 stream gauging stations were used to measure trends in the flood stage (i.e. water surface elevation) frequency above the 1% annual exceedance threshold. The hydrologic and geomorphic components of flood hazard were quantified separately to determine their contribution to the total trend in flood stage frequency. Trends in cross‐sectional flow area and mean flow velocity were also investigated at the same flood stage threshold. Results showed that a 10% decrease (or increase) in the channel capacity would result in an increase (or decrease) in the flood frequency of approximately 1.5 days per year on average across these 41 sites. Widespread increases in the flood hazard frequency were amplified through both hydrologic and geomorphic effects. These findings suggest that overlooking the potential influence of changing channel capacity on flooding may be hazardous. Better understanding and quantifying the influence of geomorphic trends on flood hazard will provide key insight for managers and engineers into the driving mechanisms of fluvial flooding over relatively short timescales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Relatively little attention has been given to river channel adjustments that occur downstream from channelization works. This study is concerned with the nature of channel adjustments downstream from a total of 46 channelization works located in low and high energy environments in England and Wales. Channel changes are identified principally by the method of field survey and by reconstructing the original positions of eroded beds and banks. Use is also made of maps, aerial photographs, and engineering drawings of different dates and the technique of space-for-time substitution is applied. Enlargement of channel cross-sections through erosion had occurred downstream from a variety of types, sizes, and dates of channelization works. The maximum increase of channel size was 153 per cent. Out of a total of 14 sites with enlarged channel cross-sections, seven had undergone a change of width only, at a further three width increased rather than depth, and at the remaining four sites depth increases were dominant. These sites all have relatively high stream powers. Factors causing spatial variation of erosion included tree roots locally binding bank sediments and the occurrence of bends. Planform change had taken place at only one site. A further three high stream power sites had downstream reaches incised into bedrock and therefore did not exhibit adjustment. Channel enlargement is explained in terms of increased flood flows downstream from channelization works causing higher stream velocities, which in turn cause erosion, thereby increasing channel width and/or depth. Examination of flow records for 35 stations revealed flood events which would formerly have spread overbank but are now confined by the channelization works and are therefore likely to alter downstream flows. At sites with downstream change it is proposed that the energy of increased flows was sufficient to exceed a threshold required for erosion of perimeter sediments. By contrast the absence of change at a majority of sites in low energy lowland areas could be a reflection of both the incompetence of increased flows to erode and resistance provided by perimeter sediments. Sites with erosion features appear not to have yet attained new equilibrium conditions.  相似文献   

5.
Understanding near-stream groundwater dynamics and flow directions is important for predicting hillslope-stream connectivity, streamflow generation, and hydrologic controls of streamwater quality. To determine the drivers of groundwater flow in the stream corridor (i.e., the stream channel and the adjacent groundwater in footslopes and riparian areas), we observed the water levels of 36 wells and 7 piezometers along a headwater stream section over a period of 18 months. Groundwater dynamics during events were controlled by the initial position of the groundwater table relative to the subsurface structure. The near-stream groundwater table displayed a fast and pronounced response to precipitation events when lying in fractured bedrock with low storage capacity, and responded less frequently and in a less pronounced way when lying in upper layers with high storage capacity. Precipitation depth, intensity, regolith thickness above the fractured bedrock, and proximity to and elevation above the stream channel also had an effect on the groundwater dynamics, which varied with hydrologic conditions. Our high-frequency and spatially dense measurements highlight the competing influence of groundwater inflow from upslope locations, streamwater level and bedrock properties on the spatiotemporal dynamics of flowpaths in the stream corridor. Near-stream groundwater pointed uniformly towards the stream channel when the stream corridor was hydrologically connected to upslope groundwater. However, local interruptions of the water inflow from upslope locations caused flow reversals towards the footslopes. The direction of near-stream groundwater followed the local fractured bedrock topography during dry hydrologic conditions on a few occasions after events. The outcomes of this research contribute to a better understanding of the drivers controlling spatiotemporal changes in near-stream groundwater dynamics and flow directions in multiple wetness states of the stream corridor.  相似文献   

6.
The impact of wastewater flow on the channel bed morphology was evaluated in four ephemeral streams in Israel and the Palestinian Territories: Nahal Og, Nahal Kidron, Nahal Qeult and Nahal Hebron. Channel changes before, during and after the halting of wastewater flow were monitored. The wastewater flow causes a shift from a dry ephemeral channel with intermittent floods to a continuous flow pattern similar to that of humid areas. Within a few months, nutrient‐rich wastewater flow leads to rapid development of vegetation along channel and bars. The colonization of part of the active channel by vegetation increases flow resistance as well as bank and bed stability, and limits sediment availability from bars and other sediment stores along the channels. In some cases the established vegetation covers the entire channel width and halts the transport of bed material along the channel. During low and medium size flood events, bars remain stable and the vegetation intact. Extreme events destroy the vegetation and activate the bars. The wastewater flow results in the development of new small bars, which are usually destroyed by flood flows. Due to the vegetation establishment, the active channel width decreases by up to 700 per cent. The deposition of fine sediment and organic material changed the sediment texture within the stable bar surface and the whole bed surface texture in Nahal Hebron. The recovery of Nahal Og after the halting of the wastewater flow was relatively fast; within two flood seasons the channel almost returned to pre‐wastewater characteristics. The results of the study could be used to indicate what would happen if wastewater flows were introduced along natural desert streams. Also, the results could be used to predict the consequences of vegetation removal as a result of human intervention within the active channel of humid streams. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
A digital elevation model (DEM) of a fluvial environment represented landform surface variability well and provided a medium for monitoring morphological change over time. Elevation was measured above an arbitrary datum using a ground‐based three‐dimensional tacheometric survey in two reaches of the River Nent, UK, in July 1998, October 1998 (after flood conditions) and June 1999. A detailed geostatistical analysis of the elevation data was used to model the spatial variation of elevation and to produce DEMs in each reach and for each survey period. Maps of the difference in elevation were produced and volumetric change was calculated for each reach and each survey period. The parameters of variogram models were used to describe the morphological character of each reach and to elucidate the linkages between process and the form of channel change operating at different spatial and temporal scales. The analysis of channel change on the River Nent shows the potential of geostatistics for investigating the magnitude and frequency of geomorphic work in other rivers. A flood modified the channel features, but low magnitude and high frequency flows rationalized the morphology. In spite of relatively small amounts of net flux the channel features changed as a consequence of the reworking of existing material. The blocking of chute entrances and redirection of the channel had a considerable effect on the behaviour of the channel. Such small changes suggested that the distributary system was sensitive to variation in sediment regime. Plots of the kriging variances against sampling intervals were used to quantify the temporal variation in sampling redundancy (ranging between ?11 per cent and +93 per cent). These curves illustrated the importance of bespoke sampling designs to reduce sampling effort by incorporating anisotropic variation in space and geomorphic information on flow regime. Variation in the nugget parameter of the variogram models was interpreted as sampling inaccuracy caused by variability in particle size and is believed to be important for future work on surface roughness. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Intense precipitation or seismic events can generate clustered mass movement processes across a landscape. These rare events have significant impacts on the landscape, however, the rarity of such events leads to uncertainty in how they impact the entire geomorphic system over a range of timescales. Taiwan is steep, tectonically active, and prone to landslide and debris flows, especially when exposed to heavy rainfall events. Typhoon Morakot made landfall in Taiwan in August of 2009, causing widespread landslides in southern Taiwan. The south to north trend in valley relief in southern Taiwan leads to spatial variability in landslide susceptibility providing an opportunity to infer the long‐term impact of such landslide events on channel morphology. We use pre‐ and post‐typhoon imagery to quantify the propagating impact of this event on channel width as the debris is routed through the landscape. The results show the importance of cascading hazards from landslides on landscape evolution based on patterns of channel width (both pre‐ and post‐typhoon) and hillslope gradients in 20 basins along strike in southern Taiwan. Prior to Typhoon Morakot, the river channels in the central part of the study area were about 3–10 times wider than the channels in the south. Following the typhoon, aggradation and widening was also a maximum in these central to northern basins where hillslope gradients and channel steepness is high, accentuating the pre‐typhoon pattern. The results further show that the narrowest channels are located where channel steepness is the lowest, an observation inconsistent with a detachment‐limited model for river evolution. We infer this pattern is indicative of a strong role of sediment supply, and associated landslide events, on long‐term channel evolution. These findings have implications across a range of spatial and temporal scales including understanding the cascade of hazards in steep landscapes and geomorphic interpretation of channel morphology. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
Flow diversions are widespread and numerous throughout the semi‐arid mountains of the western United States. Diversions vary greatly in their structure and ability to divert water, but can alter the magnitude and duration of base and peak flows, depending upon their size and management. Channel geometry and riparian plant communities have adapted to unique hydrologic and geomorphic conditions existing in the areas subject to fluvial processes. We use geomorphic and vegetation data from low‐gradient (≤3%) streams in the Rocky Mountains of north‐central Colorado to assess potential effects of diversion. Data were collected at 37 reaches, including 16 paired upstream and downstream reaches and five unpaired reaches. Channel geometry data were derived from surveys of bankfull channel dimensions and substrate. Vegetation was sampled using a line‐point intercept method along transects oriented perpendicular to the channel, with a total of 100 sampling points per reach. Elevation above and distance from the channel were measured at each vegetation sampling point to analyze differences in lateral and vertical zonation of plant communities between upstream and downstream reaches. Geomorphic data were analyzed using mixed effects models. Bankfull width, depth, and cross‐sectional area decreased downstream from diversions. Vegetation data were analyzed using biological diversity metrics, richness, evenness and diversity, as well as multivariate community analysis. Evenness increased downstream from diversions, through reduced frequency of wetland indicator species and increased frequency of upland indicator species. Probability of occurrence for upland species downstream of a diversion increases at a greater rate beginning around 0·5 m above active channel. The results suggest that channel morphology and riparian plant communities along low‐gradient reaches in montane environments in the Colorado Rocky Mountains are impacted by diversion‐induced flow alteration, with the net effect of simplifying and narrowing the channel and homogenizing and terrestrializing riparian plant communities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Seasonal and event variations in stream channel area and the contributions of channel precipitation to stream flow were studied on a 106‐ha forested headwater catchment in central Pennsylvania. Variations in stream velocity, flowing stream surface width and widths of near‐stream saturated areas were periodically monitored at 61 channel transects over a two‐year period. The area of flowing stream surface and near‐stream saturated zones combined, ranged from 0·07% of basin area during summer low flows to 0·60% of total basin area during peak storm flows. Near‐stream saturated zones generally represented about half of the total channel area available to intercept throughfall and generate channel precipitation. Contributions of routed channel precipitation from the flowing stream surface and near‐stream zones, calculated using the Penn State Runoff Model (PSRM, v. 95), represented from 1·1 to 6·4% of total stream flow and 2·5–29% of total storm flow (stream flow–antecedent baseflow) during the six events. Areas of near‐stream saturated zones contributed 35–52% of the computed channel precipitation during the six events. Channel precipitation contributed a higher percentage of stream flow for events with low antecedent baseflow when storm flow generated by subsurface sources was relatively low. Expansion of channel area and consequent increases in volumes of channel precipitation with flow increases during events was non‐linear, with greater rates of change occurring at lower than at higher discharge rates. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
In 1820, the lower Canadian River meandered through a densely forested floodplain. By 1898, most of the floodplain had been cleared for agriculture and changes in channel geometry and specific stream power followed, particularly channel widening and straightening with a lower potential specific stream power. In 1964, a large upstream hydropower dam was constructed, which changed the flow regime in the lower Canadian River and consequently the channel geometry. Without destructive overbank floods, the channel narrowed rapidly and considerably due to encroachment by floodplain vegetation. The lower Canadian River, which was once a highly dynamic floodplain‐river system, has now been transformed into a relatively static river channel. These changes over the past 200 years have not been linear or independent. In this article, we use a variety of data sources to assess these historical changes along the lower Canadian River floodplain and identify feedbacks among floodplain cultivation, dam construction, specific stream power, and channel width, slope, and sinuosity. Finally, we combine the results of our study with others in the region to present a biogeomorphic response model for large Great Plains rivers that characterizes channel width changes in response to climate variability and anthropogenic disturbances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Repeated surveys of a short channelized reach of the North Nashwaaksis Stream near Fredericton, N.B. over the period 1971-1981 provide the basis for evaluating the type and magnitude of some physical and botanical changes in the study reach. In 1967 a 200 m reach of the stream was shortened by about 10 per cent by cutting a new channel through a pasture. The original channel was protected by a dense growth of shrubs along its banks. The average width of the top of the channel in the channelized reach widened from 11 m to 17 m in response to a major flood in 1973. Rough estimates indicate that as much as 78 per cent of the published suspended-sediment load associated with the flood could reasonably have been derived from the banks in this short channelized reach. During the 1973 flood, a mid-channel bar was formed in the portion of the channel which experienced the most widening. Subsequent to the flood, the mid-channel bar was first colonized by sedges, and then by alders. By 1981, the width of the low flow channel in the channelized reach was about the same as that for the unmodified upstream reaches. This case study provides useful information for those planning channelization projects on small to intermediate size streams in humid temperate areas.  相似文献   

13.
The understanding of nutrient uptake in streams is impeded by a limited understanding of how geomorphic setting and flow regime interact with biogeochemical processing. This study investigated these interactions as they relate to transient storage and nitrate uptake in small agricultural and urban streams. Sites were selected across a gradient of channel conditions and management modifications and included three 180‐m long geomorphically distinct reaches on each of two streams in north‐central Colorado. The agricultural stream has been subject to historically variable cattle‐grazing practices, and the urban stream exhibits various levels of stabilisation and planform alteration. Reach‐scale geomorphic complexity was characterised using highly detailed surveys of channel morphology, substrate, hydraulics and habitat units. Breakthrough‐curve modelling of conservative bromide (Br?) and nonconservative nitrate (NO3?) tracer injections characterised transient storage and nitrate uptake along each reach. Longitudinal roughness and flow depth were positively associated with transient storage, which was related to nitrate uptake, thus underscoring the importance of geomorphic influences on stream biogeochemical processes. In addition, changes in geomorphic characteristics due to temporal discharge variation led to complex responses in nitrate uptake. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Rapids in river canyons are frequently found at sites where debris fans constrict flow along the channel. Whereas some fans may have persisted in the same location with unchanging geometry for centuries to millennia, others have changed in response to flow conditions imposed by successive floods. Such a change in boundary conditions may alter local flow hydraulics. This paper utilizes two-dimensional flow modelling to compare flood hydraulics along two alternative versions of an idealized reach of a river canyon: one with uniform width, gradient and cross-section, and a second perturbed by a prominent debris fan along the valley wall. The flow pattern along the reach with the fan is far more complex than the pattern along the uniform reach. Maximum velocity along the debris-fan reach is up to 50 per cent higher than along the uniform reach, maximum bed shear stress is up to three or four times higher, and an area of supercritical flow is predicted extending from the nose of the fan into the zone of flow expansion immediately downstream. Comparison of model output along longitudinal profiles of the two reaches indicates that the backwater effect of the fan extends several valley widths upstream. Predicted flows based on the same stage are as much as 190 to 230 per cent greater along the uniform reach than along the debris-fan reach. Reconstruction of palaeoflood discharge based on remnant flood marks in the vicinity of the fan would be sensitive to assumptions about boundary conditions that existed in the past; this effect relaxes over a longitudinal distance of several hundred metres. Furthermore there are significant cross-stream gradients that change slope and direction several times in the vicinity of the fan, calling into question the utility of one-dimensional step-backwater hydraulic models for predicting high-water marks in areas of complex valley morphology.  相似文献   

15.
Coarse woody debris and channel morphology were evaluated for five low-gradient streams that ranged from first to fourth order (0.7 to 55 km2 watershed area). Debris volumes were directly related to variations in bankfull width. Woody debris was associated with 65 to 75 per cent of all pools and the relative proportion of types of pools (i.e. plunge, lateral scour, etc.) varied with stream size. High variability in channel depths and widths was common. The results provide benchmark values of woody debris loadings and channel morphology for undisturbed coastal Alaskan stream systems.  相似文献   

16.
Redwood Creek, north coastal California, USA, has experienced dramatic changes in channel configuration since the 1950s. A series of large floods (in 1955, 1964, 1972 and 1975) combined with the advent of widespread commercial timber harvest and road building resulted in extensive erosion in the basin and contributed high sediment loads to Redwood Creek. Since 1975, no peak flows have exceeded a 5 year recurrence interval. Twenty years of cross-sectional survey data document the downstream movement of a ‘sediment wave’ in the lower 26 km of this gravel-bedded river at a rate of 800 to 1600 m a−1 during this period of moderately low flows. Higher transit rates are associated with reaches of higher unit stream power. The wave was initially deposited at a site with an abrupt decrease in channel gradient and increase in channel width. The amplitude of the wave has attenuated more than 1 m as it moved downstream, and the duration of the wave increased from eight years upstream to more than 20 years downstream. Channel aggradation and subsequent degradation have been accommodated across the entire channel bed. Channel width has not decreased significantly after initial channel widening from large (>25 year recurrence interval) floods. Three sets of longitudinal surveys of the streambed showed the highest increase in pool depths and frequency in a degrading reach, but even the aggrading reach exhibited some pool development through time. The aggraded channel bed switched from functioning as a sediment sink to a significant sediment source as the channel adjusted to high sediment loads. From 1980 to 1990, sediment eroded from temporary channel storage represented about 25 per cent of the total sediment load and 95 per cent of the bedload exported from the basin.  相似文献   

17.
Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10 disturbed from 13 undisturbed reaches with 90 per cent and 92 per cent correct classification respectively. These variables are the total number of pools per reach, the ratio of mean residual pool depth to mean bankfull depth, and the ratio of critical shear stress of the median surface grain size to bankfull shear stress. The last variable can be dropped without a decrease in rate of correct classification; however, the resulting two-variable model may be less robust. Analysis of the distribution of channel units, including pool types, can also be used to discriminate disturbed from undisturbed reaches and is particularly useful for assessment of aquatic habitat condition. However, channel unit classification and inventory can be subject to considerable error and observer bias. Abundance of pool-related large woody debris is highly correlated with pool frequency and is an important factor determining channel morphology. Results of this study yield a much needed, objective, geomorphic discrimination of pristine and disturbed channel conditions, providing a reference standard for channel assessment and restoration efforts.  相似文献   

18.
The impact of afforestation on stream bank erosion and channel form   总被引:1,自引:0,他引:1  
Modification of the land use of a small catchment through coniferous afforestation is shown to have influenced stream bank erosion and channel form. Field mapping and erosion pin measurements over a 19-month period provides evidence of more active bank erosion along forested channel reaches than along non-forested. Extrapolation of downstream increases in bankfull width, bankfull depth, and channel capacity with increasing basin area for the non-forested catchment has demonstrated that afforestation of the lower part of the catchment has had a marked effect on channel form. Channel widths within the forest are up to three times greater than that predicted from the regression. These changes in bankfull width have led to stream bed aggradation and the development of wide shallow channels within the forest, and channel capacities within the forest are over two times that predicted from the basin area. The relationship between channel sinuosity and valley gradient for non-forested reaches of the river also indicated decreased sinuosity resulting from afforestation. These changes in channel form result from active bank erosion within the forest with coarse material being deposited within the channel as point-bars and mid-channel bars. Active bank erosion is largely attributed to the suppression by the forest of a thick grass turf and its associated dense network of fine roots, and secondly to the river attempting to bypass log jams and debris dams in the stream channel.  相似文献   

19.
The behaviour of a discrete sub‐bank‐full flow event in a small desert stream in western NSW, Australia, is analysed from direct observation and sediment sampling during the flow event and from later channel surveys. The flow event, the result of an isolated afternoon thunderstorm, had a peak discharge of 9 m3/s at an upstream station. Transmission loss totally consumed the flow over the following 7·6 km. Suspended sediment concentration was highest at the flow front (not the discharge peak) and declined linearly with the log of time since passage of the flow front, regardless of discharge variation. The transmission loss responsible for the waning and eventual cessation of flow occurred at a mean rate of 13.2% per km. This is quite rapid, and is more than twice the corresponding figure for bank‐full flows estimated by Dunkerley (1992) on the same stream system. It is proposed that transmission losses in ephemeral streams of the kind studied may be minimized in flows near bank‐full stage, and be higher in both sub‐bank‐full and overbank flows. Factors contributing to enhanced flow loss in the sub‐bank‐full flow studied included abstractions of flow to pools, scour holes and other low points along the channel, and overflow abstractions into channel filaments that did not rejoin the main flow. On the other hand, losses were curtailed by the shallow depth of banks wetted and by extensive mud drapes that were set down over sand bars and other porous channel materials during the flow. Thus, in contrast with the relatively regular pattern of transmission loss inferred from large floods, losses from low flows exhibit marked spatial variability and depend to a considerable extent on streamwise variations in channel geometry, in addition to the depth and porosity of channel perimeter sediments. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Geomorphic river design strives for natural resilience by encouraging geomorphic form complexity and morphological processes linked to greater habitat diversity. Increasing availability of high-resolution topographic data and spatial feature mapping methods provide advantages for morphological analysis and river restoration planning. We propose and evaluate an approach to quantifying topographic variability of geomorphic form and pixel-level surface roughness resulting from channel planform geometry differences using spatially continuous variety computation applied to component metrics including flow direction, aspect and planform curvature. We define this as the geomorphic form variation (GFV) approach and found it scalable, repeatable and a multi-stage analytical metric for quantifying physical aspects of river-bed topographic variability. GFV may complement process-based morphological feature mapping applications, hydraulic assessment indices and spatial habitat heterogeneity metrics commonly used for ecological quality evaluation and river restoration. The GFV was tested on controlled synthetic channels derived from River Builder software and quasi-controlled sinuous planform flume experiment channels. Component variety metrics respond independently to specific geometric surface changes and are sensitive to multi-scaled morphology change, including coarser-grained sediment distributions of pixel-level surface roughness. GFV showed systematic patterns of change related to the effects of channel geometry, vertical bed feature (pool-bar) frequency and amplitude, and bar size, shape and orientation. Hotspot analysis found that bar margins were major components of topographic complexity, whereas grain-scale variety class maps further supported the multi-stage analytical capability and scalability of the GFV approach. The GFV can provide an overall variety value that may support river restoration decision-making and planning, particularly when geomorphic complexity enhancement is a design objective. Analysing metric variety values with statistically significant hotspot cluster maps and complementary process-based software and mapping applications allows variety correspondence to systematic feature changes to be assessed, providing an analytical approach for river morphology change comparison, channel design and geomorphic process restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号