首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Piles may be subjected to lateral soil pressures as a result of lateral soil movements from nearby construction‐related activities such as embankment construction or excavation operations. Three‐dimensional finite element analyses have been carried out to investigate the response of a single pile when subjected to lateral soil movements. The pile and the soil were modelled using 20‐node quadrilateral brick elements with reduced integration. For compatibility between the soil–pile interface elements, 27‐node quadrilateral brick elements with reduced integration were used to model the soil around the pile adjacent to the soil–pile interface. A Mohr–Coulomb elastic–plastic constitutive model with large‐strain mode was assumed for the soil. The analyses indicate that the behaviour of the pile was significantly influenced by the pile flexibility, the magnitude of soil movement, the pile head boundary conditions, the shape of the soil movement profile and the thickness of the moving soil mass. Reasonable agreement is found between some existing published solutions and those developed herein. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
3.
针对浮式海洋结构采用的桩基础,考虑土的循环软化效应,将软土的循环强度与Mohr-Coulomb屈服准则相结合,基于拟静力弹塑性分析建立了循环波浪载荷作用下斜向抗拔桩循环承载性能的计算模型,确定了斜向上载荷作用下抗拔桩的循环承载力,并与单调加载作用下的斜向抗拔桩的极限承载力进行了对比,进一步探讨了桩长、桩径、桩体模量及载荷循环次数等因素对斜向抗拔桩循环承载力的影响。研究结果表明:循环波浪荷载的作用导致了斜向抗拔桩土体循环强度的分布不均匀,从而降低了地基的循环承载力。斜向抗拔桩的动态极限承载力随循环次数的增加而降低,随桩长、桩径及桩体模量的增大而增大。  相似文献   

4.
马志涛  刘汉龙 《岩土力学》2006,27(Z2):860-864
利用三维弹塑性有限元模型,对水平荷载作用下现浇薄壁管桩(简称PCC桩)受力特性进行数值模拟和分析,并与试验结果进行比较,验证了模型的合理性。利用该模型对桩长、桩径以及桩身相对刚度等影响桩受力特性的主要因素进行分析,结果表明:桩径一定的情况下,桩长对桩的破坏形式有很大的影响,弹性桩与刚性桩临界点的长径比为8左右,且弹性桩的受力主要集中在桩的上部,约为0.3倍桩长;桩径对侧向位移和弯矩都有很大影响,桩径越大,桩侧向位移越小,而最大弯矩值越大,且最大弯矩点下移;在一定程度上,提高桩体强度,有利于提高桩的抗水平变形能力,但当增加到一定程度时,效果并不十分明显。  相似文献   

5.
This paper presents a mechanical analogue which models the response of a rigid circular footing on an ideal elastoplastic half-space to transient loads. In the rational analysis of pile-driving dynamics, the response of soil at the base of a pile is often approximated by a footing on a semi-infinite half-space. Most existing base models employ the well-known Lysmer analogue to model the elastic response of the soil at the pile base, and account for the inelastic soil behaviour through the inclusion of a plastic slider with a slip load equal to the ultimate failure load of the footing. The improved model provides a force response which is significantly closer to the ideal response than existing models. The paper commences with a review of analytical solutions for the dynamic response of a rigid circular footing on an elastic half-space. Existing mechanical analogs for the system are reviewed, and an automatic matching process proposed which improves the accuracy of the analogs under transient loading. The inelastic response is then studied using the finite element method, and the mechanical analogs are modified to allow representation of the observed inelastic behaviour. Examples are presented illustrating close agreement between the proposed models and finite element analyses for a range of Poisson's ratio. The improved models have direct application for one-dimensional models of pile driving, particularly in the back-analysis of data from dynamic testing of piles. They are also applicable to studies of dynamic compaction.  相似文献   

6.
基于复合地基-上部结构相互作用的静力分析已取得一定的研究成果,但其在动力荷载作用下,特别是地震作用下的动力响应却相当匮乏。首先借助有关试验通过ABAQUS和EERA的模拟分析,验证了基于Drucker-Prager屈服准则的弹塑性模型能较好地反映土体非线性动力特性以及采用有限元与无限元耦合的方法对土体无限边界的模拟。在此基础上,针对实际问题建立了刚性桩复合地基-筏板-上部结构体系整体有限元模型,对其进行动力弹塑性时程分析,并讨论了该复合地基与桩基对地震响应的差异。深入研究了不同强度地震作用下,刚性桩复合地基的工作机制,包括桩体、褥垫层、筏板的动力响应以及上部结构的地震反应和抗震性能。结果表明,小震时褥垫层基本没有减震效果,大震时复合地基的抗震性能优于桩基。地震越强烈,减震效果越明显,但作用有限,减震系数一般在0.8以上,可为工程实践提供参考。  相似文献   

7.
The driving response of thin‐walled open‐ended piles is studied using numerical simulation of the wave propagation inside the soil plug and the pile. An elastic finite element analysis is carried out to identify the stress wave propagation in the vicinity of the pile toe. It is found that the shear stress wave has the highest magnitude above the bottom of the soil plug. Below the bottom of the soil plug, the vertical stress wave has the highest magnitude. Although the shear stress wave propagating in the radial direction is similar in magnitude to the vertical stress wave at the bottom of the soil plug, it decays rapidly while travelling downwards. The highest vertical stress at the bottom of the soil plug appears after the vertical stress wave interacts with the shear stress wave travelling in the radial direction. Initially, the vertical stress wave propagates with the dilation wave velocity in both the radial and vertical directions. After it interacts with the shear stress wave, the vertical stress wave starts to propagate with the shear wave velocity in the radial direction and with the axial wave velocity downwards. It is concluded that at the bottom of the soil plug, the interaction between the waves travelling in radial and vertical directions is important. The capabilities of several one‐dimensional pile‐in‐pile models to reproduce the driving response given by a two‐dimensional axisymmetric finite element model is studied. It is seen that when the base of the soil plug fails, a one‐dimensional pile‐in‐pile model can be used to achieve results in agreement with the finite element model. However, when the pile is unplugged, where the base of the soil plug does not fail, a reduced finite element mesh that permits the radial wave propagation inside the soil plug must be used. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
现浇混凝土薄壁管桩的荷载传递机理   总被引:11,自引:4,他引:7  
振动沉模现浇混凝土薄壁管桩(简称PCC桩)技术是河海大学自主开发研制的用于地基加固处理的新技术,它是一种适合于软土地区的新型高效优质桩型。通过有限元方法研究了PCC桩的荷载传递机理,考虑了桩土接触面的滑移、脱开和土的非线性。分析结果表明,荷载-沉降曲线数值模拟结果与现场试验相当接近,并揭示了内外侧摩阻力的分布、端阻力的发挥、土塞的作用等一些目前无法由现场试验得到的结果。  相似文献   

9.
钙质石灰岩中桩基轴向承载特性的有限元分析   总被引:1,自引:0,他引:1  
为了研究钙质石灰岩中桩基的合理设计理论及开发相关的变形破坏数值分析方法,利用弹塑性有限元方法对以硫球石灰岩作为持力层的桩基现场轴向载荷试验进行了数值分析。有限元分析中钙质石灰岩被假定为理想弹塑性材料。结果表明,如果能在有限元解析中合理地考虑桩侧摩阻力的低减效果,弹塑性有限元计算可以较好地模拟与分析钙质砂土中桩基的轴向承载力特性。最后还对开口钢管桩基的土塞效应的发生机制进行了分析。  相似文献   

10.
The plugging mechanism of infinitely-long open-ended piles is examined using numerical simulation of the wave propagation inside the soil plug and pile. It is shown that the key parameters for the plugging mechanism are the pile radius, the shape of the impact load, the shear wave velocity of the soil inside the pile, and the friction at the pile–soil interface. Consequently, the tendency of the pile to plug during driving can be assessed prior to the driving process by consideration of these key parameters. Existing one-dimensional models for the shaft response of open-ended piles are discussed and an improved model is presented. The differences between using one-dimensional models and finite element models to simulate the plugging process are examined. The differences are found to vary with the key parameters. Pile-in-pile and lumped-mass one-dimensional models are found to give satisfactory performance for some parameter combinations, while for others an axisymmetric finite element model must be used. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
Soil nailing has been widely used as a reinforcing technique to retain excavations and stabilise slopes. Proper assessment of the interaction between the nails and the surrounding soil is central to safe and economical design of the composite reinforced soil structure. In this note, a new interface model, denoted as “embedded bond-slip model”, is proposed to model the soil–nail interaction numerically in a simplified manner. Combining the key features of the embedded element technique and the conventional interface element method, the proposed plane–strain interface model has the advantages that no special considerations have to be given to the arrangement of the finite element mesh for the soil nails, and that possible tangential slippage along the interface can be modelled. The formulation also allows pore water flow across the soil nails to be incorporated into the analysis. The proposed model has been implemented into a finite element code and verified by simple element tests under different uni-direction loading conditions. Using the proposed interface model, back analyses of a field test involving a soil-nailed cut slope subjected to a rise in groundwater table have been conducted. This note presents the details of the embedded bond-slip model and the numerical results which demonstrate that the proposed model is capable of simulating soil–nail interaction conveniently and realistically.  相似文献   

12.
This investigation is concerned with the mathematical analysis of a viscoelastic prestressed pipe pile embedded in multilayered soil under vertical dynamic excitation. The pile surrounding soil is governed by the plane strain model, and the soil plug is assumed to be an additional mass connected to the pipe pile shaft by applying the distributed Voigt model. Meanwhile, the prestressed pipe pile is assumed to be a vertical, viscoelastic, and hollow cylinder governed by the one‐dimensional wave equation. Then, analytical solutions of the dynamic response of the pipe pile in the frequency domain are derived by means of the Laplace transform and impedance function transfer method. Subsequently, the corresponding quasi‐analytical solution in the time domain for the case of the prestressed pipe pile undergoing a vertical semi‐sinusoidal exciting force applied at the pile top is obtained by employing the inverse Fourier transform. Utilizing these solutions, selected results for the velocity admittance curve and the reflected wave curve are presented for different heights of the soil plug to examine the influence of weld properties on the vertical dynamic response of prestressed pipe pile. The reasonableness of the theoretical model is verified by comparing the calculated results based on the presented solutions with measured results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a numerical model for the analysis of cone penetration in soft clay based on the finite element method. The constitutive behaviour of the soil is modelled by modifying an elastic, perfectly-plastic soil model obeying Von-Mises yield criterion to take into account the strain-softening, rate dependent behaviour of soft clay. Since this is a problem involving large soil deformations, the analysis is carried out using an Arbitrary Lagrangian Eulerian method where the quality of the mesh is preserved during penetration. The variation of cone resistance is examined with various parameters such as rigidity index of the soil, in situ stress anisotropy and roughness at the cone–soil interface, which influence the penetration resistance of the cone. A theoretical correlation has been developed incorporating these parameters and the results have been compared with previous correlations based on the cavity expansion theory, finite element method and strain path method. With the increase in strain-softening, relative brittleness of the soil increases and the penetration resistance is significantly reduced. With the rising strain-rate dependency, penetration resistance increases but this increase is independent of the degree of brittleness of the soil.  相似文献   

14.
This paper presents a non‐linear soil–structure interaction (SSI) macro‐element for shallow foundation on cohesive soil. The element describes the behaviour in the near field of the foundation under cyclic loading, reproducing the material non‐linearities of the soil under the foundation (yielding) as well as the geometrical non‐linearities (uplift) at the soil–structure interface. The overall behaviour in the soil and at the interface is reduced to its action on the foundation. The macro‐element consists of a non‐linear joint element, expressed in generalised variables, i.e. in forces applied to the foundation and in the corresponding displacements. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. Mechanisms of yielding and uplift are modelled through a global, coupled plasticity–uplift model. The cyclic model is dedicated to modelling the dynamic response of structures subjected to seismic action. Thus, it is especially suited to combined loading developed during this kind of motion. Comparisons of cyclic results obtained from the macro‐element and from a FE modelization are shown in order to demonstrate the relevance of the proposed model and its predictive ability. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Viscoelastic or creep behaviour can have a significant influence on the load transfer (tz) response at the pile–soil interface, and thus on the pile load settlement relationship. Many experimental and theoretical models for pile load transfer behaviour have been presented. However, none of these has led to a closed‐form expression which captures both non‐linearity and viscoelastic behaviour of the soil. In this paper, non‐linear viscoelastic shaft and base load transfer (tz) models are presented, based on integration of a generalized viscoelastic stress–strain model for the soil. The resulting shaft model is verified through published field and laboratory test data. With these models, the previous closed‐form solutions evolved for a pile in a non‐homogeneous media have been readily extended to account for visco‐elastic response. For 1‐step loading case, the closed‐form predictions have been verified extensively with previous more rigorous numerical analysis, and with the new GASPILE program analysis. Parametric studies on two kinds of commonly encountered loading: step loading, ramp (linear increase followed by sustained) loading have been performed. Two examples of the prediction of the effects of creep on the load settlement relationship by the solutions and the program GASPILE, have been presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
The present work investigates the behaviour of geothermal energy piles in sand subjected to thermal loading and the resulting soil-structure interaction, numerically using the finite element software Abaqus and user-defined material subroutines for soil. The stress-strain response of sand has been simulated using CASM constitutive model based on critical-state soil mechanics. Detailed parametric sensitivity studies have been carried out to understand the effects of different end conditions of the pile, relative densities of the soil, coefficients of lateral earth pressure of the ground, lengths and diameters of the pile, thermal loads, coefficients of friction at the pile-soil interface, critical-state friction angles of soil, thermal conductivity of soil, specific heat of soil and thermal conductivity of the pile on the stress response of soil, deformation of the pile and soil, and strains in the pile. The results show that negative shear stress is generated in the soil at the pile-soil interface. In the pile with both ends restrained the lateral earth pressure coefficient in soil increases due to high radial strain generation. Moreover, the lateral earth pressure coefficient in soil increases with the increase in the thermal load, the coefficient of friction at the pile-soil interface and the critical-state friction angle of the soil.  相似文献   

17.

Physical-scaled model testing under 1 g conditions is carried out in obtaining the vertical response of fixed head floating-inclined single piles embedded in dry sand. Practical pile inclinations of 5° and 10° besides a vertical pile (0°) subjected to static and dynamic vertical pile head loadings are considered. To account for the effects of soil nonlinearity as well as the soil–pile interface nonlinearity on the response of piles, a range of low-to-high magnitude of pile head displacements is considered for the static case while a varying amplitude of harmonic accelerations for a wide range of frequencies is considered for the dynamic case. Experimental results are obtained in the form of pile head stiffnesses and strains generated in the pile under both the static and dynamic loadings. Results suggest that the nonlinear behavior of soil as well as the nonlinearity generated at the interface between the soil and the pile as the result of applied loading considerably affect the response of piles. The soil–pile interface nonlinearity that governs the slippage of pile shows a clear influence on the pile head stiffnesses by providing two distinct values of stiffnesses corresponding to the push and the pull directional movement of piles; the two values are significantly different. Axial and bending strains generated in the piles show expected dependency on the amplitude of applied loading; the pile head-level bending strain increases almost linearly with the increase in the angle of pile inclination.

  相似文献   

18.
A three-dimensional finite element approach is proposed to predict the response of reinforced concrete piles to horizontal loading. This approach allows the nonlinear effects arising from the soil–pile interaction to be properly accounted for. In particular, the occurrence of plastic strains in the soil, concrete cracking and steel yielding in the pile as well as the occurrence of slip and gap at the soil–pile interface are reliably simulated using appropriate constitutive models. Another advantage of the present method is that it requires few material parameters as input data. In addition, these parameters can be readily obtained from conventional geotechnical and structural tests. The proposed approach is used to analyse the results from some loading tests documented in the literature concerning a large-diameter pile and a large-section rectangular pile (barrette) embedded in sandy soils. The theoretical results from these analyses are found to be in fairly good agreement with the experimental measurements available from the loading tests. Remarks of practical interest on the response of the structures considered to horizontal loading are also made.  相似文献   

19.
This paper presents a three‐dimensional finite element analysis of the response of battered piles to the combined lateral and vertical pullout loads. Analyses are carried out using an elastoplastic constitutive law based on the non‐associated Mohr–Coulomb criterion. The influence of the contact condition at the pile–soil interface is also investigated. Analyses show that the load's inclination with regard to the pile's axis affects both the lateral and axial response of the battered piles. Analyses also show that the pullout capacity of battered piles is affected by the pile's inclination regarding the vertical axis as well as the load's inclination regarding the pile's axis. The investigation of the influence of the contact condition at the soil–pile interface shows that the possibility of sliding at the soil–pile interface affects the response of battered piles subjected to loads with low inclination regarding the pile's axis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
对桩及承台采用线弹性有限元模型,对承台下桩周土采用弹塑性有限元模型,对群桩以外的土体采用线弹性无限元模型,在桩土接触面上设置接触面单元,利用三维弹塑性有限元对桩%D土%D承台相互作用进行了分析。得出了如下结论 :承台下桩顶反力总体表现出角桩最大,边桩次之,中桩最小的分布规律,随着作用在承台上的荷载增大,桩顶反力趋于均匀分布,承台下桩侧摩阻力是由桩端向桩顶逐渐发展的,承台对桩上部侧摩擦阻力存在削弱作用。为了验证本文方法的可行性,对承台下有九桩的情况进行了静载试验,将试验结果与本文计算结果进行了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号