首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erosion processes in bedrock‐floored rivers shape channel cross‐sectional geometry and the broader landscape. However, the influence of weathering on channel slope and geometry is not well understood. Weathering can produce variation in rock erodibility within channel cross‐sections. Recent numerical modeling results suggest that weathering may preferentially weaken rock on channel banks relative to the thalweg, strongly influencing channel form. Here, we present the first quantitative field study of differential weathering across channel cross‐sections. We hypothesize that average cross‐section erosion rate controls the magnitude of this contrast in weathering between the banks and the thalweg. Erosion rate, in turn, is moderated by the extent to which weathering processes increase bedrock erodibility. We test these hypotheses on tributaries to the Potomac River, Virginia, with inferred erosion rates from ~0.1 m/kyr to >0.8 m/kyr, with higher rates in knickpoints spawned by the migratory Great Falls knickzone. We selected nine channel cross‐sections on three tributaries spanning the full range of erosion rates, and at multiple flow heights we measured (1) rock compressive strength using a Schmidt hammer, (2) rock surface roughness using a contour gage combined with automated photograph analysis, and (3) crack density (crack length/area) at three cross‐sections on one channel. All cross‐sections showed significant (p < 0.01 for strength, p < 0.05 for roughness) increases in weathering by at least one metric with height above the thalweg. These results, assuming that the weathered state of rock is a proxy for erodibility, indicate that rock erodibility varies inversely with bedrock inundation frequency. Differences in weathering between the thalweg and the channel margins tend to decrease as inferred erosion rates increase, leading to variations in channel form related to the interplay of weathering and erosion rate. This observation is consistent with numerical modeling that predicts a strong influence of weathering‐related erodibility on channel morphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Wadi el Majanin, one of the largest hydraulic structures in Libya was studied for ecophysiological aspects in relation to ambient environment. The waterbody is alkaline (pH=7.2) and characteristic of hydrogen-carbonate (144.8 mg L–1 CaCO3) system. Vertical extinction coefficients (> 4.8) indicate very high (biogenic) turbidity. Conspicuous variations of a quantitative kind in algal development (e.g., Pediastrum bloom) together with abundant diatom populations (chlorococcales-diatom assemblage), apart from very common occurrence of cyanobacteria and euglenoids show eutrophic water condition. Winter-summer alternation induced pronounced seasonal variability in the rates of in situ planktonic algal photosynthetic activities (285.7...1305 mg m–3 d–1 C). Dark fixation activity, attributed largely to bacterial production, oscillated by order of 2-fold magnitude, characterized by summer maxima (47.6 mg m–3 d–1 C). Size-fractional analysis established that smaller forms (< 60 μm), broadly regarded nanno-phytoplankton, frequently dominated (c. 70%) overall algal productivity.  相似文献   

3.
Erosion of hard‐rock coastal cliffs is understood to be caused by a combination of both marine and sub‐aerial processes. Beach morphology, tidal elevation and significant wave heights, especially under extreme storm conditions, can lead to variability in wave energy flux to the cliff‐toe. Wave and water level measurements in the nearshore under energetic conditions are difficult to obtain and in situ observations are rare. Here we use monthly cliff‐face volume changes detected using terrestrial laser scanning alongside beach morphological changes and modelled nearshore hydrodynamics to examine how exposed cliffs respond to changes in extreme wave conditions and beach morphology. The measurements cover the North Atlantic storms of 2013 to 2014 and consider two exposed stretches of coastline (Porthleven and Godrevy, UK) with contrasting beach morphology fronting the cliffs; a flat dissipative sandy beach at Godrevy and a steep reflective gravel beach at Porthleven. Beach slope and the elevation of the beach–cliff junction were found to influence the frequency of cliff inundation and the power of wave–cliff impacts. Numerical modelling (XBeach‐G) showed that under highly energetic wave conditions, i.e. those that occurred in the North Atlantic during winter 2013–2014, with Hs = 5.5 m (dissipative site) and 8 m (reflective site), the combination of greater wave height and steeper beach at the reflective site led to amplified wave run‐up, subjecting these cliffs to waves over four times as powerful as those impacting the cliffs at the dissipative site (39 kWm‐1 compared with 9 kWm‐1). This study highlighted the sensitivity of cliff erosion to extreme wave conditions, where the majority (over 90% of the annual value) of cliff‐face erosion ensued during the winter. The significance of these short‐term erosion rates in the context of long‐term retreat illustrates the importance of incorporating short‐term beach and wave dynamics into geomorphological studies of coastal cliff change. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

4.
Investigations to understand linkages among climate, erosion and weathering are central to quantifying landscape evolution. We approach these linkages through synthesis of regolith data for granitic terrain compiled with respect to climate, geochemistry, and denudation rates for low sloping upland profiles. Focusing on Na as a proxy for plagioclase weathering, we quantified regolith Na depletion, Na mass loss, and the relative partitioning of denudation to physical and chemical contributions. The depth and magnitude of regolith Na depletion increased continuously with increasing water availability, except for locations with mean annual temperature < 5 °C that exhibited little Na depletion, and locations with physical erosion rates < 20 g m? 2 yr? 1 that exhibited deep and complete regolith Na depletion. Surface Na depletion also tended to decrease with increasing physical erosion. Depth-integrated Na mass loss and regolith depth were both three orders of magnitude greater in the fully depleted, low erosion rate sites relative to other locations. These locations exhibited strong erosion-limitation of Na chemical weathering rates based on correlation of Na chemical weathering rate to total Na denudation. Sodium weathering rates in cool locations with positive annual water balance were strongly correlated to total Na denudation and precipitation, and exhibited an average apparent activation energy (Ea) of 69 kJ mol? 1 Na. The remaining water-limited locations exhibited kinetic limitation of Na weathering rates with an Ea of 136 kJ mol? 1 Na, roughly equivalent to the sum of laboratory measures of Ea and dissolution reaction enthalpy for albite. Water availability is suggested as the dominant factor limiting rate kinetics in the water-limited systems. Together, these data demonstrate marked transitions and nonlinearity in how climate and tectonics correlate to plagioclase chemical weathering and Na mass loss.  相似文献   

5.
Regeneration of partially amputated caudal fin was studied in freshwater fish Oreochromis mossambicus exposed to sublethal concentrations of zinc (5.0 mg L—1 and 10.0 mg L—1) under ambient laboratory conditions over a period of 20 days. Caudal fin regeneration was measured on 5th, 10th, 15th and 20th day of exposure and after amputation. Significant ( p < 0.05) retardation in fin regeneration was observed on day 5th and 10th in fish exposed to the nominal concentration of 5.0 mg L—1 Zn, while retardation was found highly significant ( p < 0.01) at all the observations in 10.0 mg L—1. The maximum inhibition in caudal fin regeneration (20.8 % and 24.3 %) was found during the initial observation at both of the concentrations (5.0 mg L—1 and 10.0 mg L—1) of zinc exposure. Later on the regeneration rate was almost as good as in the control group. Thus in this study fin regeneration was significantly inhibited at all time points following Zn exposure as a detrimental effect of Zn to fish. This study demonstrates that fish caudal fin regeneration is a simple assay, sensitive and easy to perform, and can serve as a model to determine the toxicity of pollutants in aquatic environment.  相似文献   

6.
Schmidt hammer (SH) R‐values are reported for surface clasts from numerically dated Holocene and Pleistocene fluvial terraces in the South Island of New Zealand. The R‐values are combined with previously obtained weathering rind, radiocarbon, terrestrial cosmogenic nuclide and luminescence terrace ages to derive SH R‐value chronofunctions for greywacke clasts from four distinct locations. Our results show that different weathering rates affect the form of the SH R‐value versus Age curve, however a fundamental dependency between the two remains constant over timescales ranging from 102 to 105 years. Power law scaling constants suggest changes in clast weathering rates are primarily affected by climatic (precipitation and temperature) and sedimentologic variables (source terrane petrology). Age uncertainties of ~22% of the surface age suggest that Schmidt hammer exposure‐age dating (SHD) is a reliable calibrated‐age dating technique for fluvial terraces. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, we used an archive of borehole logs from the British Geological Survey to collect information on the spatial structure of weathering that extends from the surface to competent bedrock across the Triassic Sherwood Sandstone Group outcrop (750 km2), in the East Midlands, UK. The borehole logs were used to estimate the thickness of the soil (n = 280) and soil and saprolite (S&S) to competent rock (n = 500). The weathering profile of the sandstone consisted of soil (median thickness ~ 1·5 m) overlying a transition zone of compacted and weakly cemented weathered sandstone saprolite over bedrock. Topographic analysis using a NEXTMAP 5 m × 5 m digital elevation model (DEM) revealed no significant relationships between slope properties (relief, flow length, flow accumulation or slope angle) and soil or S&S thickness. A weak, but statistically significant correlation was found between the thickness of the soil and S&S (rs = 0·25, p < 0·001, n = 192). The variation in soil thickness may be related to changes in current and historic and land‐use, variation in sandstone properties and the influence of glacial/peri‐glacial processes. The thickness of the saprolite was more variable towards the southern part of the study area, where it increased to a maximum 40 m. We hypothesize and provide evidence that the greater weathering thickness is related to the occurrence of increased faulting in this part of the study region, allowing increased access to meteoric waters. A possible source of increased water supply is meltwater from Quaternary ice sheets; the overburden of ice may have increased sub‐glacial pore water pressure, with the fractures and faults acting as a drainage system for the removal of dissolved weathering products. British Geological Survey © NERC 2010  相似文献   

8.
9.
The paper presents oxygen and hydrogen isotopes of 284 precipitation event samples systematically collected in Irkutsk, in the Baikal region (southeast Siberia), between June 2011 and April 2017. This is the first high-resolution dataset of stable isotopes of precipitation from this poorly studied region of continental Asia, which has a high potential for isotope-based palaeoclimate research. The dataset revealed distinct seasonal variations: relatively high δ18O (up to −4‰) and δD (up to −40‰) values characterize summer air masses, and lighter isotope composition (−41‰ for δ18O and −322‰ for δD) is characteristic of winter precipitation. Our results show that air temperature mainly affects the isotope composition of precipitation, and no significant correlations were obtained for precipitation amount and relative humidity. A new temperature dependence was established for weighted mean monthly precipitation: +0.50‰/°C (r2 = 0.83; p <.01; n = 55) for δ18O and +3.8‰/°C (r2 = 0.83, p < 0.01; n = 55) for δD. Secondary fractionation processes (e.g., contribution of recycled moisture) were identified mainly in summer from low d excess. Backward trajectories assessed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicate that precipitation with the lowest mean δ18O and δD values reaches Irkutsk in winter related to moisture transport from the Arctic. Precipitation originating from the west/southwest with the heaviest mean isotope composition reaches Irkutsk in summer, thus representing moisture transport across Eurasia. Generally, moisture transport from the west, that is, the Atlantic Ocean predominates throughout the year. A comparison of our new isotope dataset with simulation results using the European Centre/Hamburg version 5 (ECHAM5)-wiso climate model reveals a good agreement of variations in δ18O (r2 = 0.87; p <.01; n = 55) and air temperature (r2 = 0.99; p <.01; n = 71). However, the ECHAM5-wiso model fails to capture observed variations in d excess (r2 = 0.14; p < 0.01; n = 55). This disagreement can be partly explained by a model deficit of capturing regional hydrological processes associated with secondary moisture supply in summer.  相似文献   

10.
Erosion rates surveyed using 230 erosion pins on 24 occasions over eight years (1994–2001) on forested stream banks, tributaries and forest ditches in the 0·89 km2 Nant Tanllwyth catchment, part of the Hafren Forest on Plynlimon, mid‐Wales, showed statistically significant increases of up to 40 mm a?1 in mean erosion rates during the two‐year period in which environmentally sensitive plot‐scale timber harvesting operations took place (1996–97). In the four years following timber harvesting mean erosion rates at all sites recovered to levels that were lower than before the harvesting operations began. This is attributed to increased light levels, following canopy removal, allowing vegetation to colonize exposed banks. There was a statistically significant relationship (p < 0·05) between mean erosion rate in 2000–01 (four years after harvesting) and percentage vegetation cover at erosion monitoring sites in the clearfelled (south tributaries) area though the same relationship did not hold for sites on the mainstream banks or for sites on the north (mature forest) ditch sites. The implications of natural vegetation colonization for management of such streams are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Landscapes evolve in response to external forces, such as tectonics and climate, that influence surface processes of erosion and weathering. Internal feedbacks between erosion and weathering also play an integral role in regulating the landscapes response. Our understanding of these internal and external feedbacks is limited to a handful of field‐based studies, only a few of which have explicitly examined saprolite weathering. Here, we report rates of erosion and weathering in saprolite and soil to quantify how climate influences denudation, by focusing on an elevation transect in the western Sierra Nevada Mountains, California. We use an adapted mass balance approach and couple soil‐production rates from the cosmogenic radionuclide (CRN) 10Be with zirconium concentrations in rock, saprolite and soil. Our approach includes deep saprolite weathering and suggests that previous studies may have underestimated denudation rates across similar landscapes. Along the studied climate gradient, chemical weathering rates peak at middle elevations (1200–2000 m), averaging 112·3 ± 9·7 t km–2 y–1 compared to high and low elevation sites (46·8 ± 5·2 t km?2 y?1). Measured weathering rates follow similar patterns with climate as those of predicted silica fluxes, modeled using an Arrhenius temperature relationship and a linear relationship between flux and precipitation. Furthermore, chemical weathering and erosion are tightly correlated across our sites, and physical erosion rates increase with both saprolite weathering rates and intensity. Unexpectedly, saprolite and soil weathering intensities are inversely related, such that more weathered saprolites are overlain by weakly weathered soils. These data quantify exciting links between climate, weathering and erosion, and together suggest that climate controls chemical weathering via temperature and moisture control on chemical reaction rates. Our results also suggest that saprolite weathering reduces bedrock coherence, leading to faster rates of soil transport that, in turn, decrease material residence times in the soil column and limit soil weathering. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Sediment samples were collected from three seawater aquaculture ponds, and soil characteristics, sediment oxygen consumption (SOC), dissolved organic carbon (DOC) and nutrient fluxes were measured using chamber incubations at laboratory. The three ponds were each representing a specific monoculture or polyculture model of sea cucumber. Total organic carbon (TOC) and total nitrogen (TN) contents in the dry sediment ranged from 0.14 to 0.26% and 0.022 to 0.037%, respectively. Total phosphorus (TP) contents in the sediment were more spatially and temporally variable. SOC ranged from 15.29 to 45.86 mmol m–2 d–1 and showed significant differences among the three ponds (p < 0.05). TOC, total carbon (TC) contents, and SOC of the sediment in the pond polycultured with jellyfish increased with culture time, indicating that jellyfish farming enhanced the accumulation of organic matter in the sediments to some extent. Sediment showed net nitrate and ammonium uptake in most ponds and months, and significant differences were found among months (p < 0.05). Dissolved inorganic phosphate (DIP) was released from the sediments in all ponds with low flux rates. DOC was released from the sediment in all ponds and ranged from 0.67 to 1.74 g DOC m–2 d–1. The results suggested that non‐artificial‐feeding sea cucumber culture ponds could not only yield valuable seafood products, but also effectively remove nutrients from the aquaculture systems and consequently alleviate nutrient loadings of the nearby coast.  相似文献   

13.
14.
The increased air temperature is expected to have important driver on spring phytoplankton dynamics. To test whether spatial heterogeneity modifies the synchronous responses of phytoplankton to regional temperature driver, we evaluate temporal coherences for physical factors (temperature, water stability and non-algal light extinction), nutrients (nitrogen, phosphorus and silicon), and biomass and density of phytoplankton by Pearson correlation analysis and synchrony for phytoplankton community dynamics by Mantel test and nonmetric multi-dimensional scaling (NMS), during spring bloom (February 23–April 28, 2005) within Xiangxi Bay, a high spatial gradient bay of Three-Gorges Reservoir (China). The high level of temporal coherences for surface water temperature (r = 0.946, p < 0.01) and relative water column stability (r = 0.750, p < 0.01) were found between pair sites (A and B), in which the increase trends occurred with increase in regional air temperature during the study period. However, the low synchrony for phytoplankton dynamics were indeed observed between Site A and B, especially for the density of common dominant taxa (Cyclotella spp.: r = 0.155, p = 0.388) and community structure (Mantel test: r = 0.351). Moreover, the local habitat characteristics such as nutrient (nitrogen and phosphorus) and non-algal light extinction showed low levels of temporal coherence. It indicated that local community of phytoplankton varies rather independently within the single lentic bay with high spatial heterogeneity and that dispersal of algal organisms among locations cannot overwhelm out these local dynamics. Contrary to many studies, the present results argued that, in a small geographic area (i.e., a single reservoir bay of approximately 24 km length), spatial gradients also may influence spring phytoplankton response to regional temperature driver.  相似文献   

15.
From December 1997 to December 1998, benthic algal biomass and the input of allochthonous coarse particulate organic matter (CPOM) were investigated in bi-weekly intervals at two sampling stations (shaded and sunny) of the Weidlingbach, a fourth order sandstone stream in the Wienerwald. A total of 41 benthic algal taxa was collected, belonging to the groups Cyanobacteria (4 taxa), Bacillariophyceae (33), Rhodophyta (1), Chrysophyceae (1) and Chlorophyta (2). At the shaded site, periphyton dry mass ranged from 13 g m−2 in April to 440 g m−2 in August (annual mean = 93 g m−2), at the sunny site from 3 g m−2 in May to 512 g m−2 in late fall (annual mean = 70 g m−2). Based on the algal carotenoid pattern, Bacillariophyceae were most abundant in fall and winter while Chlorophyceae dominated during summer. Mean annual standing stock of chlorophyll-a was 8.65 μg cm−2 at the shaded station and 7.53 μg cm−2 at the sunny site. Annual allochthonous CPOM input rates ranged from 382 to 665 g dry mass m−2 for aerial input and from 1006 to 1062 g DM m−1 of stream length for lateral input. Lateral input rates were influenced by the bank inclination; the temporal distribution of aerial input showed an autumnal maximum (61-65% of the total). Direct CPOM input was significantly highest (P<0.05) during the period of defoliation from October to November. In the course of this period, 61.1% (shaded) to 64.9% (sunny) of the annual CPOM dropped into the brook, yielding daily input rates of 6.6 to 4.0 g DM m−2. From December to September, daily direct input rates decreased to 0.84 g DM m−2 (shaded) and 0.44 g DM m−2 (sunny). At both sites, retention capacity was high; 70% of marked leaves released along transects were retained by coarse sediment particles within 40 m from the starting point. The annual mean of periphyton dry mass made up 52% of CPOM standing stock at the shaded site and 39% at the sunny site.  相似文献   

16.
Soil‐covered upland landscapes constitute a critical part of the habitable world. Our understanding of how they evolve as a function of different climatic, tectonic and geological regimes is important across a wide range of disciplines and depends, in part, on understanding the links between chemical and physical weathering processes. Extensive previous work has shown that soil production rates decrease with increasing soil column thickness, but chemical weathering rates were not measured. Here we examine a granitic, soil‐mantled hillslope at Point Reyes, California, where soil production rates were determined using in situ produced cosmogenic nuclides (10Be and 26Al), and we quantify the extent as well as the rates of chemical weathering of the saprolite from beneath soil from across the landscape. We collected saprolite samples from the base of soil pits and analysed them for abrasion pH as well as for major and trace elements by X‐ray fluorescence spectroscopy, and for clay mineralogy by X‐ray diffraction spectroscopy. Our results show for the first time that chemical weathering rates decrease with increasing soil thickness and account for 13 to 51 per cent of total denudation. We also show that spatial variation in chemical weathering appears to be topographically controlled: weathering rate decreases with slope across the divergent ridge and increases with upslope contributing area in the convergent swale. Furthermore, to determine the best measure for the extent of saprolite weathering, we compared four different chemical weathering indices – the Vogt ratio, the chemical index of alteration (CIA), Parker's index, and the silicon–aluminium ratio – with saprolite pH. Measurements of the CIA were the most closely correlated with saprolite pH, showing that weathering intensity decreases linearly with an increase in saprolite pH from 4·7 to almost 7. Data presented here are among the first to couple directly rates of soil production and chemical weathering with how topography is likely to control weathering at a hillslope scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Karenia mikimotoi is one of the most important harmful algal species in the Chinese coastal waters, and which produce hemolytic toxins and ichthyotoxins, resulting in devastating economic losses. Previous studies demonstrated that the increase of nitrate concentration could promote the growth and reproduction of K. mikimotoi. However, the intrinsic mechanisms regarding the effects of nitrate on the K. mikimotoi photosynthesis, nucleic acid replication and differential protein expression remain to be elucidated. Our study demonstrated that nitrate stress inhibited growth of K. mikimotoi (p < 0.01). Algal chlorophyll fluorescence intensity varied slightly while algal cell cycle succession was significantly retarded by nitrate stress (p < 0.05). Sixteen proteins were detected only in nitrate-limited cultures which related to nitrate transport, signal transduction, amino acid metabolism, DNA repair and hemolysin manufacture. Eleven proteins were detected only in nitrate-replete sample and were related to photorespiration, reproduction and growth, assistance of protein modification, cytoskeleton stability and signal transduction. Based on analysis of differential proteomic functional annotations, we hypothesized a proteomic response mechanism of K. mikimotoi to environmental nitrate stress.  相似文献   

18.
A distinction is made between slumping and spalling. Slumping involves a compound slide with rotation and translation: the latter along one of the bedding plane shear surfaces in the Barton Beds. Spalling is an isolated failure of the exposed cliff face due to weathering. Where slumping is the dominant mode of cliff top recession, the latter is an incremental process with the increments being equal to the breadth of the slumps. A statistical study has been made of the breadth, length and plan area of 42 slumps observed over a 2 km stretch of the Christchurch Bay coastal cliffs and significant trends deduced.  相似文献   

19.
This paper presents measured rates of erosion on shore platforms at Kaikoura Peninsula, South Island, New Zealand. Surface lowering rates were measured with a micro-erosion meter and traversing micro-erosion meter. The mean lowering rate for all shore platforms was 1·130 mm a−1. Differences in lowering rates were found between different platform types and lithologies. The rate of surface lowering on Type A (sloping) mudstone platforms was 1·983 mm a−1, and 0·733 mm a−1 on Type B mudstone platforms (subhorizontal). On limestone platforms the lowering rate was 0·875 mm a−1. A previously reported cross-shore pattern of surface lowering rates from Kaikoura was not found. Rates were generally higher on the landward margins and decreased in a seaward direction. Season is shown statistically to influence erosion rates, with higher rates during summer than winter. The interpretation given to this is that the erosive process is subaerial weathering in the form of wetting and drying and salt weathering. This is contrary to views of shore platform development that have favoured marine processes over subaerial weathering. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Three numerical models of cliff failure have been developed, based on analyses of rockfalls along the 22 km Liassic coastline of the Glamorgan Heritage Coast, U.K. Detailed field investigation of the bucklandi (limestone dominated) and angulata (mudstone dominated) Lias series at four locations confirm the veracity of the models. Translation failure was correctly predicted at the mainly limestone buttressed cliff sites in the bucklandi and at locations where the angulata series formed a high proportion of the cliff mass. Toppling was predicted for vertical and overhanging cliffs with basal undercutting. The factor of safety reduces as the ratio of undercutting depth (d) to tension fracture distance (D) from the cliff face increases. Instability can be triggered by thrust forces generated by wave/tide impact, freeze/thaw and expansion/contraction associated with clay infill. Thrust forces can be modest, ranging from 1·7 to 2·7 MN m2, but can exceed the cross-joint strength as weathering proceeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号