首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
5.
A splined ILS/IPMS data set (1900–1973) from the most homogeneous values available has been analysed by the maximum entropy method of Burg. Principal conclusions are: (1) the spectral character of the Chandler wobble is a single broad peak, (2) the period is 432·95 ± 1·02 mean solar days and, (3) the Q w is 36±10. Measurements indicate that Q w is non- stationary in time.  相似文献   

6.
7.
8.
9.
The period and Q of the Chandler wobble   总被引:3,自引:0,他引:3  
Summary. We have extended our calculation of the theoretical period of the Chandler wobble to account for the non-hydrostatic portion of the Earth's equatorial bulge and the effect of the fluid core upon the lengthening of the period due to the pole tide. We find the theoretical period of a realistic perfectly elastic Earth with an equilibrium pole tide to be 426.7 sidereal days, which is 8.5 day shorter than the observed period of 435.2 day. Using Rayleigh's principle for a rotating Earth, we exploit this discrepancy together with the observed Chandler Q to place constraints on the frequency dependence of mantle anelasticity. If Qμ in the mantle varies with frequency σ as σα between 30 s and 14 months and if Qμ in the lower mantle is of order 225 at 30 s, we find that 0.04 ρα≤ 0.11; if instead Qμ in the lower mantle is of order 350 near 200 s, we find that 0.11 ≤α≤ 0.19. In all cases these limits arise from exceeding the 68 per cent confidence limits of ± 2.6 day in the observed period. Since slight departures from an equilibrium pole tide affect the Q much more strongly than the period we believe these limits to be robust.  相似文献   

10.
Wobble and nutation of the Earth   总被引:16,自引:0,他引:16  
  相似文献   

11.
The change in the inertia tensor of the Earth, due to the mass shift following a seismic event, has been computed by several authors for non-rotating earth models. Rotation is taken into account in the present paper, and the additional change in the inertia tensor is computed for an equivalent earth model, in which the axis of geometrical symmetry becomes tilted instead of the axis of greatest inertia. Rotation is thus seen to produce an increase by a factor 1.4 in the amplitude variation of the Chandler wobble, with respect to the non-rotating case, which, when added to the 1.4 amplitude increase due to the precessional re-adjustment of the equatorial bulge, gives a factor of 2 increase of the Chandler wobble amplitude with respect to the case of a rigid earth model.  相似文献   

12.
Summary. The Chandler wobble Q w, as obtained from the astronomical data cannot be equated with the Q m of the source of damping, as an examination of Chandler wobble energetics reveals. We find that if dissipation occurs in the mantle then Q w≃ 9 Q m, implying that either the mantle Q is frequency dependent or the wobble Q is much larger than 100. If the dissipation is in the oceans then Q w≃ 20 Q o, and the pole tide must be far from equilibrium.  相似文献   

13.
Is the Chandler period variable?   总被引:2,自引:0,他引:2  
  相似文献   

14.
Summary. An overview is taken of the last decade of studies of the effect of earthquakes on the polar motion. The treatment of the liquid outer core in static deformation is reviewed and some misconceptions in a number of papers are pointed out. Volterra's formula is generalized to the case of a liquid core which does not obey the highly idealized Adams—Williamson density law. The focal mechanism representation of Smylie & Mansinha (1971) is corrected for neglected terms arising from coordinate curvature, bringing the computed polar shifts into near numerical agreement with those of other workers. On the basis of the comparison of the observed and computed polar shifts for the Chile 1960 and Alaska 1964 events, it is suggested that the observed polar shifts for large earthquakes may be useful as discriminators in selecting focal mechanism parameters. The observed level of Chandler wobble excitation provides a constraint on some of the more extreme values of seismic moment recently proposed, unless these are supposed to depend only weakly on magnitude. The cumulative effect of the 30 largest earthquakes in the period 1901–64, recently examined by O'Connell & Dziewonski, is found to yield a rms Chandler wobble excitation of 0".10, using the random walk theory of Mansinha & Smylie (1967). This is close to the observed level (∼ 0".15). In addition to yielding the solution to a very long-standing geophysical puzzle, the study of the effect of earthquakes on the polar motion over the last decade may have produced a useful tool for the elucidation of seismic mechanism.  相似文献   

15.
16.
Summary. A direct calculation is made of the effect on the Chandler wobble of 1287 earthquakes that occurred during 1977–1983. The hypocentral parameters (location and origin time) and the moment tensor representation of the best point source for each earthquake as determined by the 'centroidmoment tensor' technique were used to calculate the change in the Chandler wobble's excitation function by assuming this change is due solely to the static deformation field generated by that earthquake. The resulting theoretical earthquake excitation function is compared with the 'observed' excitation function that is obtained by deconvolving a Chandler wobble time series derived from LAGEOS polar motion data. Since only 7 years of data are available for analysis it is not possible to resolve the Chandler band and determine whether or not the theoretical earthquake excitation function derived here is coherent and in phase with the 'observed' excitation function in that band. However, since the power spectrum of the earthquake excitation function is about 56 dB less than that of the 'observed' excitation function at frequencies near the Chandler frequency, it is concluded that earthquakes, via their static deformation field, have had a negligible influence on the Chandler wobble during 1977–1983. However, fault creep or any type of aseismic slip that occurs on a time-scale much less than the period of the Chandler wobble could have an important (and still unmodelled) effect on the Chandler wobble.  相似文献   

17.
18.
The period P and Q -value of the Chandler wobble are two fundamental functional of the Earth's internal physical properties and global geodynamics. We revisit the problem of the estimation of P and Q , using 10.8 yr of modern polar motion as well as contemporary atmospheric angular momentum (AAM) data. We make full use of the knowledge that AAM is a major broad-band excitation source for the polar motion. We devise two optimization criteria under the assumption that, after removal of coherent seasonal and long-period signals, the non-AAM excitation is uncorrelated with the AAM. The procedures lead to optimal estimates for P and Q. Our best estimates, judging from comprehensive sets of Monte Carlo simulations, are P = 433.7 ± 1.8 (1σ) days, Q =49 with a la range of (35, 100). In the process we also obtain (as a by-product) an estimate of roughly 0.8 for a 'mixing ratio' of the inverted-barometer (IB) effect in the AAM pressure term, indicating that the ocean behaves nearly as IB in polar motion excitation on temporal scales from months to years  相似文献   

19.
20.
Li  Nan  Li  Baolin  Chen  Dong  Wang  Enyuan  Tan  Yuyang  Qian  Jiawei  Jia  Haishan 《Natural Resources Research》2020,29(6):3653-3674
Natural Resources Research - Some industrial activities, such as underground mining, hydraulic fracturing (HF), can cause microearthquakes and even damaging earthquakes. In recent years, with the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号