首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A late Quaternary deep-water stratigraphic framework has been established for the deep-water areas (>450m) of the northern Rockall Trough and Faeroe-Shetland Channel. Four stratigraphic units (1–4) are identified; these are primarily biostratigraphic units based on dinoflagellate cyst evidence. Unit 1 represents the late Weichselian glacial (pre-13 000 yr BP); unit 2 the Late Glacial Interstadial (11 000-13 000 yr BP); unit 3 is of Younger Dryas age (10 000-11 000 yr BP); and unit 4 represents the Holocene interglacial (post-10 000 yr BP). This stratigraphy is supported by the discovery of the mixed Vedde Ash (10 600 yr BP) and North Atlantic Ash zone 1, and the Saksunarvatn Ash (9000–9100 yr BP), concentrated in units 3 and 4 respectively. The sedimentology indicates that the oceanographic regime underwent a major change between the glacial and interglacial stages. This is marked by the onset of strong bottom current activity, allied to the restoration of overflow of the Norwegian Sea Deep Water into the North Atlantic, towards the end of the Younger Dryas Stadial. Despite intense bioturbation and bottom-current reworking the basic stratigraphic framework is maintained. Recognition of two volcanic ash markers enables correlation with established onshore and offshore sequences of marine and non-marine environments.  相似文献   

2.
Four major ash zones recorded in piston cores raised from the Iceland Plateau north of Iceland are shown to be coincident with the last four interglacial isotopic stages. Their geochemical composition links the ashes to volcanic events on Iceland. The occurrence of these ash layers, which record events orders of magnitude larger than the ‘normal’ Holocene volcanic eruptions, can not be explained by changes in sea ice cover and atmospheric circulation alone. It is suggested that these events are related to pressure releases in the magma chambers resulting from major deglaciations of the Icelandic Ice Cap.  相似文献   

3.
Comparatively few Icelandic tephra horizons dated to the early part of the Holocene have so far been detected outside Iceland. Here, I present several tephra horizons that have been recorded in a Holocene peat sequence on the Faroe Islands. Geochemical analyses show that at least two dacitic and one rhyolitic tephra layers were erupted from the Katla volcanic system on southern Iceland between ca. 8000 and 5900 cal. yr BP. The upper two layers can be correlated with the SILK tephras described from southern Iceland, whereas the third, dated to ca. 8000 cal. yr BP, has a geochemistry virtually identical to the rhyolitic component of the Vedde Ash. The results suggest that the Late Weichselian and early Holocene eruption history of the Katla volcano was probably more complex than inferred from Iceland. A new, early Holocene rhyolitic tephra dated to ca. 10 500 cal. yr BP probably originates in the Snæfellsnes volcanic centre in western Iceland. These new findings may play an important role in developing a Holocene tephra framework for northwest Europe. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A bed of volcanic ash up to 23 cm thick is found in lacustrine and marine sediments in western Norway. It is formally mamed the Vedde Ash Bed, and its age is approximately 10,600 yr B.P., i.e., mid-Younger Dryas. The bed consits of pure glass having a bimodal basaltic and rhyolitic somposition. The geochemistry of the glass shards suggests an Icelandic source. By means of stratigraphic position and geochemistry, the ash is correlated with ash zones found in cores from the continental shelf, the Norwegian Sea, and the North Atlatic.  相似文献   

5.
The Vedde Ash (c. 10 300 14 C BP) provides a key time-parallel marker horizon within the Younger Dryas chronozone or GS-1 event of the GRIP stratigraphy. Until recently, the known distribution of wind-blown Vedde Ash outside Iceland was restricted to the west coast of Norway, off-shore sequences close to the Outer Hebrides and the Greenland summit GRIP ice core. The first discoveries of the Vedde Ash in Scotland were reported in 1997, following the development of a new technique for extracting rhyolitic micro-tephra particles from minerogenic deposits. Here we report on the discovery of the Vedde Ash at additional sites in Scotland and at sites in southern Sweden. The concentration of tephra particles in sediments is highest in sites in western Norway, but is also relatively high in sites in southwestern Sweden, suggesting that the main ash cloud travelled eastwards from its volcanic source of Katla, in southern Iceland. Electron microprobe analyses do not indicate any clear geochemical evolution within the samples reported here.  相似文献   

6.
The tephrochronology of Iceland and the North Atlantic region is reviewed in order to construct a unified framework for the last 400 kyr BP. Nearly all of the tephra layers described are also characterised geochemically. A number of new tephra layers are analysed for the first time for their geochemical signature and a number of pre‐Holocene tephra layers have been given an informal denotation. The tephrostratigraphy of Ash Zone II is highlighted. Where possible the rhyolitic tephra layers found outside Iceland have been correlated to known Icelandic tephra layers or to the volcanic source area. The application of tephra fallout in various depositional environments is described and discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
The volcanic origin, primarily basaltic, of most of the surface material in Iceland influences its physical properties and appearance. Size distributions, shape analyses and melting experiments were made for surface material collected in high-erosion dust source areas and fresh volcanic ash deposits to determine whether they differ from one another and from dust from other major dust sources. The major differences found between Icelandic dust and dust from other major dust sources in the world, such as the Sahara, are in the particle shapes, lower density and darker colour. Icelandic dust particles greater than 20 μm retain volcanic morphological properties that are also found in fresh volcanic ash. Dust and fresh volcanic ash particles less than 20 μm are crystalline and blocky in nature, similar to the dust from other global source regions. The finer grained (<20 μm) Icelandic particles will have similar suspension and transport behaviours and be similarly hazardous to health and infrastructure as non-Icelandic dust. The coarser particles (>20 μm) will have different suspension and transport behaviours than other dusts due to the volcanic morphology. Icelandic surface material has between 5% and 30% glassy particles compared to fresh volcanic ash which has more than 50% glassy particles. Glassy particles were observed to melt at a lower temperature than the mineral grains; and, as a result, volcanic ash is found to be more threatening to aircraft engines than the typical dust from Iceland. Icelandic dust was observed to be blocky, or plate-like in the respirable size fraction, suggesting similar health hazards as dust from other regions.  相似文献   

8.
In 1997, seismic surveys in the troughs off northwest and north Iceland indicated the presence of a major, regional sub‐bottom reflector that can be traced over large areas of the shelf. Cores taken in 1997, and later in 1999 on the IMAGES V cruise, penetrated through the reflector. In core MD99‐2269 in Húnaflóaáll, this reflector is shown to be represented by a basaltic tephra with a geochemical signature and radiocarbon age correlative with the North Atlantic‐wide Saksunarvatn tephra. We trace this tephra throughout northwest Iceland in a series of marine and lake cores, as well as in terrestrial sediments; it forms a layer 1 to 25 cm thick of fine‐ to medium‐grained basaltic volcanic shards. The base of the tephra unit is always sharp but visual inspection and other measurements (carbonate and total organic carbon weight %) indicate a more diffuse upper boundary associated with bioturbation and with sediment reworking. Off northwest Iceland the Saksunarvatn tephra has distinct sediment magnetic properties. This is evident as a dramatic reduction in magnetic susceptibility, an increase in the frequency dependant magnetic susceptibility and ‘hard’ magnetisation in a −0.1T IRM backfield. Geochemical analyses from 11 sites indicate a tholeiitic basalt composition, similar to the geochemistry of a tephra found in the Greenland ice‐core that dates to 10 180 ± 60 cal. yr BP, and which was correlated with the 9000 14C yr BP Saksunarvatn tephra. We present accelerator mass spectrometry 14C dates from the marine sites, which indicate that the ocean reservoir correction is close to ca. 400 yr at 9000 14C yr BP off northwest Iceland. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
A hitherto unknown distal volcanic ash layer has been detected in a sediment core recovered from the southeastern Levantine Sea (Eastern Mediterranean Sea). Radiometric, stratigraphic and sedimentological data show that the tephra, here termed as S1 tephra, was deposited between 8970 and 8690 cal yr BP. The high-silica rhyolitic composition excludes an origin from any known eruptions of the Italian, Aegean or Arabian volcanic provinces but suggests a prevailing Central Anatolian provenance. We compare the S1 tephra with proximal to medial-distal tephra deposits from well-known Mediterranean ash layers and ash fall deposits from the Central Anatolian volcanic field using electron probe microanalyses on volcanic glass shards and morphological analyses on ash particles. We postulate a correlation with the Early Holocene ‘Dikkart?n’ dome eruption of Erciyes Da? volcano (Cappadocia, Turkey). So far, no tephra of the Central Anatolian volcanic province has been detected in marine sediment archives in the Eastern Mediterranean region. The occurrence of the S1 tephra in the south-eastern part of the Levantine Sea indicates a wide dispersal of pyroclastic material from Erciyes Da? more than 600 km to the south and is therefore an important tephrostratigraphical marker in sediments of the easternmost Mediterranean Sea and the adjacent hinterland.  相似文献   

10.
Using contiguous high resolution sampling methods, we report the detection of a Glacier Peak volcanic ash from North America in Lateglacial Interstadial lake sediments in western Scotland. It occurs in close proximity to the Icelandic Borrobol and Penifiler tephras, but is distinguishable by its rhyolitic major-element composition that is consistent with the earliest set G layer, one of a number of mid-Interstadial Glacier Peak eruptions dated between 13.71 and 13.41 cal ka bp. Another cryptotephra layer present in these same Interstadial sediments has a rhyolitic composition consistent with the Icelandic Katla source. However, it is in a stratigraphic position below the widespread mid-Lateglacial Stadial Vedde Ash from Katla, which is also present in these cores. The Katla layer is stratigraphically well defined, suggesting primary airfall, and is compositionally similar to a mid-Interstadial rhyolitic tephra reported from a North Atlantic marine sequence south of Iceland dated to ~13.6 ka. The detection of Glacier Peak G in the European tephrostratigraphy will permit direct high-precision correlation of mid-Interstadial palaeoenvironments between North American and European terrestrial sequences. Any correlation between the new Katla layer and similar marine layers remains provisional, though if verified would permit similar correlation between North Atlantic marine and European terrestrial records.  相似文献   

11.
Studies on distal airfall tephra layers preserved in lake sediments and peats in northern New Zealand have documented the stratigraphic, chronologic, and compositional relationships of 46 eruptives, aged c. 17000–700yr BP, which originated from six North Island volcanic centres: Taupo (9 tephras), Okataina (8), Maroa (1) (rhyolitic); Mayor Island (2) (peralkaline); Tongariro (11), Egmont (15) (andesitic). Sources were distinguished by mineralogy and composition, field relations, and 14C chronology. All known rhyolitic tephra-producing eruptions from Taupo, Okataina, and Maroa volcanoes since c. 17000yr BP are represented, but only a small proportion of the known tephras erupted from Tongariro, Egmont, or Mayor Island volcanoes is recorded. The distal tephras from these latter volcanic centres may thus reflect atypically powerful (or oblique) eruptions, or dispersal by strong winds. An improved record of volcanism for the Tongariro, Egmont, and Mayor Island centres might be obtainable from suitable lakes or bogs more proximal to them.  相似文献   

12.
The tectonical setting in Iceland is quite complex due to the interaction of the Iceland hot spot and the Mid Atlantic Ridge. While in the north of the island one active spreading zone exists, the divergent motion in the centre and the south is distributed over at least two volcanic rift zones. The spreading rate increases linearly along the Western Volcanic Zone from north to south up to 8 mm/yr at the Hengill triple junction. On the contrary, the spreading rate of the parallel Eastern Volcanic Zone decreases from 16 mm/yr down to 6 mm/yr at the island's southern coast. The Hreppar microplate between the two predominant rift zones has an independent motion, which is distinct from that of the Eurasian and North American plates. A new detected feature is the spreading activity around the Hofsjökull volcanic zone located in the centre of Iceland with a significant rate of 6 mm/yr. During this investigation the coordinate sets of nearly 20 years of GPS data acquisition on Iceland were combined to get a velocity field for the surface of Iceland. This velocity field is based on a linear kinematic model with the consideration of local non-linear effects like volcano up-doming and displacements due to major earthquakes.  相似文献   

13.
Cores recovered from the Witch Ground Basin (central North Sea) and the northern Rockall Trough, near the Wyville-Thomson Ridge have been found to contain volcanic glass shards. These have been correlated with the Vedde Ash Bed of western Norway, which has an age of 10600± 60yr BP, and with North Atlantic ash zone 1. This is the first time that this important chronostratigraphic marker has been identified on the UK continental shelf and it is suggested that it might also be present in northern Scotland. If so, it would be a useful tool in the correlation of terrestrial, lacustrine and marine sequences of the Loch Lomond Stadial.  相似文献   

14.
Paleoecological records from two Holocene peat bogs in northern Germany are linked by two microscopic volcanic ash layers, correlated by petrology and geochemistry to explosive volcanism on Iceland. The younger “Microlite tephra” cannot be correlated to any known eruption, while the older tephra layer is identified as a deposit of the Hekla 3 eruption. The tephra layers are dated by an age–depth regression of accelerator mass spectrometry 14C ages that have been calibrated and combined in probability distributions. This procedure gives an age of 730–664 cal yr B.C. for the “Microlite tephra” event and 1087–1006 cal yr B.C. for the Hekla 3 event. Accordingly, the tephra layers were deposited during the late Bronze Age. At this time, human settlement slowly increased pressure on the environment, as indicated by changes in woodland pollen composition at the two bogs. The tephra-marker horizons further show that the palynologically defined transition from the Subboreal to the Subatlantic Period is synchronous in the investigated area. However, the macroscopic visible marker in peat, the change from fibrous to sapric peat, the “Schwarztorf-Weißtorf-Kontakt,” is asynchronous. Bog vegetation did not immediately react in unison to a climatic change at this pollen zone boundary; instead, the timing of vegetation change depended on the location within the bog.  相似文献   

15.
Pyne‐O'Donnell, S. 2010: The taphonomy of Last Glacial–Interglacial Transition (LGIT) distal volcanic ash in small Scottish lakes. Boreas, 10.1111/j.1502‐3885.2010.00154.x. ISSN 0300‐9483. An extensive micro‐tephrostratigraphic survey of three small lakes in the Scottish Inner Hebrides was conducted encompassing the Last Glacial–Interglacial Transition (LGIT). The lakes are highly contrasting in terms of lake area to catchment ratio, the presence or absence of stream inlets draining the catchment, and in the complexity of the catchment drainage network. A suite of distal Icelandic volcanic ashes was consistently detected in all three lakes, with three, namely Penifiler Tephra, Vedde Ash and Ashik Tephra, being common to all the lakes. These ashes were chosen to examine the taphonomic intercomparability of ash location and concentration among the lakes. Findings reveal that the part played by catchment inlets in determining ash concentration and within‐basin location applies to microtephra layers as much as it does in studies of macrotephra layer thickness. The position of ash concentration maxima is also shown to vary significantly for different LGIT periods and may be a consequence of lake‐level changes, especially during the early Holocene. High‐resolution stratigraphic analysis through the Vedde Ash visible macrotephra at Loch Ashik reveals a high degree of complexity in taphonomic behaviour between the different geochemical components, with possible implications for the correct interpretation of the isochron position. The detection of multiple intact ash isochrons and the taphonomic processes responsible for their deposition should prove useful in future tephrostratigraphic surveys, as well as having applications within other palaeolimnological disciplines.  相似文献   

16.
17.
All the Kamchatkan recent hydrothermal systems are restricted to two volcanic zones, Central Kamchatka of Late Miocene-Pliocene age and East Kamchatka, where several active volcanoes are located. Solutions from active hydrothermal systems commonly contain elements, including As, Sb, Hg, Li, Rb, Cs, B, Cu, Pb, Zn, Ag, Au,Sr and Ba, with the first seven predominating. Higher abundances of ore elements occur in active hydrothermal systems with solutions of sodium chloride composition. Those are the Kireunskaya, Dvukhyurtochnaya and Apapelskaya systems in the Central Kamchatka volcanic zone and the Uzon hydrothermal system in the East Kamchatka volcanic zone. The hydrothermal systems are restricted to structures having very long histories of evolution and which are characterized by contrasting types of magmatism. At present chemical precipitates and altered rocks with higher abundances of As, Sb and trace amounts of Au, Ag, Cu, Ph and Zn are forming in the discharge zones of these hydrothermal systems. Large zones of alterations (alunitic quartzites* and argillites) with high abundances of As, Sb, Hg, Cu, Pb, Ga and Zr occur in the Central Kamchatka volcanic zone. Here zones of mineralization (cinnabar, realgar, stibnite, orpiment, pyrite, chalcopyrite, sphalerite, galena) occur also; native gold, native silver and gudmundite occur rarely.In the recent Uzon caldera hydrothermal system, As-Sb-Hg mineralization with bitumen and oils is now forming. The ore deposit is zoned, with the most abundant ore minerals being realgar, uzonite, alacranite, stibnite and pyrite. Cinnabar, orpiment, marcasite and native mercury occur occasionally, and single grains of native gold, native silver and native copper are present. At present a total of 7000 t As, 350 t Sb and 200 t Hg have been deposited in the mineralization zone at geochemical boundaries. The general geological and geochemical data suggest that at depth the As-Sb-Hg mineralization may change to gold-silver mineralization.  相似文献   

18.
Tephra abundance data and geochemistry in Late‐glacial and Holocene sediments on the East Greenland shelf are presented. Two well‐known tephras were identified from electron microprobe analysis of tephra shards picked from ash peaks in the cores. These are the Vedde Ash and Saksunarvatn Ash, which probably were deposited on the shelf after transport on drifting ice. The radiocarbon dates (marine reservoir corrected by −550 yr) that constrain the timing of deposition of the tephra layers compare well with the terrestrial and ice‐core ages of the tephras without requiring additional reservoir correction to align them with the known tephra ages. Several prominent tephra layers with a composition of Ash Zone 2 tephra punctuate the deglacial sediments. These tephra peaks coincide with significant light stable isotope events (signifying glacial meltwater) and fine‐grained sediments poor in ice‐rafted detritus. We interpret the Ash Zone 2 tephra peaks as sediment released from the Greenland Ice Sheet during strong melting pulses of the deglaciation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
During the Holocene the volcano Hekla explosively emitted highly silicic tephra on four occasions. The ash was widely dispersed by the wind. Distinctive light-coloured ash layers are now to be seen in the peats of Northern Iceland. Ash from the 1104 AD eruption was carried as far as Scandinavia. The most recent three tephra are preserved in the top 6 m of sediment in Lake Svinavatn. Chemical data from the sediment of Lake Svinavatn, which lies near the north coast of Iceland 170 km from Hekla, reveal the presence of silicic ash above the tephra visible to the naked eye. Unlike the vertical spread of ash in ocean sediment cores which results from biological mixing effects, the upwards spread of ash in the Svinavatn lake sediment cores appears to have been produced by erosion of ash from the lake catchment in the decades following the eruptions. The variations in concentrations of 11 elements, as determined by neutron activation analysis, can be explained by an exponentially decreasing input from catchment erosion. The additional input to each of the three Hekla ash layers was in the region of 3% of the ash which fell on the Svinavatn catchment.  相似文献   

20.
A composite stratigraphical sequence, the Fnjóskadalur Sequence, reveals ten cycles of glacier advances and formation of ice-dammed lakes in Fnjóskadalur in central North Iceland. Chemical analyses of the Skógar Tephra, with its type locality in this valley, have enabled a correlation with Ash zone I in deep sea sediments of the North Atlantic and with the Vedde Ash Bed on land in western Norway, where it is dated to 10,600 BP. The Skógar Tephra is composed of two layers, a basaltic tephra (STP-1) and a rhyolitic tephra (STP-2) erupted almost simultaneously from two different Icelandic volcanoes. The STP-1 tephra originates from the Katla volcano in South Iceland, and the öræfajökull volcano in Southeast Iceland is considered a plausible source of the STP-2 tephra. This new dating of the Skógar Tephra puts the three youngest glacier advances of the Fnjóskadalur Sequence within a 1000 year period between 10,600 and 9650 BP. The redated Late Weichselian glacial history now extracted from the Fnjóskadalur Sequence shows that glaciers in North Iceland were more extended in Younger Dryas and Preboreal times than previously assumed. This fits with the revised deglaciation pattern which has evolved in recent years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号