首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Jiashian earthquake (ML 6.4) occurred on 4 March 2010. It was the largest inland event in southern Taiwan of 2010. The mainshock location was unexpected since it occurred in an area with relatively low background seismicity. In addition, reports of earthquake focal mechanisms do not fit with any known active fault geometry. In order to understand the origin of this earthquake, especially its rupture process, we perform a joint source inversion by using teleseismic body wave, GPS coseismic displacements and near field ground motion data. In this study, we considered a northwest–southeast trending fault with a northeast dip retrieved from GPS coseismic data and aftershocks distribution. To analyze the detailed slip distribution in space and time, we used near field 3D Green’s functions provided by spectral-element method and a full time–space inversion technique. We find a complex rupture process with several slip patches distributed inside two main asperities. The slip map reveals a mean slip of 12.9 cm for a maximum slip of 27.3 cm leading to a Mw 6.47 for this event. The rupture initiates in the deepest portion of the fault at 20 km depth, and propagated upward up to 2 km depth to form the two asperities. The source time function of this event revealed two pulses corresponding to the two asperities, for a total duration time of about 16 s. Most aftershocks occurred near the upper boundary of the deepest asperity while no aftershocks are located close to the shallowest one. We infer that the locations of these slip patches are related to the surrounding fault systems that may have restricted the rupture propagation during the earthquake.  相似文献   

2.
The 14 November 2001 Kunlun, China, earthquake with a moment magnitude (Mw) 7.8 occurred along the Kusai Lake–Kunlun Pass fault of the Kunlun fault system. We document the spatial distribution and geometry of surface rupture zone produced by this earthquake, based on high-resolution satellite (Landsat ETM, ASTER, SPOT and IKONOS) images combined with field measurements. Our results show that the surface rupture zone can be divided into five segments according to the geometry of surface rupture, including the Sun Lake, Buka Daban–Hongshui River, Kusai Lake, Hubei Peak and Kunlun Pass segments from west to east. These segments, each 55 to 130 km long, are separated by step-overs. The Sun Lake segment extends about 65 km with a strike of N45° 75°W (between 90°05′E 90°50′E) along the previously unrecognized West Sun Lake fault. A gap of about 30 km long exists between the Sun Lake and Buka Daban Peak where no obvious surface ruptures can be observed either from the satellite images or field observations. The Buka Daban–Hongshui River, Kusai Lake, Hubei Peak and Kunlun Pass segments run about 365 km striking N75° 85°W along the southern slope of the Kunlun Mountains (between 91°07′E 94°58′E). This segmentation of the surface rupture is well correlated with the pattern of slip distribution measured in the field. Detailed mapping suggest that these five first-order segments can be further separated into over 20 second-order segments with a length of 10–30 km, linked by smaller scale step-overs or bends.Our result also shows that the total coseismic surface rupture length produced by the 2001 Kunlun earthquake is about 430 km (excluding the 30-km-long gap), which is the longest coseismic surface rupture for an intracontinental earthquake ever recorded.Finally, we suggest a multiple bilateral rupture propagation model that shows the rupture process of the 2001 Mw 7.8 earthquake is complex. It consists of westward and eastward rupture propagations and interaction of these bilateral rupture processes.  相似文献   

3.
P. Mandal  S. Horton   《Tectonophysics》2007,429(1-2):61-78
The HYPODD relocation of 1172 aftershocks, recorded on 8–17 three-component digital seismographs, delineate a distinct south dipping E–W trending aftershock zone extending up to 35 km depth, which involves a crustal volume of 40 km × 60 km × 35 km. The relocated focal depths delineate the presence of three fault segments and variation in the brittle–ductile transition depths amongst the individual faults as the earthquake foci in the both western and eastern ends are confined up to 28 km depth whilst in the central aftershock zone they are limited up to 35 km depth. The FPFIT focal mechanism solutions of 444 aftershocks (using 8–12 first motions) suggest that the focal mechanisms ranged between pure reverse and pure strike slip except some pure dip slip solutions. Stress inversion performed using the P and T axes of the selected focal mechanisms reveals an N181°E oriented maximum principal stress with a very shallow dip (= 14°). The stress inversions of different depth bins of the P and T axes of selected aftershocks suggest a heterogeneous stress regime at 0–30 km depth range with a dominant consistent N–S orientation of the P-axes over the aftershock zone, which could be attributed to the existence of varied nature and orientation of fractures and faults as revealed by the relocated aftershocks.  相似文献   

4.
Franck A. Audemard   《Tectonophysics》2006,424(1-2):19-39
This paper discusses the surface rupture of the Cariaco July 09, 1997 Ms 6.8 earthquake in northeastern Venezuela – located at 10.545°N and 63.515°W and about 10 km deep. The field reconnaissance of the ground breaks confirms that this event took place on the ENE–WSW trending onshore portion of the dextral El Pilar fault (between the Gulfs of Cariaco and Paria), which is part of the major wrenching system within the Caribbean–South America plate boundary zone. Dextral slip along this fault was further supported by the structural style of this rupture (en echelon right-lateral R shears connected by mole tracks at restraining stepovers) and by larger geometric complexities (pop-ups at Las Manoas and Guarapiche), as well as by the focal mechanism solutions determined for the event by several authors. This 1997 surface ruptre comprised two distinct sections, from west to east: (a) a main very conspicuous, continuous, 30-km-long, rather straight, 075°N-trending alignment of en echelon surface breaks, with a rather constant, purely dextral coseismic slip of about 25  cm, but reaching a maximum value of 40 cm slightly northwest of Pantoño; and (b) a secondary discontinuous, 10-km-long, boomerang-shaped rupture, with a maximum coseismic slip of 20 cm at Guarapiche. The onshore extent of the surface rupture totalled 36 km, but may continue westward underwater, as suggested by the very shallow aftershock seismicity. This aftershock activity also clearly defined the steep north dip of the fault plane along the western rupture, suggesting tectonic inheritance on this major fault.From many locals' accounts, the rupture seems to have propagated from Pantoño to the west (highly asymmetric bidirectionality). This suggests that earthquake nucleation happened at or near the Casanay–Guarapiche restraining bend and rupture quickly propagated westward, allowing only a small fraction to progress eastwards beyond the bend. Additionally, the large fraction of after-slip (or creep) released is to be related to such restraining bend, which seems to have partly locked slip during rupture.  相似文献   

5.
After the 2005 Kashmir earthquake, we mapped surface ground fractures in Tangdhar, Uri, Rajouri and Punch sectors and liquefaction features in Jammu area lying close to the eastern side of the Line of Control (LOC) in Kashmir, India. The NW trending ground fractures occurred largely in the hanging wall zone of the southeastern extension of the causative fault in Tangdhar and Uri sectors. The principal compressive stress deduced from the earthquake induced ground fractures is oriented at N10°, whereas the causative Balakot–Bagh fault strikes 330°. The fault-plane solution indicates primarily SW thrusting of the causative fault with a component of strike–slip motion. The ground fractures reflect pronounced strike–slip together with some tensile component. The Tangdhar area showing left-lateral strike–slip motion lies on the hanging wall, and the Uri region showing right-lateral strike–slip movement is located towards the southeastern extension of the causative fault zone. The shear fractures are related to static stress that was responsible for the failure of causative fault. The tensile fractures with offsets are attributed to combination of both static and dynamic stresses, and the fractures and openings without offsets owe their origin due to dynamic stress. In Punch–Rajouri and Jammu area, which lies on the footwall, the fractures and liquefactions were generated by dynamic stress. The occurrence of liquefaction features in the out board part of the Himalayan range front near Jammu is suggestive of stress transfer  230 km southeast of the epicenter. The Balakot–Bagh Fault (BBF), the Muzaffarabad anticline, the rupture zone of causative fault and the zone of aftershocks — all are aligned in a  25 km wide belt along the NW–SE trending regional Himalayan strike of Kashmir region and lying between the MBT and the Riasi Thrust (Murree Thrust), suggesting a seismogenic zone that may propagate towards the southeast to trigger an earthquake in the eastern part of the Kashmir region.  相似文献   

6.
The November 27, 2005 Qeshm Island earthquake (Mw 6.0) occurred along the Zagros Thrust and Fold Belt which accommodates about half of the deformation caused by the Arabian and Eurasian Plates convergence. As typical for the belt, the earthquake was associated with buried reverse faulting and produced no surface rupture. Here, teleseismic broadband P velocity waveforms of the earthquake are inverted to obtain coseismic finite-fault slip distribution of the earthquake. It is obtained that rupture was controlled by failure of a single asperity with largest displacement of approximately 0.6 m, which occurred at a depth of 9 km. The slip model indicated radial rupture propagation from the hypocentre and confirmed blind reverse faulting within deeper part (below the depth of 6 km) of the sedimentary cover above the Hormuz Salt, lying between the cover and the basement, releasing a seismic moment of about 1.3?×?1018 Nm (MW?=?6.0). The results also confirm that the Hormuz Salt behaves as a barrier for rupture propagation to the basement below and occurrence of the aftershock activity downdip from the rupture within the Hormuz Salt. Calculated Coulomb stress variations caused by the coseismic rupture indicates stress coupling between the 2005 Qeshm Island earthquake and both the largest aftershock several hours later and the 2008 Qeshm Island earthquake (MW?=?5.9). The stress calculations further indicated stress load at the depth range (15–20 km) of the well-located aftershocks, corresponding to depths of the Hormuz Salt and top of the basement and providing plausible explanation for occurrence of the aftershocks within those layers.  相似文献   

7.
Large earthquakes in strike-slip regimes commonly rupture fault segments that are oblique to each other in both strike and dip. This was the case during the 1999 Izmit earthquake, which mainly ruptured E–W-striking right-lateral faults but also ruptured the N60°E-striking Karadere fault at the eastern end of the main rupture. It will also likely be so for any future large fault rupture in the adjacent Sea of Marmara. Our aim here is to characterize the effects of regional stress direction, stress triggering due to rupture, and mechanical slip interaction on the composite rupture process. We examine the failure tendency and slip mechanism on secondary faults that are oblique in strike and dip to a vertical strike-slip fault or “master” fault. For a regional stress field well-oriented for slip on a vertical right-lateral strike-slip fault, we determine that oblique normal faulting is most favored on dipping faults with two different strikes, both of which are oriented clockwise from the strike-slip fault. The orientation closer in strike to the master fault is predicted to slip with right-lateral oblique normal slip, the other one with left-lateral oblique normal slip. The most favored secondary fault orientations depend on the effective coefficient of friction on the faults and the ratio of the vertical stress to the maximum horizontal stress. If the regional stress instead causes left-lateral slip on the vertical master fault, the most favored secondary faults would be oriented counterclockwise from the master fault. For secondary faults striking ±30° oblique to the master fault, right-lateral slip on the master fault brings both these secondary fault orientations closer to the Coulomb condition for shear failure with oblique right-lateral slip. For a secondary fault striking 30° counterclockwise, the predicted stress change and the component of reverse slip both increase for shallower-angle dips of the secondary fault. For a secondary fault striking 30° clockwise, the predicted stress change decreases but the predicted component of normal slip increases for shallower-angle dips of the secondary fault. When both the vertical master fault and the dipping secondary fault are allowed to slip, mechanical interaction produces sharp gradients or discontinuities in slip across their intersection lines. This can effectively constrain rupture to limited portions of larger faults, depending on the locations of fault intersections. Across the fault intersection line, predicted rakes can vary by >40° and the sense of lateral slip can reverse. Application of these results provides a potential explanation for why only a limited portion of the Karadere fault ruptured during the Izmit earthquake. Our results also suggest that the geometries of fault intersection within the Sea of Marmara favor composite rupture of multiple oblique fault segments.  相似文献   

8.
花东纵谷断层是中国台湾动力作用和地壳运动变形最强烈的断层之一,其断层运动特征和强震危险程度一直备受学者的关注。文中分别以同震地表位移、1992-1999年震间形变数据为约束,反演2003年成功MW 6.8地震同震位错分布和花东纵谷断层震间运动特征。结果表明:花东纵谷断层北段处于强闭锁状态(闭锁率高达0.9),闭锁深度深(约27 km);南段闭锁程度较弱(闭锁率约0.5),闭锁深度较浅(约12 km);中段闭锁程度与闭锁深度介于南北段之间。另一方面,2003年成功MW 6.8地震微观震中位于震间无震滑移区与闭锁区的过渡带附近。依据同震位错、震间断层运动反演结果,以及历史强震破裂分布特征,分析认为,花东纵谷断层南北段运动方式存在差异性,北段主要以强震形式运动,南段以蠕滑和地震两种形式运动。自1951年花莲-台东ML 7.3地震序列后,花东纵谷断层南段、中段和北段至2016年所累积的矩能量分别等价MW 6.4、MW 7.0、MW 7.4地震;若发生级联破裂,整个断层至2016年所累积的矩能量等价MW 7.5地震。  相似文献   

9.
A 10-station portable seismograph network was deployed in northern Greece to study aftershocks of the magnitude (mb) 6.4 earthquake of June 20, 1978. The main shock occurred (in a graben) about 25 km northeast of the city of Thessaloniki and caused an east-west zone of surface rupturing 14 km long that splayed to 7 km wide at the west end. The hypocenters for 116 aftershocks in the magnitude range from 2.5 to 4.5 were determined. The epicenters for these events cover an area 30 km (east-west) by 18 km (north-south), and focal depths ranges from 4 to 12 km. Most of the aftershocks in the east half of the aftershock zone are north of the surface rupture and north of the graben. Those in the west half are located within the boundaries of the graben. Composite focalmechanism solutions for selected aftershocks indicate reactivation of geologically mapped normal faults in the area. Also, strike-slip and dip-slip faults that splay off the western end of the zone of surface ruptures may have been activated.The epicenters for four large (M 4.8) foreshocks and the main shock were relocated using the method of joint epicenter determination. Collectively, those five epicenters form an arcuate pattern convex southward, that is north of and 5 km distant from the surface rupturing. The 5-km separation, along with a focal depth of 8 km (average aftershock depth) or 16 km (NEIS main-shock depth), implies that the fault plane dips northward 58° or 73°, respectively. A preferred nodal-plane dip of 36° was determined by B.C. Papazachos and his colleagues in 1979 from a focal-mechanism solution for the main shock. If this dip is valid for the causal fault and that fault projects to the zone of surface rupturing, a decrease of dip with depth is required.  相似文献   

10.
Teleseismic and strong-motion data are inverted to determine the rupture process during the November 1999 Düzce earthquake in NW Turkey. The fault geometry, rise time and rupture velocity are determined from the aftershock distribution and preliminary inversions of the teleseismic data. Joint inversion of the teleseismic and strong-motion data is then carried out for the slip distribution. We obtain the strike 264°, dip 64°, rake −172°, seismic moment 5.0×1019 N m (Mw 7.1), and average stress drop 7 MPa. This earthquake was characterized by bilateral fault rupture and asymmetric slip distribution. Two asperities (areas of large slip) are identified, the eastern one being 1.5 times larger than the western one. The derived slip distribution is consistent with the aftershock distribution, surface rupture and damage. The point of rupture initiation in this Düzce earthquake coincided with the eastern tip of the aftershock distribution of the August 1999 Izmit earthquake.  相似文献   

11.
Two and a half years prior to China’s M7.9 Wenchuan earthquake of May 2008, at least 300 million metric tons of water accumulated with additional seasonal water level changes in the Minjiang River Valley at the eastern margin of the Longmen Shan. This article shows that static surface loading in the Zipingpu water reservoir induced Coulomb failure stresses on the nearby Beichuan thrust fault system at <17 km depth. Triggering stresses exceeded levels of daily lunar and solar tides and perturbed a fault area measuring 416 ± 96 km2. These stress perturbations, in turn, likely advanced the clock of the mainshock and directed the initial rupture propagation upward towards the reservoir on the "Coulomb-like" Beichuan fault with rate- and state-dependent frictional behavior. Static triggering perturbations produced up to 60 years (0.6%) of equivalent tectonic loading, and show strong correlations to the coseismic slip. Moreover, correlations between clock advancement and coseismic slip, observed during the mainshock beneath the reservoir, are strongest for a longer seismic cycle (10kyr) of M > 7 earthquakes. Finally, the daily event rate of the micro-seismicity (M ≥ 0.5) correlates well with the static stress perturbations, indicating destabilization.  相似文献   

12.
We use coseismic GPS data from the 1999 Chi-Chi, Taiwan earthquake to estimate the subsurface shape of the Chelungpu fault that ruptured during the earthquake. Studies prior to the earthquake suggest a ramp–décollement geometry for the Chelungpu fault, yet many finite source inversions using GPS and seismic data assume slip occurred on the down-dip extension of the Chelungpu ramp, rather than on a sub-horizontal décollement. We test whether slip occurred on the décollement or the down-dip extension of the ramp using well-established methods of inverting GPS data for geometry and slip on faults represented as elastic dislocations. We find that a significant portion of the coseismic slip did indeed occur on a sub-horizontal décollement located at 8 km depth. The slip on the décollement contributes 21% of the total modeled moment release. We estimate the fault geometry assuming several different models for the distribution of elastic properties in the earth: homogeneous, layered, and layered with lateral material contrast across the fault. It is shown, however, that heterogeneity has little influence on our estimated fault geometry. We also investigate several competing interpretations of deformation within the E/W trending rupture zone at the northern end of the 1999 ground ruptures. We demonstrate that the GPS data require a 22- to 35-km-long lateral ramp at the northern end, contradicting other investigations that propose deformation is concentrated within 10 km of the Chelungpu fault. Lastly, we propose a simple tectonic model for the development of the lateral ramp.  相似文献   

13.
The 12 September 2007 great Bengkulu earthquake (M w 8.4) occurred on the west coast of Sumatra about 130 km SW of Bengkulu. The earthquake was followed by two strong aftershocks of M w 7.9 and 7.0. We estimate coseismic offsets due to the mainshock, derived from near-field Global Positioning System (GPS) measurements from nine continuous SuGAr sites operated by the California Institute of Technology (Caltech) group. Using a forward modelling approach, we estimated slip distribution on the causative rupture of the 2007 Bengkulu earthquake and found two patches of large slip, one located north of the mainshock epicenter and the other, under the Pagai Islands. Both patches of large slip on the rupture occurred under the island belt and shallow water. Thus, despite its great magnitude, this earthquake did not generate a major tsunami. Further, we suggest that the occurrence of great earthquakes in the subduction zone on either side of the Siberut Island region, might have led to the increase in static stress in the region, where the last great earthquake occurred in 1797 and where there is evidence of strain accumulation.  相似文献   

14.
The 2002 earthquake sequence of October 31 and November 1 (main shocks Mw = 5.7) struck an area of the Molise region in Southern Italy. In this paper we analyzed the co-seismic deformation related to the Molise seismic sequence, inferred from GPS data collected before and after the earthquake, that ruptured a rather deep portion of crust releasing a moderate amount of seismic energy with no surface rupture. The GPS data have been reduced using two different processing strategies and softwares (Bernese and GIPSY) to have an increased control over the result accuracy, since the expected surface displacements induced by the Molise earthquake are in the order of the GPS reliability. The surface deformations obtained from the two approaches are statistically equivalent and show a displacement field consistent with the expected deformation mechanism and with no rupture at the surface. In order to relate this observation with the seismic source, an elastic modeling of fault dislocation rupture has been performed using seismological parameters as constraints to the model input and comparing calculated surface displacements with the observed ones. The sum of the seismic moments (8.9 × 1017 Nm) of the two main events have been used as a constraint for the size and amount of slip on the model fault while its geometry has been constrained using the focal mechanisms and aftershocks locations. Since the two main shocks exhibit the same fault parameters (strike of the plane, dip and co-seismic slip), we modelled a single square fault, size of 15 km × 15 km, assumed to accommodate the whole rupture of both events of the seismic sequence. A vertical E–W trending fault (strike = 266°) has been modeled, with a horizontal slip of 120 mm. Sensitivity tests have been performed to infer the slip distribution at depth. The comparison between GPS observations and displacement vectors predicted by the dislocation model is consistent with a source fault placed between 5 and 20 km of depth with a constant pure right-lateral strike-slip in agreement with fault slip distribution analyses using seismological information. The GPS strain field obtained doesn't require a geodetic moment release larger than the one inferred from the seismological information ruling out significant post-seismic deformation or geodetic deformation released at frequencies not detectable by seismic instruments. The Molise sequence has a critical seismotectonic significance because it occurred in an area where no historical seismicity or seismogenic faults are reported. The focal location of the sequence and the strike-slip kinematics of main shocks allow to distinguish it from the shallower and extensional seismicity of the southern Apennines being more likely related to the decoupling of the southern Adriatic block from the northern one.  相似文献   

15.
We analyzed small repeating earthquakes recorded over a 13-year period and GPS data recorded over an 8-month period to estimate interplate quasi-static slip associated with the 2003 Tokachi-oki earthquake (M8.0) and the 2004 off-Kushiro earthquake (M7.1). The repeating-earthquake analysis revealed that the slip rate near the source region of the Tokachi-oki earthquake was relatively low (< 5 cm/year) prior to the earthquake; however, in the last 3 years leading up to the event, a minor acceleration in slip occurred upon the deeper extension of the coseismic slip area of the earthquake. Repeating-earthquake and GPS data indicate that large amounts of afterslip occurred around the rupture area following the earthquake; the afterslip mainly propagated to the east of the coseismic slip area. We also infer that the occurrence of the 2004 off-Kushiro earthquake, located about 100 km northeast of the epicenter of the Tokachi-oki earthquake, was advanced by the afterslip associated with the Tokachi-oki earthquake.  相似文献   

16.
N. Kraeva   《Tectonophysics》2004,383(1-2):29-44
Application of Tikhonov's technique, using input errors for the parameter of regularization estimation, enhances the accuracy and stability of the reconstruction of a source time function (STF) by the empirical Green function (EGF) method that gives us an opportunity to use simultaneously for analysis body and surface waves data, and to estimate the horizontal and vertical directivity effects. Knowledge of the last is particularly useful for the choice of an active nodal plane of earthquakes with the dip slip fault orientation that allows us to classify these earthquakes to the interplate or intraplate types and thereby to reach the better understanding of tectonic processes in the region of interest.By way of illustration, an attempt to estimate average parameters of faulting in a first approximation is made herein for two Russian Far East large events with opposite types of focal mechanism orientation, strike slip and dip slip. The former is not a matter of interest in the context of vertical directivity effect but enables us to test the method.The directivity analysis of pulse durations and inverse amplitudes of the relative source time functions (RSTFs) restored at eight globally distributed stations IRIS indicates that the destruction in the source of the Neftegorsk earthquake (05/27/1995 MW=7.1) propagated roughly horizontally in the direction 8±11° during 19.2±0.4 s along the rupture extending 35.5±4.9 km. The calculated slip distribution along the rupture coincides within the error with the results of field geological measurements on the causal surface fault that proves that the Neftegorsk earthquake source is well described by the model of the linear unilateral fault and gives a good assessment of the method applied.The average parameters of faulting in the Kamchatka earthquake (03/08/1999 MW=6.9) have been determined from data of 13 station IRIS. It was shown that the destruction in its source propagated downward at an angle of about 60° with horizon, in the direction about S156° E, during 13.4±0.2 s, along the rupture totaling 25.5±2.3 km in length. Therefore, the nodal plane, steeply dipped to the SE, was active and this event can be regarded as an intraplate type. Two asperities can be selected; the first with the maximum slip 3.3 m located at a distance of about 7 km from the onset of rupture, and the second with the maximum slip about 0.9 m centered at approximately 19 km from that.  相似文献   

17.
Greek-Turkish boundary near the cities Kos and Bodrum has been shaken on July 20, 2017 by a Mw6.6 earthquake. The mainshock is located offshore and did not generate an on-land surface rupture. Analyzing pre- and post-earthquake continuous/survey-type static GPS observations, we investigated co-seismic surface displacements at 20 sites to characterize source parameters and slip-distribution of the mainshock. Fault plane solutions as well as co-seismic slip distribution have been acquired through the inversion of co-seismic GPS displacements modeling the event as elastic dislocations in a half space. Fault plane solution shows a southward dipping normal-type fault segment extending a depth down to ~12 km, which remains within the brittle upper crust. Results from the distributed slip inversion show that the mainshock activated a ~65 km fault section, which has three high slip patches, namely western, central and eastern patches, where the coseismic slips reach up to 13, 26, and 5 cm, respectively. This slip pattern indicates that the pre-earthquake coupling, which is storing the slip deficit, occurred on these three patches.  相似文献   

18.
王洵  周云  孙蒙  王卫民 《地质通报》2014,33(4):517-523
针对2010年青海玉树藏族自治州发生的Mw6.9(Ms7.1)级地震,利用地震波形资料和InSAR获取的同震位移资料,根据同震形成的地表位移干涉图,构建三段式断层模型,反演重建地震的破裂过程。研究显示本次地震断层面走向为119°,倾角79°,滑动角-2.2°,最大滑动量达到200cm,震源深度12.5km,地震标量地震矩为2.18×1026dyn·cm。震源破裂特征表明,玉树地震主要是沿甘孜—玉树断裂发生的左旋走滑破裂事件,反映了印度板块向北的推挤作用下,青藏高原东部不同次级块体东向不均匀挤出的运动学特征。  相似文献   

19.
We perform 3D modeling of earthquake generation of the Xianshuihe fault, southwestern China, which is a highly active strike-slip fault with a length of about 350 km, in order to understand earthquake cycles and segmentations for a long-term forecasting and earthquake nucleation process for a short-term forecasting. Historical earthquake data over the last 300 years indicates repeated periods of seismic activity, and migration of large earthquake along the fault during active seismic periods. To develop the 3D model of earthquake cycles along the Xianshuihe fault, we use a rate- and state-dependent friction law. After analyzing the result, we find that the earthquakes occur in the reoccurrence intervals of 400–500 years. Simulation result of slip velocity distribution along the fault at the depth of 10 km during 2694 years along the Xianshuihe fault indicates that since the third earthquake cycle, the fault has been divided into 3 parts. Some earthquake ruptures terminate at the bending part of the fault line, which may means the shape of the fault line controls how earthquake ruptures. The change of slip velocity and displacement at 10 km depth is more tremendous than the change of the shallow and deep part of the fault and the largest slip velocity occurs at the depth of 10 km which is the exact depth of the seismic zone where fast rupture occurs.  相似文献   

20.
Katsuyuki Abe   《Tectonophysics》1975,27(3):223-238
The source mechanism of the Saitama earthquake (36.07°N,139.40°E, Ms = 5.4) of July 1, 1968, is studied on the basis of P-wave first motion, aftershock, long-period surface-wave data and low-magnification long-period seismograms recorded in the nearfield. A precise location of the aftershocks is made using P and S—P time data obtained by a micro-earthquake observatory network. The synthetic near-field seismograms based on the Haskell model are directly compared with the observed near-field seismograms for wave form and amplitude to determine the dynamic fault parameters. The results obtained are as follows: source geometry, reverse dip slip with considerable right-lateral strike-slip component; dip direction, N6°E; dip angle 30°; fault dimension, 10 × 6 km2; rupture velocity, 3.4 km/sec in the direction S30°E; average dislocation, 92 cm; average dislocation velocity, 92 cm/sec; seismic moment, 1.9 · 1025 dyn-cm; stress drop, 100 bar. The effective stress is about the same as the stress drop. For major earthquakes in the Japanese Islands, the dislocation velocity, .D, is found to be proportional to the stress drop, σ. This relation can be expressed by .D - (β/μ)σ, where β is the shear velocity and μ is the rigidity. This result has an importance in engineering seismology because the stress drop scales the seismic motion in the vicinity of an earthquake fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号