首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
同位素稀释等离子体质谱法准确测定地质样品中痕量铼   总被引:2,自引:1,他引:2  
采用Carius管高温密闭溶样,同位素稀释-电感耦合等离子体质谱法对黄铁矿、岩石等地质样品中痕量铼进行了准确测定。流程空白能够有效控制在1.4~10 pg。对岩石样品中 ng/g量级的Re进行分析,4次重复分析结果的RSD为3.89%(2s)。以辉钼矿国家标准物质作为本方法研究的监控样品,重复分析结果与其标准推荐值(17.39±0.32)μg/g吻合。  相似文献   

2.
李肇辉 《地球化学》1977,(4):308-312
陨石、地球、太阳、恒星和宇宙线中锂同位素组成的对比研究,不仅可为阐明太阳系锂的起源提供一定依据,而且对于了解太阳系历史中的天然核作用过程和天体化学过程也具有一定价值。 各类陨石的锂同位素组成,已用经典质谱法、二次离子质谱法和热离子质谱法进行了研究。经典质谱法与热离子质谱法的结果表明,石陨石的锂同位素组成在实验  相似文献   

3.
锂同位素被广泛应用于地球与行星科学各个领域,准确测定锂同位素比值是示踪各种自然过程的前提,但目前国际实验室报道的锂同位素标准物质测定值存在较大偏差,例如已报道的海水δ7Li测试值相差5‰。针对这一现状,本文基于离子交换理论基础,使用正态分布函数拟合淋出曲线,通过理论计算得到离子交换纯化过程造成的锂同位素分馏的理论值,该数值与MC-ICP-MS检测无关,但对锂同位素测试准确度有直接的影响。在此基础上,定义相对回收率(Rc)用于监测锂同位素分馏。基于本实验室分离纯化流程,通过理论计算得出,当Rc 99. 8%时,可认为离子交换纯化过程中没有引起可观察到的锂同位素分馏,进而不影响MC-ICP-MS检测准确度。目前世界上各实验室主要通过绝对回收率或Rc来判断分离过程中是否发生同位素分馏。由于测试的空间电荷效应,绝对回收率易被高估,而 99%的Rc并未全部达到理论计算得到的Rc,表明各实验室对同种标准物质测试结果的偏差极可能是由于离子交换纯化过程中锂同位素分馏导致的。本文提出,对于每一样品,只需要分别测量离子交换过程中接收区间及其前后一定区间溶液中锂含量,将得到的Rc值与其理论值比较,即可判断分离纯化过程中是否引起可观察到的锂同位素分馏。  相似文献   

4.
刘飞翔  尹新雅  刘琪 《矿物学报》2021,41(2):127-138
气候变化与大气二氧化碳浓度息息相关.大陆岩石圈风化是影响大气二氧化碳浓度的重要过程.通过还原陆壳古风化信息,我们可以有效地了解地球气候条件的演化历史.传统方法上,前人曾使用锶同位素示踪大陆风化,但其解释尚有不足.例如,海水锶同位素比值会受到海洋热液的影响,而河流锶同位素比值则易受风化岩石类型的影响.此外,只有硅酸盐风化被认为在长时间尺度控制着大气碳汇,但锶的碳酸盐风化却与硅酸盐风化很难分辨.因此,我们需要一种更理想的同位素体系作为示踪大陆风化历史的介质.锂,作为微量元素,主要集中在岩石圈的硅酸盐矿物中,在碳酸盐岩含量较少.所以,硅酸盐风化可以使用锂同位素予以记录.同时,锂同位素受生物分馏效应影响较小,可以在海相碳酸盐岩中保存良好.这些优势为海相碳酸盐岩的锂同位素信号示踪大陆风化历史提供了有力支撑,但我们仍需对风化、迁移和结晶等过程的锂同位素地球化学行为有清晰的认识.为此,本文回顾不同储库的锂同位素组成以及各物相间锂元素配分和同位素分馏特征,总结了近年来锂同位素在重建大陆风化历史方面的进展,并详述了有待解决的关键问题.  相似文献   

5.
同位素稀释-等离子体质谱法快速测定铬铁矿中的铂族元素   总被引:10,自引:1,他引:10  
目前测定铂族元素的方法主要有中子活化法和等离子体质谱法。后具有灵敏度高、检出限低、质谱图简单的特点,是铂族元素测定的有力工具。同位素稀释法具有准确度高、灵敏度好,不需要对分析元素进行严格的定量回收,已应用于铂族元素的测定。由于铂族元素在地质样品中含量极低,且分布不均匀,因此必须进行分离富集。目前国内外对铂族元素的富集方法主要有火试金法、  相似文献   

6.
报道了以普通铂标准溶液标定198Pt稀释剂溶液的浓度,采用同位素稀释等离子体质谱法测定岩石中的Pt。稀释剂标定结果得到该198Pt稀释剂溶液的浓度为19.76μg/g(n=4,RSD=0.16%)。4次测定标准物质GBW07293(取样量约0.5g,推荐浓度440±37ng/g)中Pt含量,结果分别为412.0±2.6ng/g、495.9±2.7ng/g、519.6±3.5ng/g和677.3±3.8ng/g。单份试样重复测量的相对标准偏差<1%。由于铂族元素的块金效应,各份平行测定的结果较分散。  相似文献   

7.
天然气水合物气体同位素组成数据是其气体成因、运移与积聚过程研究的重要参数。目前天然气水合物气体单体碳、氢同位素仪器分析技术主要借鉴天然气的分析方法,但对水合物气的分解、收集、储存等前处理技术缺乏系统研究。本文利用气相色谱-同位素比值质谱(GC-IRMS)技术,对比研究了顶空法、注射器法和排水法等水合物气体分解与收集方法的实用性,以及铝塑气袋和丁基橡胶塞密封的玻璃顶空瓶对分解气的储存效果。实验结果表明:在丁基橡胶塞密封的玻璃顶空瓶内真空分解且原位储存是水合物气体单体碳、氢同位素分析的最佳前处理方法。方法标准偏差为0.12‰~0.23‰[δ13C-(C1-C3,CO2)]、1.0‰~1.8‰[δD-(C1-C3)];相对标准偏差(RSD,n=6)为0.38%~0.86%[δ13C-(C1-C3,CO2)]、0.62%~1.00%[δD-(C1-C3)]。通过对南海神狐海域、祁连山冻土区、人工合成水合物样品的分析测定,表明该方法简便实用、适用范围宽,可满足天然气水合物气体单体碳、氢同位素的分析要求。  相似文献   

8.
选用磷酸为离子流发射剂,热表面电离质谱法分析纳克量级贫化铀样品的铀同位素比值,方法最大相对标准偏差2.9%。以233U为稀释剂,采用同位素稀释法对铀的含量进行测定,扩展不确定度为2.4%(K=2)。研究表明,在纳克量级的铀同位素比值测定中,来自铼带等铀本底的干扰影响不容忽视,需要进一步研究并扣除。  相似文献   

9.
铝土矿是极端风化作用的产物,也是锂的重要载体,由于其资源量巨大,对铝土矿中锂的富集机制和分布规律的研究将有利于找矿预测。锂同位素的高效准确分析是深入认识矿物中锂的富集机制和分布规律的基础。铝土矿样品由于化学稳定性较强,溶样过程较为复杂,且Al、Na、Ca、K等基体元素含量远高于锂,给锂的纯化增加不少难度。本文采用内径5mm、柱长190mm的聚四氟乙烯离子交换柱和AG50W-X12阳离子交换树脂,以0.5mol/L硝酸为淋洗液淋洗34mL,收集最后的12mL,即可完成对铝土矿中锂的完全纯化回收。该纯化方法减少了淋洗液的使用量,提高了实验效率。采用该方法对国际标样L-SVEC、RGM-2、GSP-2进行锂的纯化,通过多接收电感耦合等离子体质谱仪(MC-ICP-MS)测试锂同位素组成,得到的δ~7Li测试值分别为-0.26‰±0.09‰(2SD,n=3)、3.19‰±0.37‰(2SD,n=3)、-0.78‰±0.22‰(2SD,n=3),与前人报道一致,验证了该方法的可靠性。此外,采用本方案对铝土矿国家标样(GBW07182)进行锂的纯化,δ~7Li测定值为10.16‰±0.21‰(2SD,n=3)。  相似文献   

10.
锂同位素分馏机制讨论   总被引:7,自引:0,他引:7  
作为一种新兴的稳定同位素示踪工具, 锂同位素地球化学的研究近年来受到了国际地学界日益广泛的关注.其应用领域涵盖了从地表到地幔的流体与矿物之间的相互作用.在地表风化作用过程中, 轻锂同位素(6Li) 优先进入固体相, 而7Li则进入流体相, 因而地表风化作用淋滤出了岩石中的重锂, 致使河水具有重的锂同位素组成, 河水又将重锂同位素组分补给海洋, 洋壳的低温蚀变作用使得海水的锂同位素组成进一步变重.在俯冲带, 由于俯冲板片释放的流体具有重锂同位素组成的特征, 它们上升并交代上覆的地幔楔和相邻的地幔, 使得地幔楔的锂同位素组成变重.同时, 深俯冲的板片由于脱水而具有较轻的锂同位素组成, 它们在地幔中可能形成一个局部轻锂的地幔储源.影响地幔橄榄岩锂同位素分馏的因素主要有3个方面: 温度、扩散机制以及外来熔体的反应.由于高温下地幔矿物之间的锂同位素分馏很小, 而单纯的扩散分馏机制不能够很好的解释我国华北汉诺坝地区地幔橄榄岩中矿物之间的锂同位素分馏.因此, 具有轻锂同位素组成的熔体与橄榄岩之间的反应是上述现象的一个合理解释.需要指出的是, 在橄榄岩-熔体反应的过程中, 锂同位素的扩散作用也对地幔矿物之间的同位素分馏有一定的贡献.   相似文献   

11.
左银虎 《岩矿测试》2009,28(2):199-200
样品用氢氟酸-高氯酸混合酸消解处理,用火焰原子发射法测定锂辉石中的锂含量。结果显示,在1%(体积分数)的硝酸介质中,空气压力0.3 MPa、乙炔流量1.2 L/min的条件下测定,100倍量的钾、钠、钙、钡、锶等共存元素不干扰测定。方法回收率为94.0%~106.0%,精密度(RSD)小于2%(n=10)。  相似文献   

12.
采用高分辨电感耦合等离子体质谱技术(HRICPMS)分析了48个不同季节大气气溶胶颗粒样品中铅同位素丰度(A)比值,为中国城市铅污染源研究提供数据。样品采自中国北京和山东长岛地区(2002~2003年期间不同季节)。A(206Pb/207Pb)和A(208Pb/207Pb)的10次测定精密度为0.05%~0.19%RSD。  相似文献   

13.
本研究建立了适用于玄武岩、纯橄岩和页岩样品的阳离子树脂铬元素化学分离方法, 并采用双稀释剂校正化学分离和质谱仪测量过程中的质量分馏。在化学分离过程中铬有3个淋洗峰, 反映了盐酸体系中铬至少具有3种络合物。页岩样品中Al、Ti含量较高, 在淋洗过程中会有过载现象。采用了SRM 979对50Cr-54Cr双稀释剂进行了标定, 双稀释剂的铬同位素组成为50Cr/52Cr=41.66, 54Cr/52Cr=22.28。铬元素标准NIST 3112a相对于SRM 979的δ53Cr= –0.063±0.05‰(2SD, N=22)。玄武岩、纯橄岩等标准物质的结果与已发表数据在误差范围内一致, 精度达到国际同类实验室平均水平。  相似文献   

14.
采用HF-HClO4-HNO3-HCl溶解样品,泡沫塑料富集-石墨炉原子吸收光谱法测定岩石、土壤、水系沉积物等地质样品中微量铊。以抗坏血酸为基体改进剂,Fe^3+加入量选择100mg,灰化温度为600℃,原子化温度为1600℃。方法用于测定国家一级标准物质,结果与标准值基本一致。方法精密度(RSD,n=8)为2.88%~6.27%,回收率为95.24%~101.3%,检出限可达0.058μg/g。  相似文献   

15.
A precise and simple method for the determination of lithium concentrations in small amounts of silicate sample was developed by applying isotope dilution-inductively coupled plasma-mass spectrometry (ID-ICP-MS). Samples plus a Li spike were digested with HF-HClO4, dried and diluted with HNO3, and measured by ICP-MS. No matrix effects were observed for 7Li/6Li in rock solutions with a dilution factor (DF) of 97 at an ICP power of 1.7 kW. By this method, the determination of 0.5 μg g-1 Li in a silicate sample of 1 mg can be made with a blank correction of < 1%. Lithium contents of ultrabasic to acidic silicate reference materials (JP-1, JB-2, JB-3, JA-1, JA-2, JA-3, JR-1 and JR-2 from the Geological Survey of Japan, and PCC-1 from the US Geological Survey) and chondrites (three different Allende and one Murchison sample) of 8 to 81 mg were determined. The relative standard deviation (RSD) was typically < 1.7%. Lithium contents of these samples were further determined by isotope dilution-thermal ionisation mass spectrometry (ID-TIMS). The relative differences between ID-ICP-MS and ID-TIMS were typically < 2%, indicating the high accuracy of ID-ICP-MS developed in this study.  相似文献   

16.
Problems of Lithium Isotope Research in Salt Lake Study   总被引:5,自引:0,他引:5  
正Lithium in nature mainly exists in the forms of solid minerals and ionic liquid.More than 150 lithium minerals exist,which are mainly pegmatite mineral including triphane,lithionite and petalite.Liquid lithium mainly  相似文献   

17.
对同一地区但Re、Os含量不同的一组辉钼矿样品,分别采用电感耦合等离子体质谱(ICP-MS)和负离子热表面电离质谱(NTIMS)对其Re-Os年龄进行了测定比较。结果表明,该组样品的平均Re-Os模式年龄分别为(138.3±4.0)Ma和(141.0±3.6)Ma(2σ,n=9),采用ISOPLOT软件的模式1进行等时线计算,得到等时线年龄分别为(138.6±2.9)Ma(2σ,n=9)和(141.6±1.9)Ma(2σ,n=9),两者在目前水平下的误差范围内基本一致。另外,分别采用ICP-MS和NTIMS对辉钼矿Re-Os年龄国家一级标准物质GBW04435和GBW04436进行了测定,所得的结果吻合也较好。  相似文献   

18.
高精度准确测定氯代烃单体碳同位素对示踪污染物来源,了解污染物的生物降解过程具有重要意义。在环境转化过程中,有机污染物的同位素组成可能是稳定不变的,也有可能发生改变。若污染物的同位素组成在迁移转化过程中不变,根据其同位素组成可以示踪污染物的来源;若同位素组成变化,根据同位素分馏结果,可以评价环境中有机污染物降解发生的可能性和程度。本文综述了固相微萃取、静态顶空进样、吹扫-捕集、多级串联技术等前处理方法与气相色谱-燃烧-同位素比值质谱仪(GC-C-IRMS)联用分析水中氯代烃单体碳同位素的研究进展,比较了分析方法的优缺点。液-液萃取较少用于水中氯代烃的单体同位素分析。静态顶空进样、固相微萃取、吹扫-捕集都是无溶剂富集技术,与GC-C-IRMS联用分析水中氯代烃单体同位素过程中不存在或存在小且恒定的可校正的同位素分馏,分析精度一般优于1‰,没有二次污染,降低了杂质干扰,提高了GC-C-IRMS的分辨率和分析精度,降低了检测限。从静态顶空进样、固相微萃取、吹扫-捕集,到多级串联等技术与GC-C-IRMS联用分析水中氯代烃单体同位素比值,检测限逐渐降低。目前,吹扫-捕集-GC-C-IRMS在分析水中氯代烃中应用最广泛,重现性好、检测限低。针内微萃取、管内微萃取、搅动棒吸附萃取和顶空进样吸附萃取等前处理方法与GC-C-IRMS仪联用具有一定的应用前景。  相似文献   

19.
郑厚琳  秦星临 《岩矿测试》1992,11(3):217-220
在氨性介质中以水合联氨还原,Au兼作载体和内标,微孔滤膜制片,XRF测定Ag的方法应用于银矿标准物质及铜矿、铅锌矿、低品位金矿样品中x~xxxμg/g含量Ag的测定。分析结果的RSD优于3%,准确度与常规方法相当。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号