首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five‐step sequential extractions were employed to fractionation of Ni, Cr and Cu in soil polluted by anthropogenic activities and determine the mobility of the metals. Twelve samples were collected on an agricultural area that was located near an airport and intercity roads in Elazig‐Turkey. Exchangeable, organically bounded, carbonate bounded, adsorbed species on Fe and Mn oxides and residual species (except silicates) of Ni, Cr and Cu were extracted into solution by using CaCl2, Na4P2O7, Na2EDTA, NH2OH–HCl and HNO3–H2O2, respectively. Mobile metal concentrations in fractions and total recoverable in soils were determined by using inductively coupled plasma‐optical emission spectrometry (ICP‐OES). Total recoverable Ni, Cr and Cu concentrations were in the range of 40–119, 45–126 and 23–72 mg kg?1, respectively. It was observed that total concentrations of metals in some of the samples were higher than the permitted values. The sum of the mobile percentages of metals was found to be lower than 50%. The Ni, Cr and Cu percentages for exchangeable species are in the ranges of 0.18–1.64, 0.03–0.59 and 0.42–2.53%, respectively.  相似文献   

2.
Iyer A  Mody K  Jha B 《Marine pollution bulletin》2004,49(11-12):974-977
An exopolysaccharide producing Enterobacter cloaceae (AK-I-MB-71a) was tested for its Cr (VI) tolerance. This isolate was not only resistant to this heavy metal but also showed enhanced growth and exopolysaccharide production in the presence of Cr (VI) at 25, 50 and 100 ppm concentrations. XRF analysis of both the biomass as well as the exopolysaccharide revealed that a sum total of about 60-70% chromium was accumulated by this bacterium. This indicated that this organism could prove to be a potential candidate in the field of bioremediation with respect to chromium removal.  相似文献   

3.
Following the basic incubation study, a greenhouse experiment was conducted to elucidate the efficiency of vetiver grass (Vetiveria zizanioides L.), with or without chelating agents, in remediating lead (Pb)‐contaminated soils from actual residential sites where Pb‐based paints were used. Because the primary factor affecting Pb phytoavailability in soils is soil pH, we used two soil types widely varying in pH that have total Pb concentrations above 1500 mg kg?1 soil. Lead‐contaminated, low pH, acidic soils were collected from residential sites in Baltimore, MD and high pH, alkaline soils were collected from residential sites in San Antonio, TX. Based on the soil characterization results, two most appropriate soils (one from each city, having similar Pb levels but variable soil physico‐chemical properties) were selected for this study. Ethylenediaminetetraacetic acid (EDTA) and [S,S′]ethylenediaminedisuccinate (EDDS) were applied at 5, 10, and 15 mmol kg?1 soil. Lead uptake and translocation in vetiver was determined on day 10 after chelants addition. Plant and soil analysis show that EDTA treated soils have maximum Pb uptake and lower total soil Pb levels. Prediction models developed for exchangeable Pb show a strong correlation for total Pb accumulated in vetiver grass. Results of the sequential chemical extraction of the soils at both initial and final time‐points, indicates a significant mobilization of Pb by the two chelants from carbonate‐bound fraction to exchangeable pool. Information on physico‐chemical properties of contaminated residential soils help in predicting Pb phytoextraction and thus further help in calibrating a successful chelant‐assisted phytoremediation model.  相似文献   

4.
Release of Chromium from Soils with Persulfate Chemical Oxidation   总被引:1,自引:0,他引:1  
An important part of the evaluation of the effectiveness of persulfate in situ chemical oxidation (ISCO) for treating organic contaminants is to identify and understand its potential impact on metal co‐contaminants in the subsurface. Chromium is a redox‐sensitive and toxic metal the release of which poses considerable risk to human health. The objective of this study was to investigate the impact of persulfate chemical oxidation on the release of chromium from three soils varying in physical‐chemical properties. Soils were treated with unactivated and activated persulfate [activated with Fe(II), Fe(II)‐EDTA, and alkaline pH] at two different concentrations (i.e., 41 mM and 2.1 mM persulfate) for 48 h and 6 months and were analyzed for release of chromium. Results show that release of chromium with persulfate chemical oxidation depends on the soil type and the activation method. Sandy soil with low oxidant demand released more chromium compared to soils with high oxidant demand. More chromium was released with alkaline pH activation. Alkaline pH and high Eh conditions favor oxidation of Cr(III) to Cr(VI), which is the main mechanism of release of chromium with persulfate chemical oxidation. Unactivated and Fe(II)‐activated persulfate decreased pH and at low pH in absence of EDTA chromium release is not a concern. These results indicate that chromium release can be anticipated based on the given site and treatment conditions, and ISCO system can be designed to minimize potential chromium release when treating soils and groundwater contaminated with both organic and metal contaminants.  相似文献   

5.
Magnetic properties of hydrocarbon (HC) containing soils and sediments from two sites (Site A and B) of the former oil-field H?nigsen were analyzed in order to determine whether magnetic methods can be employed to delineate HC contamination of soils and sediments. Magnetic parameters such as magnetic susceptibility and induced isothermal remanent magnetizations, as well as soil and sediment properties such as pH, iron content and water content, HC content and most probable number counts of iron-metabolizing microorganisms were determined. The magnetic concentration-dependent parameters for HC contaminated samples were 25 times higher in soils from Site A than in sediment samples from Site B. However, at Site B the magnetic susceptibility was still four times higher in comparison to lithologically similar non-contaminated sediment samples from a third Site C. Newly formed magnetite containing mainly single domain particles was responsible for the magnetic enhancement, whereas superparamagnetic grains represented only a minor component. Site A had an acidic pH compared to neutral pH at Site B, and a higher crystalline and bioavailable total iron content. Nevertheless, Site B samples contained significant numbers of both iron(II)-oxidizing and iron(III)-reducing microorganisms indicating that microbial iron cycling might have taken place at this site and potentially played a role for iron mineral transformation, including magnetite (trans)formation. The content of total non-polar hydrocarbons (TNPH) at Site A was one order of magnitude higher than at Site B. Only at Site A magnetic susceptibility correlated well with TNPH. Our results demonstrate that HC contaminated samples had an enhanced magnetite content compared to non-contaminated soils and sediments. Therefore, magnetic methods may provide a quick and cost-effective way to assess HC contamination in soils and sediments. However, more field sites and laboratory investigations are needed to reveal the complex nature of the processes involved.  相似文献   

6.
A widely used one-dimensional nonlinear effective stress site response analysis program is used to model the response of potentially liquefiable soils during strong shaking. Ground motion records from six events of the 2010–2011 Canterbury earthquake sequence and the extensive site investigation data that have been obtained for the Christchurch area provide the basis for the analyses. The results of the analyses depend significantly on the input motions and soil profile characterization, so these important aspects are examined. Deconvolved Riccarton Gravel input motions were generated, because recorded rock or firm layer motions were not available. Nonlinear effective stress seismic site response analyses are shown to capture key aspects of the observed soil response through the comparison of acceleration response spectra of calculated surface motions to those of recorded surface motions; however, equivalent-linear and total stress nonlinear analyses capture these aspects as well. Biases in the computed motions compared to recorded motions were realized for some cases but they can be attributed primarily to the uncertainty in the development of the input motions used in the analyses.  相似文献   

7.
The ubiquitous occurrence of branched glycerol dialkyl glycerol tetraethers(br GDGTs) in soils has allowed development of new proxies for reconstruction of past climate and environment. The methylation and cyclization degrees of br GDGTs, expressed as MBT and CBT, respectively, are reported to be mainly controlled by mean annual air temperature(MAAT) and soil p H. However, the br GDGT-derived temperatures and soil p H scatter widely when data from different environmental conditions are considered. In this study, we collected over 300 soil samples from China, which are representative of humid(Xishuangbanna, Guangzhou, and Shanghai), semi-arid(Dongying) and semi-arid/arid(Lanzhou, Tibetan Plateau) regions. Collectively we have the most extensive dataset that broadly characterizes the distribution of br GDGTs according to climate zones in China. The overall data demonstrate that the MBT/CBT derived temperatures better match the measured MAATs in humid and non-alkaline regions than those from regions of low MAP(400 mm/yr) and above neutral soil p H(7.0–7.5). Similarly, CBT describes soil p H much better in humid and non-alkaline soils than in semi-arid/arid and alkaline soils; the semi-arid/arid and alkaline soils tend to show a positive correlation between soil p H and CBT, which contradicts that in the humid and non-alkaline soils. While soil p H, MAAT and mean annual precipitation(MAP) are dominating factors controlling the br GDGT distribution across all climate zones, conductivity, total organic carbon and total nitrogen, as well as soil water content can also play an important role locally. Removing br GDGT-II resulted in a revised CBT index that provides more accurate estimation of p H, especially in semi-arid/arid and alkaline soils. The overall Chinese dataset demonstrates that continental air temperature derived from br GDGT-proxies can vastly deviate from real measurements and should be used with extreme caution in paleo-climate or-environment studies.  相似文献   

8.
The knowledge of the geological setting of pyroclastic covers and their water content distribution represents crucial information for stability analyses of slopes potentially subject to debris-flow phenomena. The study we here present would provide a contribution to this issue by means of an approach based on electrical resistivity measurements. Specifically, we describe the results of high-resolution 2D resistivity surveys carried out in a test area on Sarno Mountains (Campania Region – Southern Italy), where shallow landslides involving pyroclastic soils periodically occur triggered by critical rainfall events. We discuss the results in relation to the geology of the area in order to locate characteristic horizons of pyroclastic soils below the ground surface. Then, on the basis of a laboratory characterization of pyroclastic samples collected from the same test area at representative depths, we provide an estimation of the soil water content distribution in the field. Finally, we analyze temporal variations of the soil water content distribution by comparing the data of two surveys carried out in the autumnal and spring seasons, respectively.  相似文献   

9.
Marine seaweed (Eucheuma sp.) associated strains of Aspergillus flavus and Aspergillus niger were tested for their Cr(VI) tolerance. Both the isolates showed luxuriant growth in different concentrations of Cr(VI), i.e., 25, 50 and 100 ppm. There was no marked variation in the dry weight of control and test isolates, which indicated that both the isolates can tolerate a wide range of hexavalent chromium and their application for bioremediation purpose can be envisaged as XRF data revealed both the isolates accumulated more than 25% of the chromium supplied. A. flavus invariably exhibited higher accumulation potential.  相似文献   

10.
Isotopic heterogeneity in soil water has hindered the application of isotope compositions (δ18O and δ2H) in soil water dynamics. This heterogeneity has been suggested to be caused by soil properties such as organic matter (OM) and clay content. However, this is yet to be verified in field soil. We sampled the organic layer (O-horizon soil) with highly decomposed organic material and the A-horizon soil in western Sichuan, China, and equilibrated these samples with vapour created by unconfined labelling water. The relationship between soil properties and isotopic fractionation (εT/U) between unconfined water and the total soil water was used to determine the line-conditioned excess (lc-excess) and source rain of A-horizon field soil by removing the influence of confined water. Equilibration experiments demonstrated a significant isotopic difference between the εT/U levels in the A-horizon and O-horizon soils, indicating that OM plays an important role in isotopic fractionation. In field samples, the lc-excess of the unconfined A-horizon water was, on an average, 2.5‰ higher than that of bulk soil water. The average offsets between the annual rain and the estimated source rain of soil water decreased by 5.0 and 0.5‰ for hydrogen and oxygen after removing the influence of confined water. Isotopic heterogeneity should not be ignored while examining the evaporation of soil water, soil source rain, and hence the recent ‘two water worlds’ hypothesis, which is especially true for cases in which the soils contain high levels of OM.  相似文献   

11.
PAH concentrations of 61 surface soil samples collected from the Yellow River Delta (YRD), China were measured to determine occurrence levels, sources, and potential toxicological significance of PAHs. The total concentrations of ∑PAHs ranged from 27 to 753 ng/g d.w., with a mean of 118 ± 132 ng/g. The highest concentrations was found in the mid-southern part of the YRD (753 ng/g), which was associated with the oil exploration. The ratios indicated that the PAHs throughout the YRD were mostly of pyrogenic origin; while various sites in mid-southern part in the region were derived mainly from the petrogenic sources. Multivariate statistical analyses supported that the PAHs in surface soils of the YRD were principally from the coal and biomass combustion, petroleum spills, and/or vehicular emissions. The toxic assessment suggested that the PAHs in soils were at low potential of ecotoxicological contamination level for the YRD.  相似文献   

12.
The water retention curve (θ(ψ)), which defines the relationship between soil volumetric water content (θ) and matric potential (ψ), is of paramount importance in characterizing the hydraulic behaviour of soils. However, few methods are so far available for estimating θ(ψ) in undisturbed soil samples. We present a new design of TDR‐pressure cell (TDR‐Cell) for estimating θ(ψ) in undisturbed soil samples. The TDR‐Cell consists of a 50‐mm‐long and 50‐mm internal diameter stainless steel cylinder (which constitutes the outer frame of a coaxial line) attached to a porous ceramic disc and closed at the ends with two aluminium lids. A 49‐mm‐long and 3‐mm‐diameter stainless steel rod, which runs longitudinally through the centre of the cylinder, constitutes the inner rod of a coaxial TDR probe. The TDR‐Cell was used to determine the θ(ψ) curves of a packed sand and seven undisturbed soil samples from three profiles of agricultural soils. These θ(ψ) curves were subsequently compared to those obtained from the corresponding 2‐mm sieved soils using the pressure plate method. Measurements of bulk electrical conductivity, σa, as a function of the water content, σa(θ), of the undisturbed soil samples were also performed. An excellent correlation (R2 = 0·988) was found between the θ values measured by TDR on the different undisturbed soils and the corresponding θ obtained from the soil gravimetric water content. A typical bimodal θ(ψ) function was found for most of the undisturbed soil samples. Comparison between the θ(ψ) curves measured with the TDR‐Cell and those obtained from the 2‐mm sieved soils showed that the pressure plate method overestimates θ at low ψ values. The σa(θ) relationship was well described by a simple power expression (R2 > 0·95), in which the power factor, defined as tortuosity, ranged between 1·18 and 3·75. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
三峡库区消落带土壤有机质和全氮含量分布特征   总被引:13,自引:3,他引:10  
郭劲松  黄轩民  张彬  方芳  付川 《湖泊科学》2012,24(2):213-219
在三峡库区消落带落干期间(2010年4月),对库区巫山-重庆主城区段消落带土壤有机质(OM)和全氮(TN)含量分布及与土壤理化性质的相关性进行了调查研究.结果表明该区域消落带土壤OM和TN含量均较低,分别为10.70±4.03和0.84±0.39 mg/g,且服从正态分布.消落带土壤碳氮比(C/N)较低,推测消落带土壤无机氮在淹水期间存在向上覆水体释放的可能性.在与其它关于土壤OM和TN含量研究的比较中,研究区域内土壤OM和TN含量处于偏低的水平;而在与对照带样品的比较分析中发现,消落带样品的OM和TN含量变异系数均偏低,因此消落带干湿交替可减小不同区域消落带之间土壤OM和TN含量差异.相关性分析表明,消落带土壤pH、ORP、TN与OM之间呈显著正相关,可见研究范围内消落带土壤氮形态可能主要以有机氮的形式存在于有机质中,而C/N与TN呈负相关,与OM相关性不显著,表明C/N的大小主要取决于TN含量.  相似文献   

14.
Dense nonaqueous phase liquids (DNAPLs) are immiscible fluids with a specific gravity greater than, water. When present, DNAPLs present a serious and long-term source of continued ground water and soil contamination (Pankow and Cherry 1996). Accurate characterization and delineation of DNAPL in the subsurface is critical for evaluating restoration potential and for remedy design at a site. However, obtaining accurate and definitive direct evidence of DNAPL is difficult. A field study was recently performed comparing several approaches to DNAPL characterization at a site where anecdotal and limited direct evidence of DNAPL exists. The techniques evaluated included a three-dimensional high-resolution seismic survey, field screening of soil cores with a flame ionization detector (FID)/organic vapor analyzer (OVA), hydrophobic (Sudan IV) dye-impregnated reactive FLUTe® (Flexible Liner Underground Technologies) liner material in combination with Rotasonic drill cores, centrifuged soil with Sudan IV dye, ultraviolet light (UV) fluorescence, a Geoprobe® Membrane Interface Probe (MIP®), and phase equilibrium partitioning evaluations based on laboratory analysis of soil samples. Sonic drilling provided reliable continuous cores from which minor soil structures could be evaluated and screened with an OVA, The screening provided reliable preliminary data for identifying likely DNAPL zones and for selecting samples for further analyses. The FLUTe liner material provided the primary direct evidence of the presence of DNAPL and reliable information on the thickness and nature of its occurrence (i.e., pooled or ganglia). The MIP system provided good information regarding the subsurface lithology and rapid identification and delineation of probable DNAPL areas. The three-dimensional seismic survey was of minimal benefit to this study, and the centrifuging of samples with Sudan IV dye and the use of UV fluorescence provided no benefit. Results of phase equilibrium partitioning concentration calculations for soil samples (to infer the presence of DNAPL) were in good agreement with the site screening data. Additionally, screening data compared well with previous ground water data and supported using 1% of the pure phase solubility limit of Freon 113 (2 mg/L) as an initial means to define the DNAPL study area. Based on the results of this study, the preferred approach for identifying and delineating DNAPL in the subsurface is to initially evaluate ground water data and define an area where dissolved concentrations of the target analyte(s) approach 1% of the pure phase solubility limit. Within this study area, the MIP device is used to more specifically identify areas and lithologic zones where DNAPL may have accumulated. Core samples (either Rotasonic or Geoprobe) are then collected from zones where MIP readings are indicative of the presence of DNAPL. Soil samples from the free-product portions of the core(s) are then submitted to a laboratory for positive analyte identification. Soil analyses are then combined with site-specific geotechnical information (i.e., fraction organic carbon, soil bulk density, and porosity) and equilibrium partitioning algorithms used to estimate concentrations of organic contaminants in soil samples that would be indicative of free product. Used in combination, the soil analysis and the MIP records appear to provide accurate DNAPL identification and delineation.  相似文献   

15.
An automated disc infiltrometer was developed to improve the measurements of soil hydraulic properties (saturated hydraulic conductivity and sorptivity) of soils affected by wildfire. Guidelines are given for interpreting curves showing cumulative infiltration as a function of time measured by the autodisc. The autodisc was used to measure the variability of these soil hydraulic properties in three different sample sets: (a) a reference soil consisting of a nonrepellent, uniform, fine sand; (b) soils with the same soil textural classification derived from the same bedrock geology but having different initial burn severities; and (c) soils from different bedrock geology but having the same burn severity. The autodisc infiltrometer had greater sampling rates and volume resolution when compared with the visual minidisc infiltrometer from previous studies. There was no statistical difference in the mean values measured using the autodisc and visual minidisc, but the variability of the autodisc measurements was significantly less than the visual minidisc for a given set of samples. The greatest variability of soil hydraulic properties in reference samples with uniform particle size was attributed to different pore geometries (coefficient of variation [COV] = 0.28–0.34). Unburned field samples (same soil type) with heterogeneous particle sizes had greater variability (COV = 0.57–0.78) than the reference samples. However, this basic variability decreased or remained constant in these field samples as burn severity increased. Additional sources of variability (COV = 0.53–1.99) were attributed to multiple layers resulting from ash or sediment deposition. Results indicate that resolving differences in soil hydraulic properties from different sites requires more than the common 10 random samples because of the multiple sources of variability.  相似文献   

16.
1 INTRODUCTION Watershed restoration efforts have been accelerated in recent years by mandates in the Clean Water Act, the Endangered Species Act, and increasing pressure from environmental groups (Wagner and Roberts, 1998). To address these mandates, water-quality management plans and Total Maximum Daily Loads (TMDLs) have been developed for surface waters, such as streams placed on the 303(d) list because of beneficial use impairment. Commonly, much of the degradation of surface…  相似文献   

17.
Characteristics and distributions of humic acid(HA) and soil organic matter(SOM) in a yellow soil profile and a limestone soil profile of the southwest China Karst area were systematically investigated to reveal their evolutions in different soils of the study area. The results showed that characteristics and distribution of SOM along the two soil profiles were notably different. Total organic carbon(TOC) contents of soil samples decreased just slightly along the limestone soil profile but sharply along the yellow soil profile. TOCs of the limestone soils were significantly higher than those of the corresponding yellow soils, and C/N ratios of SOMs showed a similar variation trend to that of TOCs, indicating that SOM can be better conserved in the limestone soil than in the yellow soil. The soil humic acids were exhaustively extracted and further fractionated according to their apparent molecular weights using ultrafiltration techniques to explore underlying conservation mechanisms. The result showed that C/N ratios of HAs from different limestone soil layers were relatively stable and that large molecular HA fractions predominated the bulk HA of the top soil, indicating that HA in the limestone profile was protected while bio and chemical degradations were retarded. Combined with organic elements contents and mineral contents of two soils, weconcluded that high calcium contents in limestone soils may play a key role in SOM conservation by forming complexation compounds with HAs or/and enclosing SOMs with hypergene CaCO_3 precipitation.  相似文献   

18.
Suspended particles and dissolved substances in water provide reactive surfaces, influence metabolic activity and contribute to the net sediment deposition. It therefore plays an important part in the ecology and quality of the water mass. The water quality in reservoirs is crucial and it is naturally maintained by flushing and sedimentation, which continuously remove phosphorus from the water. In some reservoirs, however, these removal processes are countered by recycling of ions which could play a key role to start and/or maintain the eutrophic state. The combination of macro‐, trace‐ and microanalysis techniques can be useful to trace pollution sources through a chemical fingerprint, whether be during an acute environmental disaster or a long‐term release of pollutants. The water quality and total metal content of reservoir sediments were assessed in a reservoir, situated in the capital of the Paraná State, in the South‐Eastern part of Brazil. The goal of this paper was to determine the metal presence in the sediment and metal and ionic speciation in the Green River reservoir water. Water and bed sediment samples, collected from various sites during 2008 and 2009, were investigated using XRF, ICP‐OES, ICP‐MS, XRD and zeta potential measurements. Based on the results, the heavy metal concentration and chemical composition of the suspended matter in the water samples, as well as the sediment's chemical composition will be discussed.  相似文献   

19.
20.
The determination of clay content in near‐surface formations is crucial for geotechnical, hydrogeological and oil‐contamination studies. We have developed a technique for estimating clay content that consists of the minimization of the difference between the theoretically calculated and measured soil resistivities as a function of water salinity. To calculate the resistivity, we used a model that takes into account the electrochemical processes in the clay micropores. The experimental measurements of soil resistivity were performed on soil samples, completely saturated by brines at different concentrations of NaCl salt in the range 0.6–100 g/l, to obtain the resistivity versus salinity curve. The parameters obtained with this curve inversion are the clay content, the total porosity and the cation exchange capacity. To verify the new technique, we determined clay concentrations of artificial mixtures of calibrated sand and clay. The relative mean error in the clay content does not exceed 20% for a 5% fitting error of the resistivity versus salinity curves. Such evaluations allow the correct separation of the main lithological groups (sand, sandy loam, loam, and light, medium and heavy clay). We applied this technique to estimate the petrophysical parameters of soils (clay content, porosity and cation exchange capacity) at various sites in Mexico. The results improved the interpretation of the vertical electrical soundings, the lithological soil characterization and the delineation of oil‐contaminated areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号